<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
<th>DATE</th>
<th>SECTION</th>
<th>REVISED</th>
<th>ADDED</th>
<th>DELETED</th>
<th>SECTION</th>
<th>PAGE</th>
<th>DATE</th>
<th>SECTION</th>
<th>REVISED</th>
<th>ADDED</th>
<th>DELETED</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 thru</td>
<td>5-22-62</td>
<td>1 thru</td>
<td>10-24-62</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1.0.0 INTRODUCTION

1.0.1 ABSTRACT

1.0.2 NOMENCLATURE

1.0.3 REFERENCES

1.1 TEXT - LCF NODE FUNCTIONS CHECKOUT

1.1.1 Functional Test, DC Power Supply, Verification Test

1.1.2 Functional Test, Post Installation Intrusite Cabling and Cable Components

1.1.3 SSI Cooling Air Requirements

1.1.2.1 Connection of LCC to DC Power

1.1.2.2 LCC, Status Indicator Lamp Test

1.1.2.3 LCC, Audible Alarm Test and Reset

1.1.2.4 LCC, Encoder Switches

1.1.3.1 SSI Frequency Response, VAFB Configuration

1.1.3.2 LCF/BDG SSI Speech Transmit Channels

1.1.3.4 TCSS Transmit to LF and LF Signaling Output

1.1.3.5 TCSS Receive from LF, Lamp Cut-off and LF Lamp Circuits and LF Signaling Input

1.1.3.6 TCSS VHF Radio Circuits

1.1.4.1 LCF/DAC Power Supply Functional Test

1.1.4.1 Supplementation - Verification of Individual Rack Lab Supply Voltages

1.1.4.2 LCF/DAC Command and Status Receive

1.1.4.3 LCF/DAC Command Transmit

1.1.4.5 LCF/DAC Line Failure Detection

1.1.4.6 LCF/DAC Masks Detection and Line Reset
TABLE OF CONTENTS - Con't

1.1.4.7 LCF/DAC Line Priority Selection ... 85
1.1.4.8 LCF/DAC Line Selection and Sync Detection 88
1.1.4.10 LCF/DAC Cycle Detection and Zero Indication 93
1.1.4.12 LCF/DAC Message Injection .. 97
1.1.5.1 SIN Ring Generate Test (LCG) and Integration of 102
 DDG, CCC and CCP.
1.1.5.3 LCF Ringing Unit Test MX 3685-85 and Integration 106
 of DDG, CCC and CCP.
1.1.5.4 LCF/DAC VRSA Receiver Test and VRSA Monitor 111
1.1.5.5 LCF Ring Unit Test, VRSA Interrogation and 115
 Integration of the CCC.

1.2 TEST - LF NODE FUNCTIONS CHECKOUT

1.2.1.1 S&I Simulator Integration with LF/DAC .. 118
1.2.4.1 LF/DAC Power Supply Functional Test .. 128
1.2.4.2 Functional Test of LF/DDG Command Receive Channels 132
1.2.4.3 Functional Test of LF/DDG, Command and Status 136
 Transmit Channels
1.2.4.4 LF/DAC Valid Message Retransmission 140
1.2.4.15 LF/DAC Functional Test of Loss of Transmit Tone 144
 and Critical Error Circuitry
1.2.4.19 LF/DAC MD Reset Pulse Generator .. 148
1.2.5.2 SCN Equipment Integration with the LF/SCN 151
 Interface Simulator, ACO 101.
1.2.6.1 Verification of Line Equalizer Adjustments for Simulated Malstrom ENO Circuits.	153
1.2.7.1 PAS Monitor Panel Assembly Lead Requirements Test.	160
1.3 TEST - SINGLE THREAD FUNCTIONS	
1.3.1.1 LCC, LCP/SCN, LP/SCN, Message, Simulator and SCN Simulator Single Thread.	163
1.3.1.9 Equalizer Test, Simulated Short Lines	172
1.3.1.11 Verification of Line Equalizer Adjustments	175
1.3.2.1 SIN Integration, Ring and Voice	183
1.3.3.1 Single Thread Test Procedures - SCN, Network	187

