NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
"ASTIA AVAILABILITY NOTICE:
Qualified Requestors May Obtain
Copies of this Report from ASTIA.
ASTIA Release to OTS Not
Authorized."
MICROMINIATURE INTEGRATED CIRCUIT PACKAGE

Unclassified Report No. 2

Signal Corps Contract No. DA-36-039-SC-90850
DA Project No. 3A99-21-002-01
Second Quarterly Progress Report
October 1, 1962 to January 1, 1963

Prepared for
U. S. Army Signal Research and Development Laboratory
Fort Monmouth, New Jersey
MICROMINIATURE INTEGRATED CIRCUIT PACKAGE
Unclassified Report No. 2

Signal Corps Contract No. DA-36-039-SC-90850
SCTR SCL-7643, October 17, 1961
DA Project No. 3A99-21-002-01

SECOND QUARTERLY PROGRESS REPORT
October 1, 1962 to January 1, 1963

OBJECT
Research work directed toward development and
production of hermetic packages for semiconductor
devices in accordance with contract requirements.

REPORT PREPARED BY:

E. P. Barbaro

WESTINGHOUSE ELECTRIC CORPORATION
Molecular Electronics Division
Youngwood Pennsylvania
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II.</td>
<td>FACTUAL DATA</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2.1 GRAPHITE GLASSING BOAT REVISIONS</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2.2 PHYSICAL SHORTS OF FRAME TO LEAD</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2.3 PITTED KOVAR FROM DEOXIDIZING PROCESS</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.4 STAMPED LEAD PREFORMS</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.5 LIDDING TECHNIQUE FOR MICROMINIATURE CIRCUIT PACKAGES</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.6 INTEGRAL MICROMODULE CERAMIC BASE PACKAGE</td>
<td>9</td>
</tr>
<tr>
<td>III.</td>
<td>CONCLUSIONS</td>
<td>11</td>
</tr>
<tr>
<td>IV.</td>
<td>PROGRAM FOR NEXT INTERVAL</td>
<td>11</td>
</tr>
<tr>
<td>V.</td>
<td>KEY TECHNICAL PERSONNEL</td>
<td>11</td>
</tr>
<tr>
<td>VI.</td>
<td>INITIAL DISTRIBUTION</td>
<td>16</td>
</tr>
</tbody>
</table>

PURPOSE

ABSTRACT

CONFERENCES

iv, v
PURPOSE

The purpose of this investigation is to develop a .225 X .225 inch square planar, hermetic, integrated circuit packages for mounting on .310 inch square micromodule wafers. The packages are to be developed to contain integrated circuits of the type specified in paragraph 1.2 of Technical Requirements SCL-7643. The packages will be constructed from compatible glass and metal materials.

A minimum of twelve leads, three on each side of the .225 X .225 inch square package will be provided. A circuit mounting area of .120 inch square will be available within the enclosure. The height of the package may be adjusted up to .090 inches maximum.
ABSTRACT
Two successive design modifications were made to the graphite glassing boats in order to achieve more uniform package appearance. Fifty package samples were submitted to the Signal Corps for mechanical evaluation. Also techniques for sealing the integrated circuit package were established and fifty sealed packages were submitted to the Signal Corps. Improved cleaning techniques were established for deoxidizing Kovar parts prior to gold plating resulting in less pitting of the metal. Stamped lead preforms were received during this period. The first one hundred microminiature circuit packages submitted to the Signal Corps were fabricated with etched leads. The stamped leads are more uniform in cross section.
Ceramic micromodules with pads were designed and ordered during the second quarter. This micromodule will be utilized in our continuing program to develop a integral package using the ceramic micromodule as a base.
CONFERENCES

I. Date: October 12, 1962

Place: Westinghouse Electric Corporation, Molecular Electronics Department, Youngwood, Pennsylvania.

In Attendance: Messrs. Dr. Jere Hohmann, USASRD
K. G. Cooley, Westinghouse MED
E. P. Barbaro, Westinghouse MED
A. P. Kruper, Westinghouse MED
M. S. Saunders, Westinghouse MED

Subject: 1. The progress on package fabrication was discussed.
2. Environmental Evaluation of 200 samples with devices was discussed.
3. The possible substitution of integrated circuits for the mesa transistors was received.