Resolution Area (NRA) Document D2-14330
LIST OF FIGURES INDEX

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1-1</td>
<td>Functional Test, DC Power Supply, Verification Test</td>
<td>19</td>
</tr>
<tr>
<td>1.1.1.3-1</td>
<td>SCN Cooling Air Requirements</td>
<td>28</td>
</tr>
<tr>
<td>1.1.1.3-2</td>
<td>SCN Cooling Air Requirements</td>
<td>29</td>
</tr>
<tr>
<td>1.1.1.3-3</td>
<td>SCN Cooling Air Requirements</td>
<td>30</td>
</tr>
<tr>
<td>1.1.1.3-4</td>
<td>SCN Cooling Air Requirements</td>
<td>31</td>
</tr>
<tr>
<td>1.1.1.3-5</td>
<td>SCN Cooling Air Requirements</td>
<td>32</td>
</tr>
<tr>
<td>1.1.1.3-6</td>
<td>SCN Cooling Air Requirements</td>
<td>33</td>
</tr>
<tr>
<td>1.1.2.1-1</td>
<td>Connection of LGC to DC Power</td>
<td>34</td>
</tr>
<tr>
<td>1.1.2.3-1</td>
<td>LCC, Audible Alarm Test and Reset</td>
<td>38</td>
</tr>
<tr>
<td>1.1.2.4-1</td>
<td>LCC, Encoder Switches</td>
<td>42</td>
</tr>
<tr>
<td>1.1.3.1-1</td>
<td>SIN Frequency Response, VAFB Configuration</td>
<td>45</td>
</tr>
<tr>
<td>1.1.3.2-1</td>
<td>LCF/DDG SIN Speech Transmit Channels</td>
<td>48</td>
</tr>
<tr>
<td>1.1.3.4-1</td>
<td>TCSS Transmit to LF and LF Signaling Output</td>
<td>53</td>
</tr>
<tr>
<td>1.1.3.4-2</td>
<td>TCSS Transmit to LF and LF Signaling Output</td>
<td>54</td>
</tr>
<tr>
<td>1.1.3.5-1</td>
<td>TCSS Receive from LF, Lamp Cut-off and LF Lamp Circuits and LF Signaling Input.</td>
<td>59</td>
</tr>
<tr>
<td>1.1.3.5-2</td>
<td>TCSS VHF Radio Circuits</td>
<td>60</td>
</tr>
<tr>
<td>1.1.3.6-1</td>
<td>TCSS VHF Radio Circuits</td>
<td>63</td>
</tr>
<tr>
<td>1.1.3.6-2</td>
<td>TCSS VHF Radio Circuits</td>
<td>64</td>
</tr>
<tr>
<td>1.1.3.6-3</td>
<td>TCSS VHF Radio Circuits</td>
<td>65</td>
</tr>
<tr>
<td>1.1.4.1-1</td>
<td>LCF/DAC Power Supply Functional Test</td>
<td>69</td>
</tr>
<tr>
<td>1.1.4.2-1</td>
<td>LCF/DAC Command and Status Receive</td>
<td>75</td>
</tr>
<tr>
<td>1.1.4.3-1</td>
<td>LCF/DAC Command Transmit</td>
<td>79</td>
</tr>
<tr>
<td>1.1.4.5-1</td>
<td>LCF/DAC Line Failure Detection</td>
<td>82</td>
</tr>
<tr>
<td>1.1.4.6-1</td>
<td>LCF/DAC Line Selection and Sync Detection</td>
<td>92</td>
</tr>
<tr>
<td>1.1.4.11-1</td>
<td>LCF/DAC Message Injection</td>
<td>101</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1.1.5.1-1</td>
<td>SIN Ring Generate Test (LCG) and Integration of DDG, CCP and CCC.</td>
<td>105</td>
</tr>
<tr>
<td>1.1.5.3-1</td>
<td>LCG Ringing Unit Test MX361-85 and Integration of DDG, CCP and CCC.</td>
<td>109</td>
</tr>
<tr>
<td>1.1.5.3-2</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>1.1.5.4-1</td>
<td>LCF/DAC VRSA Receiver Test and VRSA Monitor</td>
<td>114</td>
</tr>
<tr>
<td>1.1.5.5-1</td>
<td>LCF Ring Unit Test, VRSA Interrogation and Integration of the Communications Control Console.</td>
<td>117</td>
</tr>
<tr>
<td>1.2.1.1-1</td>
<td>S&H Simulator Integration with LF/DAC</td>
<td>124</td>
</tr>
<tr>
<td>1.2.1.1-2</td>
<td>S&H Simulator Integration with LF/DAC</td>
<td>125</td>
</tr>
<tr>
<td>1.2.1.1-3</td>
<td>S&H Simulator Integration with LF/DAC</td>
<td>126</td>
</tr>
<tr>
<td>1.2.1.1-4</td>
<td>S&H Simulator Integration with LF/DAC</td>
<td>127</td>
</tr>
<tr>
<td>1.2.4.1-1</td>
<td>LF/DAC Power Supply Functional Test</td>
<td>131</td>
</tr>
<tr>
<td>1.2.4.2-1</td>
<td>Functional Test of LF/DDG Command Receive Channels</td>
<td>135</td>
</tr>
<tr>
<td>1.2.4.3-1</td>
<td>Functional Test of LF/DDG, Command and Status Transmit Channels</td>
<td>139</td>
</tr>
<tr>
<td>1.2.4.4-1</td>
<td>LF/DAC Valid Message Retransmission</td>
<td>142</td>
</tr>
<tr>
<td>1.2.4.4-2</td>
<td>LF/DAC Valid Message Retransmission</td>
<td>143</td>
</tr>
<tr>
<td>1.2.4.19-1</td>
<td>LF/DAC MD Reset Pulse Generation</td>
<td>150</td>
</tr>
<tr>
<td>1.2.5.2-1</td>
<td>SCN Equipment Integration with the LF/SCI</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Interface Simulator, ACO 101</td>
<td></td>
</tr>
<tr>
<td>1.2.6.1-1</td>
<td>Verification of Line Equalizer Adjustments for Simulated Malmstrom EWO Circuits.</td>
<td>158</td>
</tr>
<tr>
<td>1.2.6.1-2</td>
<td></td>
<td>159</td>
</tr>
<tr>
<td>1.2.7.1-1</td>
<td>PAS Monitor Panel Assembly Load Requirements Tests</td>
<td>162</td>
</tr>
<tr>
<td>1.3.1.1-1</td>
<td>LCC, LCF, LF, Message Simulator and S&H Simulator Single Thread</td>
<td>167</td>
</tr>
<tr>
<td>1.3.1.1-2</td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>1.3.1.1-3</td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.3.1.1-4</td>
<td>Equalize Test, Simulated Short Fires</td>
<td>179</td>
</tr>
<tr>
<td>1.3.1.1-5</td>
<td>Verification of Line Equalizer Adjustment</td>
<td>180</td>
</tr>
<tr>
<td>1.3.1.11-1</td>
<td>SIN Integration, Ring and Voice</td>
<td>186</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.1.1.3-1</td>
<td>SCN Cooling Air Requirements</td>
<td>27.</td>
</tr>
<tr>
<td>1.1.1.3-2</td>
<td></td>
<td>27.</td>
</tr>
<tr>
<td>1.1.1.3-1</td>
<td>LCF/DDG SIM Speech Transmit Channels</td>
<td>47.</td>
</tr>
<tr>
<td>1.1.3.4-1</td>
<td>TCSS Transmit to LF and LF Signaling Output</td>
<td>51.</td>
</tr>
<tr>
<td>1.1.3.4-2</td>
<td></td>
<td>52.</td>
</tr>
<tr>
<td>1.1.3.5-1</td>
<td>TCSS Receive from LF, Lamp Cut-off and LF Lamp Circuits and LF Signaling Input</td>
<td>57.</td>
</tr>
<tr>
<td>1.1.3.5-2</td>
<td></td>
<td>58.</td>
</tr>
<tr>
<td>1.1.4.1-1</td>
<td>LCF/DAC Power Supply Functional Test</td>
<td>68.</td>
</tr>
<tr>
<td>1.1.4.2-1</td>
<td>LCF/DAC Command and Status Receive</td>
<td>73.</td>
</tr>
<tr>
<td>1.1.4.3-1</td>
<td>LCF/DAC Command Transmit</td>
<td>78.</td>
</tr>
<tr>
<td>1.1.4.4-1</td>
<td>LCF/DAC Line Failure Detection</td>
<td>81.</td>
</tr>
<tr>
<td>1.1.4.7-1</td>
<td>LCF/DAC Line Priority Selection</td>
<td>86.</td>
</tr>
<tr>
<td>1.1.4.8-1</td>
<td>LCF/DAC Line Selection and Sync Detection</td>
<td>90.</td>
</tr>
<tr>
<td>1.1.4.8-2</td>
<td></td>
<td>91.</td>
</tr>
<tr>
<td>1.1.4.10-1</td>
<td>LCF/DAC Cycle Detection and Zero Indication</td>
<td>96.</td>
</tr>
<tr>
<td>1.1.4.11-1</td>
<td>LCF/DAC Message Injection</td>
<td>100.</td>
</tr>
<tr>
<td>1.1.5.1-1</td>
<td>SIN Ring Generate Test (LCC) and Integration of DDG, CCP and CCC</td>
<td>104.</td>
</tr>
<tr>
<td>1.1.5.3-1</td>
<td>LCC Ringing Unit Test MX 3681-85 and Integration of DDG, CCP and CCC</td>
<td>108.</td>
</tr>
<tr>
<td>1.1.5.4-1</td>
<td>LCF/DAC VRSA Receiver Test and VRSA Monitor</td>
<td>113.</td>
</tr>
<tr>
<td>1.1.5.5-1</td>
<td>LCF Ring Unit Test, VRSA Interrogation and Integration of the Communications Control Console</td>
<td>116.</td>
</tr>
<tr>
<td>1.2.1.1-1</td>
<td>S&M Simulator Integration with LF/DAC</td>
<td>123.</td>
</tr>
<tr>
<td>1.2.4.1-1</td>
<td>LF/DAC Power Supply Functional Test</td>
<td>130.</td>
</tr>
<tr>
<td>1.2.4.2-1</td>
<td>Functional Test of LF/DDG Command Receive Channels</td>
<td>134.</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>DESCRIPTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1.2.4.3-1</td>
<td>Functional Test of LF/BDG, Command and Status Transmit Channels</td>
<td>156</td>
</tr>
<tr>
<td>1.2.4.15-1</td>
<td>LF/DAC Functional Test of Loss of Transmit Tone and Critical Error Circuitry.</td>
<td>146</td>
</tr>
<tr>
<td>1.2.4.15-2</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>1.2.5.2-1</td>
<td>SCN Equipment Integration with the LF/SCN Interface Simulator, ACO 101</td>
<td>153</td>
</tr>
<tr>
<td>1.2.6.1-1</td>
<td>Verification of Line Equalizer Adjustments for Simulated Malstrom EWO Circuits.</td>
<td>157</td>
</tr>
<tr>
<td>1.3.1.1-1</td>
<td>LCC, LCF, LF, Message Simulator and SAM Simulator Single-Thread</td>
<td>167</td>
</tr>
<tr>
<td>1.3.1.1-1</td>
<td>Verification of Line Equalizer Adjustment</td>
<td>178</td>
</tr>
<tr>
<td>1.3.1.1-2</td>
<td></td>
<td>179</td>
</tr>
</tbody>
</table>
1.0.0 INTRODUCTION

1.0.0.1 This volume is a compilation of all the test procedures required for completion of the NRA I Test Program. The test procedures for NRA II, NRA III and NRA IV tests shall be contained in document D2-13406, Volumes II, III and IV respectively.

1.0.0.2 Some of the original tests scheduled for NRA I were never completed; consequently such tests shall be incorporated into NRA IV.

1.0.1 ABSTRACT

1.0.1.1 The complete description of the NRA Program Plan is outlined in document D2-13405, Network Resolution Area (NRA) Test Program Plan, Block Change I. This document describes the purpose and scope of the NRA Program. Detailed descriptions of test organization, test configuration and test objectives are given.

1.0.1.2 All signals will be monitored at the rack level or at MOSE test points provided on the front of the SCN equipment drawers. Parallel inputs are provided for all SCN Command Receive channels at the Patch Panel, to facilitate monitoring of signals received at the nodes. The NRA Instrumentation System shall be used extensively for monitoring test signals. Replay of the instrumentation tapes shall be recorded on oscillograph paper and the results evaluated for use in NRA Test Reports.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL</td>
<td>Calibrate</td>
</tr>
<tr>
<td>CCC</td>
<td>Communication Control Console</td>
</tr>
<tr>
<td>CCP</td>
<td>Communication Control Panel</td>
</tr>
<tr>
<td>CMEG</td>
<td>Command Message Processing Group</td>
</tr>
<tr>
<td>CTE</td>
<td>Cable Termination Equipment</td>
</tr>
<tr>
<td>DAC</td>
<td>Data Analysis Central</td>
</tr>
<tr>
<td>DD/MS</td>
<td>Message Simulator, Digital Data</td>
</tr>
<tr>
<td>DDG</td>
<td>Digital Data Group</td>
</tr>
<tr>
<td>DPE</td>
<td>Data Processing Equipment</td>
</tr>
<tr>
<td>ESA</td>
<td>Electrical Surge Arrestor</td>
</tr>
<tr>
<td>EWO</td>
<td>Emergency War Order</td>
</tr>
<tr>
<td>HVC</td>
<td>Hardened Voice Channel</td>
</tr>
<tr>
<td>INF</td>
<td>Infinite</td>
</tr>
<tr>
<td>LCC</td>
<td>Launch Control Console</td>
</tr>
<tr>
<td>LCF</td>
<td>Launch Control Facility</td>
</tr>
<tr>
<td>LEU</td>
<td>Launch Enable Unit</td>
</tr>
<tr>
<td>LF</td>
<td>Launch Facility</td>
</tr>
<tr>
<td>LMU</td>
<td>Line Monitor Unit</td>
</tr>
<tr>
<td>LSU</td>
<td>Line Selector Unit</td>
</tr>
<tr>
<td>MD</td>
<td>Mechanical Decoder</td>
</tr>
<tr>
<td>MDU</td>
<td>Mechanical Decoder Unit</td>
</tr>
<tr>
<td>MGSE</td>
<td>Missile Ground Support Equipment</td>
</tr>
<tr>
<td>MSU</td>
<td>Message Retransmission Unit</td>
</tr>
<tr>
<td>MS/CTE</td>
<td>Message Simulator, Cable Termination Equipment</td>
</tr>
<tr>
<td>NL</td>
<td>No Load</td>
</tr>
<tr>
<td>NRA</td>
<td>Network Resolution Area</td>
</tr>
<tr>
<td>OGE</td>
<td>Operation Ground Equipment</td>
</tr>
</tbody>
</table>
PAS: Primary Alert System
P/P: Patch Panel
RTS: Repeater Telephone Set
SCMFG: Status Command Message Processing Group
SCN: Sensitive Command Network
SCT: SCN Test
SIN: Support Information Network
SMFG: Status Message Processing Group
SM: Sequence and Monitor
S/N: Serial Number
TCSS: Telephone Connecting & Switching Set
TTE: Telephone Termination Equipment
VAFB: Vandenberg Air Force Base
1.0.3

1.0.3.1 Facilities
25-35093 Equipment Installation - NRA Lab.

1.0.3.2 Cabling
21-50170 Electrical Cable Assemblies (NRA)
21-52060 Schematic - Cabling, NRA

1.0.3.3 Test Plan
MTGR-E-022B Part 2, NRA
Vol. II
MTGR-E-022B Part 1, DPE and Part 2, CTE
Vol. III
MTGR-E-022B Parts 1 and 2, New York Systems
Vol. IV
D2-13405 NRA Test Program Plan, Block Change 1.
T2-2118 Minuteman Breadboard SCN Tests Conducted
at Seattle

1.0.3.4 System
D2-4871 Launch Control System Test Program Hardened
and Dispersed - Preprototype (NRA)
D2-5257 Seattle Test Program, Part III, Integration
Test Requirements, E&D
D2-5684 Engineering Development Laboratories Test
Vol. 1 thru 7 Program for LCS.
D2-7401 Underground Cable Procurement and Installation
Routing Requirements, Minuteman E&D Operational
Squadrons
D2-9112-1 Launch Operational System Configuration, PPT.
D2-9112-2 Launch Operational System Configuration, PT.
1.0.3.5 Launch Control Console
 D2-5450 Model Specifications for Launch Control Console

1.0.3.6 Communications Control Console
 D2-10778 Model Specifications for Communications Control Console

1.0.3.7 SCN Data Processing Equipment
 MSP-C-101A Model Specifications, PPT LCC
 MATP-C-101A Acceptance Test Procedure, PPT LCC
 MTM-C-101 Handbook of Operating and Maintenance Instructions, PPT LCC
 MSP-C-103A Model Specifications, PPT LF
 MATP-C-103A Acceptance Test Procedures, PPT LF
 MTM-C-103 Handbook of Operating and Maintenance Instructions, PPT LF

1.0.3.8 SCN Cable Terminating Equipment
 MSP-C-102A Model Specifications, PPT LCC
 MTM-C-102 Handbook of Operating and Maintenance Instructions, PPT LCC
 MATP-C-102/104 Acceptance Test Procedure, PPT LCC/LF
 MSP-C-104A Model Specification, PPT LF
 MTM-C-104 Handbook of Operating and Maintenance Instructions, PPT LF
 MSP-C-110 Model Specification, HVC Repeater PPT.
 MATP-C-110B Acceptance Test Procedure, PPT HVC Repeater
 MTM-C-110 Handbook of Operating and Maintenance Instructions, PPT HVC.
1.0.3.9 Support Information Network

MMSP-I-206 Model Specification, Communications Control Console

MMSP-I-203 Model Specification, Telephone Set, Wall-Type

MMSP-I-202 Model Specification, Jack Assembly, Interphone

MMSP-I-201 Model Specification, LF Telephone Terminal Equipment

MTP-I-201 Acceptance Test Procedures, LCC/TTE

MTP-I-201A Acceptance Test Procedure, LF/TTE

MTM-I-002 Operating and Maintenance Instructions, PPT SIN

1.0.3.10 Cable Simulators

MMSP-T-403B Model Specification

MTP-T-403A Acceptance Test Procedure

MTM-T-403 Operating and Maintenance Instructions Handbook

1.0.3.11 Support Equipment

D2-13404 Handbook of Operating and Maintenance Instructions, Message Simulator, Digital Data (Rework)

D2-13807 Handbook of Operating and Maintenance Instructions, S&M Signal Simulator

D2-5678 Master Equipment List - H&D, R&D

REVISION 10/25/66
UN 4290 3000

BOEING VOL. 1 NO D2-13406
SEC. PAGE 16
TEST 1.1.1.1

1. Title
 Functional Test, DC Power Supply, Verification Test.

2. Objectives
 2.1 To verify that the voltage and current meters give a true reading.
 2.2 To insure that the units are capable of supplying the required power within the specified voltage tolerance.
 2.3 To measure the ripple and voltage regulation at the specified load current.

3. Description
 3.1 Connect a 30 ampere or 50 ampere load to power supply as required.
 3.2 Connect equipment per Figure 1.1.1.1-1.
 3.3 Switch load from no load to full load once, from full load to no load while measuring voltage transients and recovery time at output terminals with an oscilloscope with camera attachment.
 3.4 Using a shunt, measure full load current and voltage with a differential voltmeter and compare with power supply panel meter current and voltage readings.
 3.5 Measure no load and full load ripple across output terminals using an oscilloscope.
 3.6 Measure no load and full load voltage with differential voltmeter and determine static regulation.
 3.7 Connect battery set and repeat transient measurements.
4. **Equipment in Test**

4.1 Four Perkins 28 VDC/50 amp power supplies, Model MIT 28-30-23.

4.2 Two Perkins 28 VDC/50 amp power supplies, Model MIT 28-50-13.

4.3 Battery Set 25-35469-1.

5. **Test Equipment**

5.1 Differential Voltmeter, Fluke 801.

5.2 30 Amp and 50 amp shunts.

5.3 Oscilloscope - Tektronix 545 with Camera, Model C12.

5.4 1500 watt load bank, adjustable for 30 or 50 amps at 28 VDC (Non-inductive).

5.5 Mercury switch.

6. **Data Requirements**

6.1 Photograph data required in Step 3.2.

6.2 Record information required in Steps 3.3 to 3.5 on MAIR Log.

6.3 Record any unplanned events in MAIR Test Log.
TEST 1.1.1.2

1. Title

Post-Installation Functional Test on Intracite Cabling and Cable Components.

2. Objectives

2.1 To insure that interconnecting cables have been properly installed as shown in 21-50170.

2.2 To determine that cables are fabricated per the prescribed specifications as shown in 21-50170. Check the number and positions of pins in the connectors, connector clocking, size etc.

3. Description

3.1 Connect a continuity tester to pin number 1 at near end of cable and to the corresponding pin at the far end to verify that an open circuit does not exist.

3.2 Repeat step 3.1 for all the remaining pins and shields.

3.3 Connect continuity tester to pin number 1 at the near end and test to all remaining pins and shields at the near end to verify absence of shorts.

3.4 Repeat step 3.3 by connecting the continuity tester to the next pin and testing to all pins and shields to the tester that has not yet been connected, for all remaining pins. Thus, one side of the continuity tester is connected to a number or letter which is being tested and the other lead will be connected to all numbers or letters which are greater than the one being tested.

4. Equipment in Test

4.1 The following cables are to be tested and will be verified per 21-50170 as specified in item 2 of this test.
21-50170-0370
-0408
-0390
-0414
-0397
-0426
-0429
-0455
-0549
-0555
-0471
-0627

21-50170-0411
-0366
-0384
-0435
-0393
-0396
-0386
-0456
-0540
-0552
-0633
-0648

5. Test Equipment Required

5.1 Wheatstone Bridge; Leads & Northrup, Type U

5.2 Multimeter, Simpson 260

6. Data Requirements

Record all data on M & IR Test Log.
TEST 1.1.1.3

1. Title
 SCW Cooling Air Requirements

2. Objectives
 2.1 To determine the cooling air temperature rise through the SCW equipment under variable conditions of static pressure at the air inlet.
 2.2 To determine ambient heat influx contribution to cooling air temperature rise across each SCW rack.

3. Test Description
 The tests will be performed on two groups of SCW equipment: the LCF group, consisting of Figure A 1265, 1213A, and 1213B, and the LF group, consisting of Figure A 1251 and 1228.
 LCF Tests
 3.1 Connect the equipment as shown in Figures 1.1.1.3-1, and 1.1.1.3-3.
 3.2 Using a thermocouple, check the temperature of the cooling air at the air inlet to the LCF/DAC racks. Adjust cooling air temperature to 55 ± 2°F.
 3.3 Record the following temperatures:
 (a) Intake and exhaust air temperature for each rack.
 (b) Power supply drawer temperatures for racks 1213A and B.
 (c) Room temperature.
 (d) Wet-bulb temperature.
 3.4 Using a manometer, monitor inlet air static pressure on each rack. Adjust pressure on each rack to the values given in Table 1.1.1.3-1 (condition 1).
3.5 Program the Message Simulator to transmit a status message on all status lines. All lights on SNS indicator panel OFF. Connect the equipment as shown in Figure 1.1.1.3-5. All switches at OCC must be in the safe position.

3.6 Turn on temperature recording instrument.

3.7 Turn on LCP and record time.

3.8 Measure power input to each rack using a DC wattmeter as shown in Figure 1.1.1.3-3.

3.9 Monitor the cooling air temperature at the rack inlets and outlets for a period of 3 hours, or until exhaust air temperatures stabilize. If outlet temperature exceeds 67 degrees at any time, immediately shut down the LCP/DAC racks.

3.10 Record power input to the racks and then shut down all racks.

3.11 Place the manometer on each rack inlet and adjust the static pressure to the values given under condition 2 in Table 1.1.1.3-1.

3.12 Turn on LCP/DAC racks. Record time.

3.13 Bring racks up to Strategic Alert and measure the power input to each rack.

3.14 Monitor the cooling air temperature for a period of 2 hours, or until the temperatures stabilize. If outlet temperature exceeds 67 degrees at any time, immediately shut down the LCP/DAC racks.

3.15 Record power input to the racks and then shut down all racks.

3.16 If temperatures remain within tolerance for Table 1.1.1.3-1 (Condition 2), repeat steps 12 through 16 for conditions 3 and 4.