II. Date: November 26, 1962

Place: Fort Monmouth, New Jersey

In Attendance: Messrs. M. Robert Miller, USASRD
E. P. Barbaro, Westinghouse MED

Subject: 1. Discussed the status of package evaluation.
2. Reviewed the rejection of the draft of the First Quarterly Report due to omission of integral micromodule package work and technical report form.
CONFERENCES

III. Date: December 12, 1962.
 Place: Westinghouse Electric Corporation, Molecular Electronics
 Department, Youngwood, Pennsylvania.
 In Attendance: Messrs. O. Pitzalis, USASRD

 K. G. Cooley, Westinghouse MED
 M. S. Saunders, Westinghouse MED
 A. P. Kruper, Westinghouse MED
 J. D. Husher, Westinghouse MED
 W. Williams, Westinghouse MED
 J. M. Clayton, Westinghouse MED
 T. L. Charland, Westinghouse MED

Subject: 1. Evaluation of one hundred (100) packages already shipped.
 3. Discussion of number and type of integrated circuits to
 be packaged.
 4. Extension of December 31, 1962, shipping date of delivery
 of 200 packaged devices.
I. INTRODUCTION
The investigation in the second quarter of this contract was primarily the improvement of the microcircuit package appearance and mechanical qualities. Packages made in the first quarter were not symmetrical, the frame and base were out of alignment with respect to each other. Glass flow was not proper resulting in shorting of the leads to the frame. In order to minimize the dimension problem, graphite boats were redesigned and modified to attempt to minimize part variation. Also the appearance of the deoxidized kovar is pitted, the cleaning techniques were evaluated and an improved technique has been developed. Stamped leads were obtained which resulted in more uniform lead cross sections. A sealing technique was developed for this package which yields hermetically sealed packages. Measured leak rate was \(\leq 1 \times 10^{-7} \) for all encapsulated packages. Fifty integrated circuit micromodule packages were sealed by this technique and forwarded to the Signal Corps. A boat for fabricating micromodule ceramic base packages was designed and obtained. Ceramic bases with metallized pads were ordered but not received.
II. FACTUAL DATA

2.1 Graphite Glassing Boat Revisions

The problem of non-alignment of the frame to base was due to drift in the packaging boat cavity. The boat has a 4° drift for ease in unloading. This drift is standard for boat designs for larger Westinghouse flat packages; however, in the .220" X .220" package due to its small size, this variation which is identical for all sizes, is more noticeable. In the redesigned glassing boat, the outside walls which orient the base to the frame have no drift. See Figure No. 1. Also the height of the alignment top was reduced which resulted in ease in assembly and more assurance that all parts were properly seated. These changes worked very well resulting in more uniformity in the package as the alignment top and outside glass retaining walls held all parts in orientation.

2.2 Physical Shorts of Frame to Lead

A problem of the molten glass picking up the frame during glassing was resolved. This condition results in an electrical short between the leads and the frame. This problem was eliminated by a slower heat-up cycle during glass fusion. It is the writer's opinion that the glass softens and reaches an equilibrium condition rather than a rapid melting which changes the physical location of the glass before surface tension is minimized. However, since the slower heat-up cycle was instituted, the shorting problem has been eliminated. In fact, all packages are tested at 200 VDC between the leads, frame, and bottom with no breakdown. See Figure No. 2 for test fixture sketch.
OLD DESIGN

NEW DESIGN

FIGURE 1
FIGURE 2

HIGH POTENTIAL BREAKDOWN TEST FIXTURE
2.3 Pitted Kovar from Deoxidizing Process

After package fabrication, the kovar parts have a heavy oxide which would hinder gold plating. This oxide is removed by cleaning in a solution of ferric ammonium sulfate, sulfuric and hydrochloric acid. The solution is quite effective in that all the oxide is removed. However, the cleaning solution leaves the metal parts in a pitted condition. This requires extreme care in etching so that pitting depth is kept to a minimum; since deep etch pits could act as stress centers in bending and result in breakage of leads during fatigue test. As a result of this problem, various deoxidizing solutions were investigated. One of the more promising cleaning solutions was 50% HCL etching at room temperature for ten (10) minutes. This resulted in considerably less pitting of the kovar parts. See photographs one and two.