LF Tests

3.1 Using a manometer, monitor the inlet air static pressure on the two LF/DAC racks. Adjust pressure on each rack to those given under condition 1 in Table 1.1.1.3-2.
3.2 Monitor temperature at the following points:
 (a) Air intakes and exhaust ducts for each rack.
 (b) Power supply drawer in each rack.
 (c) Room temperature.
 (d) Wet-bulb temperature.

3.3 Connect the equipment as shown in Figure 1.1.1.3-2. SIN Repeater Telephone Set must be ON. Please racks in Strategic Alert condition.

3.4 Turn on recording thermometer.

3.5 Turn on LF and record time.

3.6 Measure power input to each rack using a DC wattmeter as shown in Figure 1.1.1.3-4.

3.7 Monitor the cooling air temperature at the rack inlets and outlets for a period of 3 hours. If outlet temperature exceeds 67 degrees at any time, immediately shut down the LF/DAC racks.

3.8 Record power input to the racks and then shut down all racks.

3.9 Connect the manometer to the pressure monitor point on each rack inlet and adjust the static pressure to the values given under condition 2 in Table 1.1.1.3-2.

3.10 Turn on LF/DAC racks. Record time.

3.11 Bring racks up to Strategic Alert and measure the power input to each rack.

3.12 Monitor the cooling air temperature for a period of 2 hours, or until the exhaust air temperatures stabilize. If outlet temperature exceeds 67 degrees at any time, immediately shut down the LF/DAC racks.

3.13 Record power input to the racks and then shut down all racks.

3.14 If temperatures remain within tolerance for Table 1.1.1.3-2 (condition 2), repeat steps 9 through 13 for conditions 3 and 4.
4. Equipment in Test

4.1 LF/DFE Rack A #304 Command Message Processing Group P/N 8323614-501
S/N 0000005

4.2 LF/DFE Rack B #305 Status Message Processing Group P/N 8323615-501
S/N 0000004

4.3 LF/CTE Rack #303 Digital Data Group P/N 832362-501 S/N 0000004

4.4 LF/DFE Rack #402 Command Message Processing Group P/N 8323617-501
S/N 0000005

4.5 LF/CTE Rack #401 Digital Data Group P/N 8323616-502 S/N 0000005
9. Test Equipment Required

9.1 Recording thermometer - Minneapolis-Honeywell Model 155 60F2-a-61

9.2 DC Wattmeter

9.3 Thermometer - Simpson Model 380

9.4 Manometer

9.5 Hygrometer

9.6 Eight copper constantan thermocouples
TABLE 1.1.1.3-1

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Condition</th>
<th>Condition</th>
<th>Condition</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1265</td>
<td>0.13</td>
<td>0.07</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>1213 A</td>
<td>0.35</td>
<td>0.21</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1213 B</td>
<td>0.48</td>
<td>0.34</td>
<td>0.14</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1.1.1.3-2

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Condition</th>
<th>Condition</th>
<th>Condition</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1251/1279</td>
<td>0.42</td>
<td>0.36</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>1228</td>
<td>0.53</td>
<td>0.42</td>
<td>0.35</td>
<td></td>
</tr>
</tbody>
</table>
TEST 1.1.2.1

1. Title
Connection of LCC to DC Power.

1. Objectives
2.1 To insure that the 28 VDC power will be applied at the proper cable terminals before the cable is connected to the LCC.
2.2 To determine the voltage and current at the interface.
2.3 To insure that voltages at the LCC to DFE interface are within specified tolerances.

3. Description
3.1 Before connecting cables W119 and W120 to the LCC measure the voltages on each pin referenced to point A' (ground). Pin 3 of W119 and Pins 6 and 10 of W120 should be at +28 VDC. The voltages on all other pins should be 0.
3.2 Open circuit breakers CB5 and CB17 and connect W119 and W120 to the LCC as shown in Figure 1.1.2.1-1.
3.3 Close breaker CB5 and monitor the voltage at point B'; adjust to 28 VDC is required.
3.4 Monitor the voltage between points A' and B' with a differential voltmeter.
3.5 Close breaker CB17 and monitor the voltage at point B''.
3.6 Monitor the voltage between points A'' and B'' with a differential voltmeter.
3.7 Measure the ripple at points B' and B'' with the oscilloscope.

4. Equipment in Test
4.1 Launch Control Console 25-24172-11
4. **Equipment in Test**
 4.1 Launch Control Console

5. **Test Equipment Required**
 5.1 Differential voltmeter
 5.2 Oscilloscope, Tektronix 545A
 5.3 Oscilloscope camera
 5.4 Calibrated shunts (12 amp maximum current at 26V)

6. **Data Requirements**
 6.1 Record all data in the Test Log.
 6.2 Photograph the ripple in step 5.1.
TEST 1.1.2.2

1. Title
 LCC, Status Indicator Lamp Test

2. Objectives
 2.1 To verify the lamp-test functions of the LCC.
 2.2 To determine the current during lamp-test.

3. Description
 3.1 Connect the equipment as shown in Figure 1.1.2.1-1 except
cable W120 which may be disconnected.
 3.2 Measure the voltage between points A' and B' to determine the
current. Measure the voltage between points A''' and B'.
 3.3 Operate all lamp test switches in sequence, repeating step 3.2.

4. Equipment in Test
 4.1 Launch Control Console 25-24172-11

5. Test Equipment Required
 5.1 Differential voltmeter Fluke 801
 5.2 Calibrated shunt. (12 Amp. maximum).

6. Data Requirements
 Record all data in the Test Log.
TEST 1.1.2.3

1. **Title**
 LCC, Audible Alarm Test and Reset

2. **Objectives**
 2.1 To insure that the ALARM TEST and ALARM reset functions are operative.
 2.2 To measure the current and voltage at the LCC power input during activation of the alarms.
 2.3 To measure the ripple on the 28 volt input during activation of each alarm.

3. **Description**
 3.1 Connect the equipment per Figure 1.1.2.3-1.
 3.2 Activate ALARM #1 and measure voltage between A' and B', then A'' and B'. Monitor the ripple between A' and B' with an oscilloscope.
 3.3 Press the ALARM reset button and verify that the audible alarm ceases.
 3.4 Repeat steps 3.2 and 3.3 for ALARM #2.
 3.5 Repeat steps 3.2 and 3.3 for ALARM #1 and #2 simultaneously.

4. **Equipment in Test**
 4.1 Launch Control Console 25-24172-11

5. **Test Equipment Required**
 5.1 Differential voltmeter(s), Fluke 801
 5.2 Oscilloscope, Tektronix 545A
 5.3 Oscilloscope camera
 5.4 Calibrated shunt (12 amp max. at 28 VDC)

6. **Data Requirements**
 6.1 Record all data in the Test Log.
 6.2 Three oscilloscope photographs are required per steps 3.2, 3.3 and 3.4.
1. Title
 LOC, Encoder Switches

2. Objectives
 2.1 To verify the correct codes exist in the Breakwire Encoder.
 2.2 To verify operation of the Program Controls and Command Controls.
 2.3 To determine the resistance of the signal path from the encoder output to the common, measured at the external conductor.

3. Description
 3.1 Connect the equipment per Figure 1.1.2.4-1
 3.2 With the LAUNCH & INHIBIT Levers in the EXT position and the Program Controls OFF, check for continuity between pin 68 and pins 2-57 of Cable V006. Use Cable Breakout Box mounted behind Rack 305.
 3.3 Turn both the LAUNCH Lever and the Co-op switch within two seconds to the LAUNCH position and check for continuity between pin 68 and pins 2-57 which should correspond to drawing 29-24771 (LCF472).
 3.4 Release the LAUNCH switches to their normal positions.
 3.5 Turn the INHIBIT Lever to the INHIBIT position and again check bits 1-56 for continuity per drawing 29-24771.
 3.6 Return the INHIBIT switch to the CODE USED position.
 3.7 Send TEST command with LF address #2. Again check continuity of pins 9-15 per drawing 29-24771.
 3.8 Repeat step 3.7 for LF addresses 3 through 11.
 3.9 Repeat step 3.7 for SCNT and CAL. Verify that the Program Control moves off the CAL position automatically.
 3.10 Check the resistance of randomly selected encoder switches.
4. Equipment in Test
 4.1 Launch Control Console 25-24172-11
5. Test Equipment Required
 5.1 Continuity Tester
 5.2 Ometer
6. Data Requirements
 Record all data in the Test Log.
1. Title
SIN Frequency Response, VAFB Configuration

2. Objective
To determine the response of the SIN Transmission path using the attenuator employed at VAFB.

3. Description
3.1 Connect the equipment per Figure 1.1.3.1-1.
3.2 Adjust the oscillator to 3 dbm (V1) at 1000 cps. Measure the output (V2).
3.3 Repeat the measurements at 300, 500, 750, 1000, 1500, 2000 and 3000 cycles/second. The input should be adjusted to 3 dbm at each frequency.

4. Equipment in Test
4.1 Attenuator-Balanced, Assy of 29-26032-1
4.2 Patch Panel & Cable Simulator 25-29327-1
4.3 Repeat Coax Assy KEDAI 71-1/SK31
4.4 Equalizer Assy KEDAI 71-1/SK32
4.5 One Mile Simulator Assy KEDAI 71-1/SK50

5. Test Equipment Required
5.1 Audio Oscillator, 600 ohm balanced.
5.2 Audio VTVM, 0 dbm at 1 mv across 600 ohms
5.3 Resistors, 20 ohm
6. **Data Requirements**
 Record all data in the Test Log.

7. **References**
 Coordination Sheet SRS-43-10/114 (1/6/62)
1. **Title**
 LCP/DDG SIN Speech Transmit Channels

2. **Objectives**
 To verify that the channel frequency response is within specified tolerance.

3. **Description**
 3.1 Connect the equipment as shown in Figure 1.1.3.2-1.
 3.2 Remove cables at J7, J10 and J13. Leave these cables disconnected during this test.
 3.3 Connect 600 ± 30 ohm impedance audio oscillator, a frequency counter and a VTVM to input point indicated in Table 1.1.3.2-1.
 3.4 Connect 470 ± 24 ohm resistor and a VTVM to output point indicated in Table 1.1.3.2-1.
 3.5 Assure that transformers are connected for 470 ohm output impedance.
 3.6 Perform tests in Table 1.1.3.2-1 and observe indicated outputs.

4. **Equipment in Test**
 LCP/Digital Data Group OA-3541/GYK-1

5. **Test Equipment Required**
 5.1 Audio Oscillator - Hewlett-Packard 200C
 5.2 VTVM - Hewlett-Packard 400C
 5.3 FrequencyCounter - Berkeley

6. **Data Requirements**
 Record all data in Test Log.
<table>
<thead>
<tr>
<th>Test Number</th>
<th>Input Points</th>
<th>Input Frequency</th>
<th>Input Level</th>
<th>Output Points</th>
<th>Output Level</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J10-2, -3</td>
<td>1000</td>
<td>13 dbm</td>
<td>J13-25, -26</td>
<td>0 to 4 db</td>
<td>Add 1.06 dbm to output reading when measuring across 470 ohm load at 1000 cps.</td>
</tr>
<tr>
<td></td>
<td>J10-2, -3</td>
<td>300 to 5000</td>
<td>13 dbm</td>
<td>J13-25, -26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>J10-4, -5</td>
<td>Same as Test 1</td>
<td>Same as Test 1</td>
<td>J13-27, -28</td>
<td>Same as Test 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>J10-6, -7</td>
<td></td>
<td>13-29, -30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>J10-8, -9</td>
<td></td>
<td>13-31, -32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>J10-10, -11</td>
<td></td>
<td>13-33, -34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>J10-13, -13</td>
<td></td>
<td>17-25, -26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>J10-14, -15</td>
<td></td>
<td>17-27, -28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>J10-16, -17</td>
<td></td>
<td>17-29, -30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>J10-18, -19</td>
<td></td>
<td>17-31, -32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>J10-20, -21</td>
<td>Same as Test 1</td>
<td>Same as Test 1</td>
<td>J13-33, -34</td>
<td>Same as Test 1</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1.3.2-1
SIN Speech Transmit
TEST 1.1.3.4

1. Title
TCSS Transmit to LF and LF Signaling Output.

2. Objectives
2.1 To verify that frequency response and bandwidth of TCSS transmit function conform to specifications.
2.2 To verify that the LF Signaling output operates properly.

3. Description
3.1 Connect equipment per Figure 1.1.3.4-1.
3.2 Remove cables from J7, J8 and J10. Leave these cables disconnected during this test.
3.3 Turn rack power ON.
3.4 Connect 600 ± 30 ohm resistor and a VTM to output points defined by Table 1.1.3.4-1, Test 1.
3.5 Connect an audio oscillator with an internal impedance of 600 ± 30 ohms, a VTM and a frequency counter to input point defined by Table 1.1.3.4-1, Test 1.
3.6 Perform Test 1 outlined in Table 1.1.3.4-1, Test 1 and make note of observations. Repeat for Tests 2 through 10.
3.7 Remove Audio Oscillator, VTM and Frequency Counter from input points and connect equipment as per Figure 1.1.3.4-2, Test 11.
3.8 Connect 600 ± 300 to input point defined in Table 1.1.3.4-2, Test 11.
3.9 Connect Frequency Counter and Oscilloscope to 600 ohm resistor and VTM at output point defined in Table 1.1.3.4-2, Test 12.

3.10 Connect 24 VDC source to "E" lead input defined in Table 1.1.3.4-2, Test 11.

3.11 Perform tests outlined in Table 1.1.3.4-2, Test 12 and note 2600 cps sinusoidal output at a level of 0 dbm (0.778 volts/600 ohms) plus or minus 1.5 db at output points. Repeat for Tests 12 thru 20.

4. Equipment in Test
 Telephone Connecting and Switching Set AN/GTC-8

5. Test Equipment
 5.1 VTM, Hewlett-Packard 4000
 5.2 Oscilloscope, Tektronix 545 or equivalent
 5.3 Frequency Counter, Berkeley or equivalent
 5.4 Audio Oscillator, Hewlett-Packard 200CD
 5.5 DC Power Supply, Kepco or equivalent

6. Data Requirements
 6.1 Record observations of 3.6 and 3.11 on MAIR Log.
 6.2 Record any discrepancies or unexpected occurrences in MAIR Log.
<table>
<thead>
<tr>
<th>Test Number</th>
<th>Input Point</th>
<th>Input Freq.</th>
<th>Input Level</th>
<th>Output Point</th>
<th>Output Level</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J10-33,32</td>
<td>1000</td>
<td>3 dbm</td>
<td>J8-2,3</td>
<td>13 ± 1 dbm</td>
<td>Reference level is the output level at 1000 cps.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>3 dbm</td>
<td></td>
<td>± 3 dbm of Reference</td>
<td>13 dbm is 3.45 volts/600 ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2200</td>
<td>3 dbm</td>
<td></td>
<td>± 6 dbm of Reference</td>
<td>3 dbm is 1.1 volts/600 ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2500</td>
<td>3 dbm</td>
<td></td>
<td>At least 55 db below reference.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2600</td>
<td>3 dbm</td>
<td></td>
<td>At least 55 db below reference.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2900 to 3400</td>
<td>3 dbm</td>
<td></td>
<td>At least 55 db below reference.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J10-33,32</td>
<td></td>
<td></td>
<td>J8-2,3</td>
<td>13 ± 1 dbm</td>
<td>Reference level is the output level at 1000 cps.</td>
</tr>
<tr>
<td>2</td>
<td>J10-31,30</td>
<td>As in Test 1</td>
<td>3 dbm</td>
<td>J8-4,5</td>
<td>As in Test 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>J10-29,28</td>
<td></td>
<td></td>
<td>J8-6,7</td>
<td>3 dbm</td>
<td>Table 1.1.3.4-1</td>
</tr>
<tr>
<td>4</td>
<td>J10-27,26</td>
<td></td>
<td></td>
<td>J8-8,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>J10-25,24</td>
<td></td>
<td></td>
<td>J8-10,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>J10-23,22</td>
<td></td>
<td></td>
<td>J8-12,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>J10-21,20</td>
<td></td>
<td></td>
<td>J8-14,15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>J10-19,18</td>
<td></td>
<td></td>
<td>J8-16,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>J10-17,16</td>
<td></td>
<td></td>
<td>J8-18,19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>J10-15,14</td>
<td>As in Test 1</td>
<td>3 dbm</td>
<td>J8-20,21</td>
<td>As in Test 1</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1.3.4-1
<table>
<thead>
<tr>
<th>Test No.</th>
<th>Input Point</th>
<th>"M" Lead Input</th>
<th>"M" Lead Input Level</th>
<th>Output Point</th>
<th>Output Level</th>
<th>Output Frequency (KHz)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>J10-33,-32</td>
<td>J7-46</td>
<td>J7-67</td>
<td>J8-2,-3</td>
<td>0 ± 1.5 dbm</td>
<td>2600</td>
<td>0 dbm is 0.778 volts/600 ohms</td>
</tr>
<tr>
<td>12</td>
<td>J10-31,-30</td>
<td>J7-43</td>
<td>J7-67</td>
<td>J8-4,-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>J10-29,-28</td>
<td>J7-40</td>
<td>J7-67</td>
<td>J8-6,-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>J10-27,-26</td>
<td>J7-37</td>
<td>J7-67</td>
<td>J8-8,-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>J10-25,-24</td>
<td>J7-34</td>
<td>J7-67</td>
<td>J8-10,-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>J10-23,-22</td>
<td>J7-31</td>
<td>J7-67</td>
<td>J8-12,-13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>J10-21,-20</td>
<td>J7-28</td>
<td>J7-67</td>
<td>J8-14,-15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>J10-19,-18</td>
<td>J7-25</td>
<td>J7-67</td>
<td>J8-16,-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>J10-17,-16</td>
<td>J7-22</td>
<td>J7-67</td>
<td>J8-18,-19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>J10-15,-14</td>
<td>J7-19</td>
<td>J7-67</td>
<td>J8-20,-21</td>
<td>0 ± 1.5 dbm</td>
<td>2600</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1.3.4-2
TEST 1.1.3.5

1. Title
TCSS Receive from LF, Lamp Cut-Off and LF Lamp Circuits and LF Signaling Input.

2. Objectives
2.1 To verify that the frequency response and bandwidth of the TCSS receive function conform to specifications.
2.2 To verify that operation of lamp cut-off and LF lamp circuits are as specified.