2.4 Stamped Lead Preforms

Lead preforms which were furnished in the first 100 samples were etched by the photoresist process. This resulted in an undercut lead which appear as a trapezoid. See Figure No. 3 and Figure No. 4. The stamped lead is more uniform in cross section. This is very important in lead fatigue. The etched lead with the trapezoid structure will result in more stress during bending than the stamped lead.

2.5 Lidding Technique for Microminiature Circuit Packages

A technique for sealing lids on the package was developed during the second quarter of this contract. The packages were sealed in a non-oxidizing atmosphere in a continuous belt furnace. Many fixture innovations were
CROSS SECTION OF ETCHED LEAD

FIGURE 3

CROSS SECTION OF STAMPED LEAD

FIGURE 4
tried as the sealing objective is to not melt gold-germanium eutectic on the bottom of the package and have complete flow of this same solder between the lid and frame. A differential of 15°C was obtained utilizing a spring with high contact pressure, but low heat inertia and a graphite boat for positive location of the lid to the package. See Figure No. 5 for suggested lidding boat. Results in sealing were very encouraging. For all practical purposes, the lidding yield was 100%. The sealed packages were placed in a helium backfill chamber at two (2) atmospheres of pressure for a period of two (2) hours. After which they were helium-leak tested within fifteen (15) minutes and results indicated that they were <1 X 10⁻⁷ cc/sec. at one (1) atmosphere in leak rate. These same sealed packages were tested to check for gross leakers in water at 90°C.

The braze used was gold-germanium obtained from Automation Alloys with a melting point of 352°C. Packages of another size were stored with no resulting leaks or physical change in the package at 300°C for 1000 hours. Fifty .220 X .220 integrated circuit micromodule packages were sealed in the aforementioned manner and submitted for Signal Corps evaluation.

2.6 Integral Micromodule Ceramic Base Package

As reported in the first quarterly report, we are continuing our efforts to fabricate a package directly to the ceramic micromodule base. In view of the objections of minimum clearance of frame and solder pads at the edge of the base, the new design utilizes the frame from the .225" X .225" package which leaves .042" clearance on a side. A new metallized base and ...
FIGURE 5

LEAD LOCATING FOCUS

PACKAGE

METAL FLAG FOR HEAT PICK UP

MOLY SPRING

GRAPHITE
encapsulation boat was designed. The boat has been completed; however, the ceramic micromodule bases have not been delivered. These were expected in late December, but the supplier has not been able to meet this schedule.

III. CONCLUSIONS

The overall appearance of the packages was enhanced by the process and package glassing fixture changes. Fifty mechanical sample packages unsealed and fifty sealed packages were delivered for evaluation. Sealing techniques were established that insure leak rates \(< 1 \times 10^{-7} \) cc/sec. Also volume production capabilities were proven should the mechanical samples be approved.

IV. PROGRAM FOR NEXT INTERVAL

R. F. Universal Amplifiers will be assembled into the .220" \(\times \) .220" micromodule integrated circuit package for Signal Corps evaluation. Also work will be accelerated on .310 \(\times \) .310 ceramic micromodule base package. If this program goes as expected, mechanical samples could be forwarded during the third quarter.

V. KEY TECHNICAL PERSONNEL

The following key personnel were assigned to the project during this report period:

E. P. Barbaro Supervising Engineer 150 hours (*not charged to project)

T. L. Charland Senior Engineer 325 hours

J. M. Clayton Associate Engineer 75 hours

Others (Technicians) 1236 hours

Total hours charged to project 1636 hours

The background of each key technical person is contained on the following separate pages:
BARBARO, ERNEST P.
Supervising Engineer, Pilot Manufacturing
Molecular Electronics Division

Born: August 21, 1929
Married: Three Children

Education:

University of Pittsburgh, B.S. in Industrial Engineering, M. E. Option, June 1951

University of Pittsburgh, M.S. in Engineering, August 1957

Experience:

July 1951
July 1953

July 1953
August 1956

Westinghouse Electric Corp. - Materials Division
Penn Avenue, Pittsburgh, Pa. - Assistant Engineer. Responsible for miniature selenium rectifier process and design. Designed and supervised environmental test facility. Developed automatic test equipment for basic cells and final assemblies. Mechanized assemblies of miniature selenium rectifiers. Developed high voltage stack, computer diodes, and assisted in the development of high current density selenium cells.

August 1956
July 1958

Westinghouse Electric Corp. - Director Systems
Penn Avenue, Pittsburgh, Pa. - Supervising Manufacturing Engineer. Responsible for processing, assembly, test, quality assurance, and applications of the manufacturing of selenium rectifiers.

July 1958
January 1959

Westinghouse Electric Corp. - Semiconductor Dept.
Youngwood, Pennsylvania - Manufacturing Engineer.

Assigned to take process of 150 watt silicon transistor from pilot to volume manufacture. Worked with Engineering to redesign unit to lower product cost and increase reliability. Work was in areas of alloy development, gold plating process development, connector design, process assembly techniques, welding, painting and testing of the product.
January 1959 Westinghouse Electric Corp. - Semiconductor Division
Youngwood, Pennsylvania - Supervising Engineer.

Responsible for product yield and quality improvement
for silicon transistors and triodes, directed large
cost reduction program for all control products.
Responsible for facility specification. Group con-
tributed significantly to product improvement in the
areas of diffusion, alloying, surface passivation,
encapsulation design and test techniques.

May 1962 to present Westinghouse Electric Corp. - Molecular Electronics
Division - Supervising Engineer.

Responsible for assembly and encapsulation of
functional electronic blocks. Also, responsible
for flat package design and fabrication. Responsible
for push-pull amplifier engineering and processing.

Societies
A.I.E.E.,
E.U.S.

Patents: 3

Publications: A New Application of Linear Programming
CHARLAND, TELESPHORE LAWRENCE - SENIOR DESIGN ENGINEER, MOLECULAR ELECTRONICS DEPARTMENT

Born: March 31, 1921 - Keeseville, New York

Education
1946-1950 Iowa State University, Ames, Iowa - BS in Ceramic Engrg.
1952-1954 Alfred University, Alfred, New York - MS in Ceramic Engrg.

Experience
1950-1952 Westinghouse, Lamp Division - engineer concerned with quality control and production of fluorescent lamps.
1952-1954 Alfred University - research associate concerned with development of ceramic materials for jet engine and rocket applications.

Societies
The American Ceramic Society; The National Institute of Ceramic Engineers; The American Nuclear Society; The New York State Ceramic Association; Keramos; Registered Professional Engineer, Pennsylvania.

Patent Disclosures

Publications
The Pressure-Carbonization of Carbon Bonded Silicon Carbide - Graphite for Use in Uncooled Rocket Nozzles

The Hot Pressing of Commercial Chrome Ores

Modification of a Ceramic Nuclear Fuel for Improved Thermal Conductivity

Development of Thermoelectric Materials
CLAYTON, JOHN M. - ASSOCIATE ENGINEER

Born: February 17, 1936
Married: one child

Education:

Carnegie Institute of Technology, BS Metallurgy, 1962

Experience:

March 1959 - September 1959: Allegheny Electronic Chemicals Co.,
Bradford, Pennsylvania. Lab Technician.
Development of Crystal growing techniques.
Development of evaluation processes such as
etch pit dislocation counts, boron analysis,
resistivity and lifetime determination.

June 1960 - June 1962: Westinghouse Semiconductor Division,
Youngwood, Pennsylvania - Electronic mechanic.
Transistor development, diffusion and alloying
of large area devices, materials preparation,
hard soldering. Epitaxial growth development
for two groups leading to product applications,
doping studies, reactor design.