3. Description
3.1 Connect equipment as shown in Figure 1.1.3.5-1.
3.2 Remove Cables W014 from ESA J-Box Simulator, (J9); W069 from TCSS (J9), W070 from TCSS (J8). Do not reconnect these cables until test is completed.
3.3 Turn rack power ON.
3.4 Connect an Audio Oscillator with a 600 ohm internal impedance, a Frequency Counter and a VTVM to input point defined in Table 1.1.3.5-1, Test 1.
3.5 Connect 600 ohm resistor, an oscilloscope and a VTVM to output point defined in Table 1.1.3.5-1, Test 1.
3.6 Perform Test 1 outlined in Table 1.1.3.5-1, Test 1 and note observations.
3.7 Repeat procedures 3.3, 3.4, and 3.5 for Tests 2 thru 10.
3.8 Connect equipment as in Figure 1.1.3.5-2.
3.9 Connect an Audio Oscillator with an internal impedance of
600 ± 50 ohms, a VTM, a Frequency Counter, and an oscilloscope
to input point specified in Table 1.1.3.5-2, Test 11.
3.10 Connect 24 VDC to LCO lead as specified in Table 1.1.3.5-2, Test 11.
3.11 Connect DC Voltmeter and Frequency meter to LF Lamp output defined
in Table 1.1.3.5-2, Test 11.
3.12 Connect DC Voltmeter to Alarm output defined in Table 1.1.3.5-2, Test 11.
3.13 Perform Test 11 outlined in Table 1.1.3.5-2 and note observations.
3.14 Repeat Procedures 3.7, 3.8, 3.9, 3.10 and 3.11 for Tests 12 thru 20.

4. Equipment in Test
Telephone Connecting and Switching Set AN/OTC-8

5. Test Equipment
5.1 VTM, Hewlett-Packard 400C.
5.2 Oscilloscope, Tektronix 545.
5.3 Frequency Counter, Berkeley Input Meter or equivalent.
5.4 Audio Oscillator, Hewlett-Packard 200CD.
5.5 24 VDC Supply, Kepco or equivalent.
5.6 DC Voltmeter, Triplett 650A.

6. Data Requirements
Record observations on MAIR Log.
<table>
<thead>
<tr>
<th>Test</th>
<th>Input Points</th>
<th>Input Frequency (Hz)</th>
<th>Input Level</th>
<th>Output Points</th>
<th>Output Level</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J8-23,-24</td>
<td>1000</td>
<td>Minus 7 db</td>
<td>J9-32,-33</td>
<td>-13 db</td>
<td>Reference level is the output level at 1000 Hz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 to 2200</td>
<td></td>
<td></td>
<td>± 1 db</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2500</td>
<td></td>
<td></td>
<td>± 3 db of Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2600</td>
<td></td>
<td></td>
<td>± 6 db of Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J8-23,-24</td>
<td>2900 to Minus 7 db</td>
<td>3400</td>
<td>J9-32,-33</td>
<td>Not greater than -56 db of Reference</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>J8-25,-26</td>
<td>As in Test 1</td>
<td>As in Test 1</td>
<td>J9-30,-31</td>
<td>As in Test 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>J8-27,-28</td>
<td>As in Test 1</td>
<td>J9-28,-29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>J8-29,-30</td>
<td>As in Test 1</td>
<td>J9-26,-27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>J8-31,-32</td>
<td>As in Test 1</td>
<td>J9-24,-25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>J8-33,-34</td>
<td>As in Test 1</td>
<td>J9-22,-25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>J8-35,-36</td>
<td>As in Test 1</td>
<td>J9-20,-21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>J8-37,-38</td>
<td>As in Test 1</td>
<td>J9-18,-19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>J8-39,-40</td>
<td>As in Test 1</td>
<td>J9-16,-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>J8-41,-42</td>
<td>As in Test 1</td>
<td>J9-14,-15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1.3.5-1
<table>
<thead>
<tr>
<th>Test Number</th>
<th>Input Conditions</th>
<th>Monitor Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input ** Point</td>
<td>LCO Lead Input</td>
</tr>
<tr>
<td></td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>11.b</td>
<td>J8-23, -24</td>
<td>0 volt</td>
</tr>
<tr>
<td>11.c</td>
<td>J8-23, -24</td>
<td>-20 dBm</td>
</tr>
<tr>
<td>12</td>
<td>J8-25, -26</td>
<td>As in Test 1</td>
</tr>
<tr>
<td>16</td>
<td>J8-33, -34</td>
<td>J25-29</td>
</tr>
<tr>
<td>18</td>
<td>J8-37, -38</td>
<td>J25-23</td>
</tr>
<tr>
<td>20</td>
<td>J8-41, -42</td>
<td>As in Test 1</td>
</tr>
</tbody>
</table>

Lamp output is interrupted at 60 ± 20 cpm, J7-67 and J4-2 are grounded.

Minus 20 dBm is 0.078 volts/600 ohms.

Input point on TCSS back.

Corresponding output terminals at J9 as outlined in tests 1 through 10 shall be loaded with 600 ± 30 ohms.

Points designated at J25 shall be monitored at the ESA J-Box Simulator.

Table 1.1.3.5.2
TEST 1.1.3.6

1. Title
 TCSS VHF Radio Circuits.

2. Objectives
 2.1 To verify that the "Transmit from CP-VHF" and "Receive at CP-VHF"
 functions conform to specifications.
 2.2 To verify that an audio signal (voice) will operate the voice-operated
 signaling detector.
 2.3 To verify that the keying circuit conforms to specifications.

3. Description
 3.1 Connect the equipment as shown in Figure 1.1.3.6-1.
 3.2 Disconnect cables W069 and W092 from J9 and J10 of the TCSS.
 3.3 Turn rack power on.
 3.4 Apply a 1000 cps, 0 dbm (0.778 volt/600Ω) sinusoidal input at J2-4,5.
 3.5 Note that the corresponding output at J9-36,37 should be at a level of
 + 3 dbm (1.1 volts/600Ω) ± 3 db.
 3.6 Vary the input frequency from 300 to 3000 cps.
 3.7 Note that the output level shall not vary more than 3 db from the 1000
 cps reference.
 3.8 The oscilloscope should indicate a harmonic distortion of less than
 10%.
 3.9 Connect the equipment as shown in Figure 1.1.3.6-2.
 3.10 Disconnect cable W014, from the ESA J-Box Simulator. Short-circuit
 J7-65,66.
 3.11 Apply a 1000 cps, + 3 dbm sinusoidal input at J10-36,37.
 3.12 Note that the corresponding output at J2-4,5 should be at a level of
 + 3 dbm plus 0.25 to minus 3.25 db.
3.13 Repeat steps 3.6-3.7 and 3.8.

3.14 Connect equipment as shown in Figure 1.1.3.6-3.

3.15 Connect all cables to ICSS except to J2.

3.16 Adjust attenuator until the voice input to J2-45 is a maximum of -3 dbm (0.55 volt/600 Ohm).

3.17 Note that on J7-15, 67 and J7-64, 67, an interrupted 24 VDC at 60 ± 20 rpm is indicated by the DC voltmeters.

3.18 Apply 24 VDC to J7-63 and J7-67 (positive).

3.19 Note that this will produce a constant 24 VDC on J7-15, 67 and J7-64, 67.

3.20 Test the keying circuit by short-circuiting J7-65, 66.

Note that a short circuit exists at J2-6, 7.

4. Equipment in Test

Telephone connecting and switching set AN/GRC-8

5. Test Equipment

5.1 Audio Oscillator HP model 200 CD

5.2 Frequency counter Berkeley 554B

5.3 VOM HP model 430C

5.4 Oscilloscope Teltronic model 545

5.5 Attenuator General Radio Model 1450-TA

5.6 DC Voltmeter Triplett 630A

5.7 Message Simulator, CTE Rack

6. Data Requirements

Record all observations on MAIR Test Log.
TEST 1.1.4.1

1. **Title**
 LCF/DAC Power Supply Functional Test

2. **Objectives**
 To determine that DAC power supplies are producing in tolerance DC output voltages, ripple voltage is within specification, and on-off sequencing is correct.

3. **Description**
 3.1 Connect the equipment per Figure 1.1.4.1-1.
 3.2 Apply +28 VDC at input to LCF/DAC racks.
 3.3 Turn on DAC racks in sequence: 304, 305, and 303.
 3.4 (Visual indication) Verify LAMP TEST on Indicator Panels located on 305/A1 and 304/A1 illuminate all indicators.
 3.5 Install Drawer MGE Connector breakout box on J2 on front of power supply located at 305/A7.
 3.6 Measure DC voltages and ripple voltage at each of the following points, verify that correct signals are obtained.

<table>
<thead>
<tr>
<th>Monitor Points</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2-A to J2-B (Gnd)</td>
<td>+27.5 to +30.0 VDC</td>
</tr>
<tr>
<td>J2-C to J2-G (Gnd)</td>
<td>-5.82 to -6.18 VDC</td>
</tr>
<tr>
<td>J2-D to J2-G (Gnd)</td>
<td>-5.82 to -6.18 VDC</td>
</tr>
<tr>
<td>J2-F to J2-G (Gnd)</td>
<td>-17.46 to -18.54 VDC</td>
</tr>
</tbody>
</table>
(Monitor Points) | (Signal) | Measured voltage, current ripple and noise at the input of the Rack.
--- | --- | ---
J2-K to J2-G (2nd) | -17.46 to -19.54 VDC | Specifications are as follows:
J2-J to J2-G (2nd) | -8.5 to -9.5 VDC | Voltage - 28 volts -0.5 to +2.0 V
J2-H to J2-G (2nd) | +5.82 to +6.18 VDC | Current - 22 amps ± 2a.
J2-K to J2-G (2nd) | +26 VDC Isolation Converter | Ripple and Noise - 3 volts P-P

3.7 Turn off power supplies.
3.8 Connect the above test points to tape recorder.
3.9 Turn on power supply for 10 seconds and then turn off; use fast recording speed.
3.10 Perform steps 3.2 through 3.9 for power supply located 305/A7.

4. Equipment in Test

Data Analysis Central - AN/GYK-2

5. Test Equipment Required

5.1 Oscilloscope - Tektronix 545
5.2 Voltmeter - Fluke 801
5.3 Ammeter - 0 to 30 amp range.
5.4 ERA Instrumentation System.

6. Data Requirements

6.1 All measurements are to be recorded in Test Log for ERA-I functional test. Record tapes at 60 ips and play back at 7.5 ips onto the oscillograph.
6.2 Set up magnetic tape recorder per Table 1.1.4.1-1.
<table>
<thead>
<tr>
<th>Tape Channel No.</th>
<th>Gain</th>
<th>DC/AC</th>
<th>Signal Monitor Point</th>
<th>Signal Characteristics</th>
<th>Osc. Scale V/In.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>DC</td>
<td>Power Supply J2-G</td>
<td>Output Common (0V)</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>DC</td>
<td>J2-0</td>
<td>-6V #1</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>DC</td>
<td>J2-D</td>
<td>-6V #2</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>0.167</td>
<td>DC</td>
<td>J2-E</td>
<td>-18V #1</td>
<td>10.0</td>
</tr>
<tr>
<td>5</td>
<td>0.167</td>
<td>DC</td>
<td>J2-F</td>
<td>-18V #2</td>
<td>10.0</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>DC</td>
<td>J2-B</td>
<td>+28V Return (0V)</td>
<td>2.0</td>
</tr>
<tr>
<td>7</td>
<td>0.25</td>
<td>DC</td>
<td>J2-H</td>
<td>+6V</td>
<td>5.0</td>
</tr>
<tr>
<td>8</td>
<td>0.25</td>
<td>DC</td>
<td>J2-J</td>
<td>-9V</td>
<td>5.0</td>
</tr>
<tr>
<td>9</td>
<td>0.167</td>
<td>DC</td>
<td>J2-M</td>
<td>+28V (4 amp)</td>
<td>12.0</td>
</tr>
<tr>
<td>10</td>
<td>0.167</td>
<td>DC</td>
<td>J2-H</td>
<td>+28V (2 amp)</td>
<td>12.0</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.0</td>
<td>AC</td>
<td>Audio Oscill.</td>
<td>1000 ops 2V p-p reference</td>
<td>2.0</td>
</tr>
<tr>
<td>13</td>
<td>1.0</td>
<td>AC</td>
<td>2-44</td>
<td>Time Code 100 ops</td>
<td>1.0</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Voice</td>
<td></td>
<td>All points referenced to instrumentation ground.</td>
<td></td>
</tr>
</tbody>
</table>
TEST 1.1.1.1 SUPPLEMENT

1. Title
 Verification of Individual Rack Lab Power Supply Voltage

2. Objective
 To verify that the correct supply voltages appear at the correct pins in the connectors of the following cables: W707, W704, W145, W057, W133, W139, W120, W127 and W119.

3. Description
 3.1 Disconnect cable W707 from Rack 402 and measure the 28 volt input to the rack. Refer to drawing #21-52060 for the proper pin connection.
 3.2 Verify that the measured voltage is 27.5 to 30.5 volts DC. If the voltage is out-of-tolerance, adjust the Perkins Power Supply to in-tolerance output.
 3.3 Repeat (3.1) and (3.2) for W704, W145, W057, W133, W139, W120, W127 and W119.

4. Equipment in Test
 4.1 Perkins DC Power Supplies 29-19256-1, -2
 4.2 DC Switch Box 25-24959-1
 4.3 MRA Cables 21-50170

5. Test Equipment Required
 DC Voltmeter, Fluke 801

6. Data Requirements
 Record all data in HEIR Test Log.
1. Title
LCF/DAC Command and Status Receive

2. Objective
To verify that command and status receive channels have correct bandwidth, gain, equalization.

3. Description
3.1 Connect the equipment per Figures 1.3.1.1-2 and 1.1.4.2-1.
3.2 Install cable breakout boxes on LCF/DDG J1, J2, J8 and J12; do not reconnect removed cables.
3.3 Connect a 600 ± 30 ohm output impedance audio oscillator to the J1 and J2 breakout points listed in Table 1.1.4.2-1.
3.4 Connect a 600 ± 30 ohm resistor across the J8 and J12 output breakout points listed in Table 1.1.4.2-1.
3.5 Assure that the repeat coils are strapped at the #19 AWG, 470/600 ohm impedance ratio (Strap B on TB1 through TB10).
3.6 Assure that the equalizer resistance is 21 ohms, adjustment for 16 to 23 miles of line (Strap A, B, D, F, H on TB11 thru TB20).
3.7 Connect frequency counter and VTVM across the audio oscillator and a VTVM across the 600 ohm resistance.
3.8 Supply the input conditions listed in Table 1.1.4.2-1 and verify that the corresponding outputs are obtained.

4. Equipment in Test
4.1 LCF/Data Analysis Central AN/GYK-1
4.2 Cable Breakout Boxes
5. **Test Equipment Required**
 - Electronic Counter - Berkeley
 - True RMS Voltmeter - Ballentine 320A
 - Audio Oscillator - Hewlett-Packard 200CD

6. **Data Requirements**
 - Record all data in the Test Log.
Table 1.14.3-1

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Input Points</th>
<th>Input Frequency (ops)</th>
<th>Input Level (MV)</th>
<th>Output Points</th>
<th>Output Level</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J1-2,-3</td>
<td>1000</td>
<td>10</td>
<td>J8-2,-3</td>
<td>3 ± 1 dbm</td>
<td>Adjust gain to obtain 3 ± 1 dbm with 10 MV input. Reference output is the output adjusted to 1000 ops.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>11 to 19</td>
<td></td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>10 to 18</td>
<td></td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>9 to 17</td>
<td></td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>700</td>
<td>8 to 15</td>
<td></td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1400</td>
<td>6 to 11</td>
<td></td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2100</td>
<td>5 to 10</td>
<td>J8-2,-3</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J1-2,-3</td>
<td>3100</td>
<td>4 to 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>J1-4,-5</td>
<td>As in Test 1</td>
<td>As in Test 1</td>
<td>J8-4,-5</td>
<td>As in Test 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>J1-6,-7</td>
<td>As in Test 1</td>
<td></td>
<td>J8-6,-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>J1-8,-9</td>
<td>As in Test 1</td>
<td></td>
<td>J8-8,-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>J1-10,-11</td>
<td>As in Test 1</td>
<td></td>
<td>J8-10,-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>J2-2,-3</td>
<td>As in Test 1</td>
<td></td>
<td>J8-12,-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>J2-4,-5</td>
<td>As in Test 1</td>
<td></td>
<td>J8-14,-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>J2-6,-7</td>
<td>As in Test 1</td>
<td></td>
<td>J8-16,-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>J2-8,-9</td>
<td>As in Test 1</td>
<td></td>
<td>J8-18,-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>J1-10,-11</td>
<td>As in Test 1</td>
<td></td>
<td>J8-20,-21</td>
<td>As in Test 1</td>
<td></td>
</tr>
<tr>
<td>Test Conditions</td>
<td>Monitor Points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Number</td>
<td>Input Points</td>
<td>Input Frequency</td>
<td>Input Level</td>
<td>Output Points</td>
<td>Output Level</td>
<td>Remarks</td>
</tr>
<tr>
<td>11</td>
<td>J1-12,-13</td>
<td>As in Test 1</td>
<td>As in Test 1</td>
<td>J12-2,-3</td>
<td>As in Test 1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>J1-14,-15</td>
<td>As in Test 1</td>
<td>J12-4,-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>J1-16,-17</td>
<td>J12-6,-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>J1-18,-19</td>
<td>J12-8,-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>J1-20,-21</td>
<td>J12-10,-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>J2-12,-13</td>
<td>J12-12,-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>J2-14,-15</td>
<td>J12-14,-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>J2-16,-17</td>
<td>J12-16,-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>J2-18,-19</td>
<td>J12-18,-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>J2-20,-21</td>
<td>As in Test 1</td>
<td>As in Test 1</td>
<td>J12-20,-21</td>
<td>As in Test 1</td>
<td></td>
</tr>
</tbody>
</table>

REVISION: 1-24/62

BOEING VOL. 1 NO. 02-13406

SEC. PAG. 74
Configuration for Command and Status Receive Channel Test.

Figure 1.1.4.2-1
1. **Title**
LCF/DAC Command Transmit

2. **Objective**
To verify that attenuation and bandpass of the Command Transmit channels are correct.

3. **Description**
3.1 Connect the equipment per Figures 1.3.1.1-1, and 1.1.4.3-1.

3.2 Install Cable Breakout boxes on LCF/DDO J3, J13, and J7; do not connect removed cables.

3.3 Connect 600 ± 30 ohm output impedance audio oscillator to the input; J3 breakout points listed in Table 1.1.4.3-1.

3.4 Connect a 470 ± 24 ohm resistor across the output, J13, and J7 breakout points as listed in Table 1.1.4.3-1.

3.5 Connect a voltmeter across the input and output and frequency meter across input. The dbm across the 470 ohm resistance can be obtained by adding 1.03 dbm to the dbm reading indicated on the meter.