June 1962 Process Design Engineer--Assembly & Encapsulation
Engineering, Molecular Blocks.
Distribution List

<table>
<thead>
<tr>
<th>Number of Copies</th>
<th>Attn:</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OASD (R&E), Rm3E1065</td>
<td>The Pentagon, Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Chief of Research & Development</td>
<td>OCS, Department of the Army, Washington 25, D.C.</td>
</tr>
<tr>
<td>3</td>
<td>Commanding Officer</td>
<td>U.S. Army Electronics Command, Attn: AMSEL-AD, Fort Monmouth, New Jersey</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>U.S. Naval Research Laboratory, Attn: Code 2027, Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer & Director</td>
<td>U.S. Navy Electronics Laboratory, San Diego 52, California</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>Aeronautical Systems Division, Attn: ASAPRL, Wright Patterson Air Force Base, Ohio</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>Air Force Cambridge Research Laboratories, Attn: CRXL-R, L.G. Hanscom Field, Bedford, Massachusetts</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>Air Force Command & Control Development Division, Attn: CRZC, L.G. Hanscom Field, Bedford, Massachusetts</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>Rome Air Development Center, Attn: RAALD, Griffiss Air Force Base, New York</td>
</tr>
<tr>
<td>Address</td>
<td>Number of Copies</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Commanding General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. Army Material Command</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Attn: R&D Directorate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. Army Communications & Electronics Combat Development Agency</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fort Huachuca, Arizona</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: TISIA</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington 12, Virginia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. Army Security Agency</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington 12, Virginia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deputy President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. Army Security Agency Board</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington 12, Virginia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harry Diamond Laboratories</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Attn: Library Rm. 211, Bldg. 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. Army Electronics Material Support Agency</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Attn: SELMS-ADJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Monmouth, New Jersey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corps of Engineers Liaison Office</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Electronics R&D Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Monmouth, New Jersey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFSC Scientific/Technical Liaison Office</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Air Development Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnsville, Pennsylvania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advisory Group on Electron Devices</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>346 Broadway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York 13, New York</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DA36-039 sc-90850

Marine Corps Liaison Office
U. S. Army Electronics R & D Laboratory
Fort Monmouth, New Jersey

Commanding General
U. S. Army Combat Developments Command
Attn: CDCMR-E
Fort Belvoir, Virginia

Headquarters
Electronic Systems Division
Attn: ESAT
L. G. Hanscom Field
Bedford, Massachusetts

Director
Fort Monmouth Office
U. S. Army Communications & Electronics Combat
 Development Agency
Fort Monmouth, New Jersey

Mr. A. H. Young
Code 618AIA
Semiconductor Group
Bureau of Ships
Department of the Navy
Washington 25, D.C.

United Carr Fastner Corporation
1016 Statler Office Building
Boston 16, Massachusetts

Fairchild Semiconductor
A Division of Fairchild Camera & Inst. Corporation
Attn: Mr. R. M. Eiler
Room 1140 Third National Building
Dayton 2, Ohio

Mr. R. A. Campbell
Executive Vice President
Pacific Semiconductors Inc.
14520 Aviation Boulevard
Lawndale, California

Number of Copies
1

1

1

1
Commanding Officer
U. S. Army Electronics R&D Laboratory
Fort Monmouth, New Jersey
Attn: Director of Research/Engineering 1
Attn: Technical Documents Center 1
Attn: Technical Information Division 3
Attn: Rpts Dist Unit, Solid State & Freq Cont Div 1
(Record Copy)
Attn: Ch, S&M Br., Solid State & Frequency 1
Control Division
Attn: Ch, M&QE Br., Solid State & Frequency 1
Control Division
Attn: Director, Solid State & Frequency Control Division 1
Attn: R. Miller, Solid State & Frequency Control Division 11

Total number of copies to be distributed 60

This contract is supervised by the Solid State & Frequency Control Division, Electronic Components Department, USAELRDL, Fort Monmouth, New Jersey. For further technical information, contact R. Miller, Project Engineer. Telephone 53-51712.
Two successive design modifications were made to the graphic glazing base in order to achieve more uniform package appearance. Fifty package samples were submitted to the Signal Corps for mechanical evaluation. Also techniques for sealing the integrated circuit package were established and fifty sample packages were submitted to the Signal Corps. Improved cleaning techniques were employed consisting of loop printing prior to gold plating resulting in less plating of the metal. Stamped lead frames were received during this period. The first mic to hundred microminiature circuit packages submitted to the Signal Corps were fabricated with etched leads. The stamped leads are more uniform in cross section.

Ceramic microwaves with leads were designed and purchased during the second quarter. This microwave will be utilized in our continuing program to develop a integrated package using the ceramic microwave as a base.