3.6 Perform the operations noted in Table 1.1.4.3-1 and verify that the listed results are obtained.

4. **Equipment in Test**
4.1 LCF/Data Analysis Central AN/GY-1
5. **Test Equipment Required**
 - Electronic Counter - Berkeley
 - True RMS Voltmeter - Ballentine 320A
 - Audio Oscillator - Hewlett-Packard 200CD

6. **Data Requirements**
 - Record all data in Test Log for test steps in Table 4.1.4.3.1.
TABLE 1.1.4.3-1

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Input Points</th>
<th>Input Frequency (ops)</th>
<th>Input Level</th>
<th>Output Points</th>
<th>Output Level</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J3-2, -3</td>
<td>1000</td>
<td>3 to 6 dbm</td>
<td>J13-2, -3</td>
<td>2 to 6 dbm</td>
<td>Establish a 4 dbm reference at 1000 ops and assure that attenuation is less than 1 db.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>4 dbm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J3-2, 03</td>
<td>3100</td>
<td>4 dbm</td>
<td>J13-2, -3</td>
<td>4 dbm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>J3-4, -5</td>
<td>As in Test 1</td>
<td></td>
<td>J13-4, -5</td>
<td>As in Test 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>J3-6, -7</td>
<td></td>
<td></td>
<td>J13-6, -7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>J3-8, -9</td>
<td></td>
<td></td>
<td>J13-8, -9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>J3-10, -11</td>
<td></td>
<td></td>
<td>J13-10, -11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>J3-12, -13</td>
<td></td>
<td></td>
<td>J7-2, -3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>J3-14, -15</td>
<td></td>
<td></td>
<td>J7-4, -5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>J3-16, -17</td>
<td></td>
<td></td>
<td>J7-6, -7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>J3-18, -19</td>
<td></td>
<td></td>
<td>J7-8, -9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>J3-20, -21</td>
<td>As in Test 1</td>
<td></td>
<td>J7-10, -11</td>
<td>As in Test 1</td>
<td></td>
</tr>
</tbody>
</table>
1. Title

UT/DAF Line Failure Detection

2. Objective

To verify absence of 1300 cps signal on any line produces a line failure indication.

3. Description

3.1 Connect the equipment per Figures 1.3.1.1-1 and 1.1.4.5-1.

3.2 Connect patchboard outputs MX₁ through MX₁₀ from Message Simulator to ten 23-mile #12AWG Cable Simulators.

3.3 Connect outputs of Cable Simulators to patchboard inputs C₂R₁ through C₂R₁₀.

3.4 Program the Message Simulator to produce an all "0's" message on all lines.

3.5 Perform the test steps on Table 1.1.4.5-1 and observe listed indications.

4. Equipment in Test

4.1 Data Analysis Central -- AN/GYK-2

4.2 Message Simulator, BD. 25-29584-1

4.3 Launch Control Console. 25-24172-11

4.4 Patch Panel and Cable Simulators. 25-29327-2

5. Test Equipment Required

Oscilloscope - Tektronix 545

6. Data Requirements

Record all data and observations in the Test Log.
<table>
<thead>
<tr>
<th>Test Step No.</th>
<th>Test Line Tested</th>
<th>Command Input #1</th>
<th>Command Input #2</th>
<th>Diphasic Output C2X1</th>
<th>Loss of Marks Indicator All Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pri. C₂R₁ - Out</td>
<td>ON</td>
<td></td>
<td></td>
<td>All "1's"</td>
</tr>
<tr>
<td>2</td>
<td>A C₂R₁ - In</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sec. C₂R₁ - Out</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A C₂R₁ - In</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tert. C₂R₂ - Out</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AB C₂R₂ - In</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Sec. C₂R₄ - Out</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B C₂R₄ - In</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Pri. C₂R₅ - Out</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B C₂R₅ - In</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Pri. C₂R₆ - Out</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>C C₂R₆ - In</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Sec. C₂R₇ - Out</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>C C₂R₇ - In</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Tert. C₂R₈ - Out</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CD C₂R₈ - In</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Sec. C₂R₉ - Out</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>D C₂R₉ - In</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Pri. C₂R₁₀ - Out</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>D C₂R₁₀ - In</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1.4.5-1
1. Title
LCF/DAC Marks Detection and Line Reset

2. Objectives
To determine that marks detection circuits function.
To verify line stepping and reset function.
To verify Command Line Marks Lost indicators function.

3. Description
3.1 Connect the equipment per Figures 1.3.1.1-1 and 1.1.4.5-1.
3.2 Connect transmitter outputs MX₁ through MX₁₀ from Message Simulator to ten 23-mile #19 AWG Cable Simulators.
3.3 Program the Message Simulator to transmit a "1" every 56 bit message.
3.4 Connect outputs of Cable Simulators to C₂R₁, C₂R₅, C₂R₆, C₂R₁₀ switchboard inputs.
3.5 Depress LINE RESET.
3.6 Connect oscilloscope to C₂X₁ and verify that "1's" are transmitted continuously throughout test.
3.7 (Visual Indication) Verify that Primary A, B, C, and D COMMAND LINE MARKS LOST, and Receiver Inoperative indicators are not illuminated while every other indicator is illuminated.
3.8 (Test Monitor Points) Connect J1-p and g on CMFG drawer A6 and A5 to J2-c on CMFG drawer A7. A reading of -6 volts should be obtained.
3.9 Program the Message Generator to transmit an all "0's" message.
3.10 (Visual Indication) Verify that all indicators on CMFG indicator panel are illuminated.
3.11 (Test Monitor Points) Determine voltages in step 3.8 have changed to 0 VDC.
3.12 Program Message Simulator to transmit a "1" every 56 bits.
3.13 Depress LINE RESET.
3.14 (Visual Indication and Test Monitor Point) Conditions of steps 3.6 and 3.7 should prevail.

4. Equipment in Test
 Data Analysis Central - AN/GYK-2
 Message Simulator, MD - 25-29584-1
 Cable Simulator - 25-29327-2

5. Test Equipment Required
 Oscilloscope - Tektronix 545
 Voltmeter - Fluke 801
 NRA Recording System - 25-33092-8

6. Data Requirements
 Record all data and observations in the Test Log.
1. Title

Lc OfAM

2. Objectives

2.1 To verify that loss of marks will cause line stopping.

2.2 To verify that 5 zeros are not recognized as sync.

2.3 To verify that 5 spaces are not recognized as sync.

3. Description

3.1 Connect the equipment per Figures 1.1, 1.2, 1.3, 1.4, 1.5, 1.6.

3.2 Connect the Message Simulator to the patchboard, outputs 1, 2, 3, 4, 5.

3.3 Connect the Message Simulator to the patchboard, outputs 1, 2, 3, 4, 5.

3.4 Program the Message Simulator to transmit an alternating 5 0's and 5 1's.

3.5 Perform the operations indicated on Table 1.1, 1.2, 1.3, 1.4, 1.5, 1.6.

4. Equipment

4.1 Oscilloscope - Hewlett-Packard 545B

4.2 Message Simulator, ID - 25-2998-1

4.3 Patch Panel - 25-2997-2

4.4 Data Analysis Central - 25-2996-2

4.5 Data Requirement - 25-2995-2

5. Test Equipment Required

5.1 Oscilloscope - Tektronix 345

5.2 Voltmeter - FLUKE 801

5.3 Voltmeter - FLUKE 801

6. Data Requirements

Record all data and observations in the Test Log.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pri. C₂R₁</td>
<td>Out</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td>-6V</td>
<td>-6V -6V -6V</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>C₂R₁</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sec. C₂R₂</td>
<td>Out</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>C₂R₂</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tert. C₂R₃</td>
<td>Out</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AB</td>
<td>C₂R₃</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Pri. C₂R₄</td>
<td>Out</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>C₂R₄</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Sec. C₂R₅</td>
<td>Out</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>B</td>
<td>C₂R₅</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Tert. C₂R₆</td>
<td>Out</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>AB</td>
<td>C₂R₆</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Pri. C₂R₇</td>
<td>Out</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>C₂R₇</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Sec. C₂R₈</td>
<td>Out</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>C</td>
<td>C₂R₈</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1.3.4.7-1
<table>
<thead>
<tr>
<th>Test Step Number</th>
<th>Line Tested</th>
<th>Input Condition</th>
<th>Visual Indications on CMPG Indicator Panel and Test Monitor Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Tert.</td>
<td>C₂R₈ - Out</td>
<td>On On On On 0V -6V -6V -6V All "1's"</td>
</tr>
<tr>
<td>21</td>
<td>CD</td>
<td>C₂R₈ - In</td>
<td>On On On -6V</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Pri.</td>
<td>C₂R₁₀ - Out</td>
<td>On On -6V</td>
</tr>
<tr>
<td>24</td>
<td>D</td>
<td>C₂R₁₀ - In</td>
<td>On -6V</td>
</tr>
<tr>
<td>25</td>
<td>Sec.</td>
<td>C₂R₉ - Out</td>
<td>On On -6V</td>
</tr>
<tr>
<td>26</td>
<td>D</td>
<td>C₂R₉ - In</td>
<td>On -6V</td>
</tr>
<tr>
<td>27</td>
<td>Tert.</td>
<td>C₂R₈ - Out</td>
<td>On On On On 0V</td>
</tr>
<tr>
<td>28</td>
<td>CD</td>
<td>C₂R₈ - In</td>
<td>On On -6V</td>
</tr>
</tbody>
</table>

- **LINE RESET depressed**
- **J1-A CMPG/A4 to J1-C CMPG/A7**
- **J1-B CMPG/A4 to J1-C CMPG/A7**
- **J1-C CMPG/A4 to J1-C CMPG/A7**
- **J1-D CMPG/A4 to J1-C CMPG/A7**
- **J1-E CMPG/A4 to J1-C CMPG/A7**
- **Connect C₂X₁ to oscilloscope**

Table 1.1.4.7 (Continued)
1. **Title**

LOF/DAC Line Selection and Sync Detection

2. **Objectives**

2.1 To determine the six "0's" will produce a sync pulse.

2.2 To verify that storing of a sync will initiate a line search and line seizure.

2.3 To verify the Network Traffic function.

2.4 To verify message retransmission, frame counting and lockout.

3. **Description**

3.1 Connect the equipment per Figures 1.1.4.8-1 and 1.1.4.8-1.

3.2 Connect Message Simulator patchboard outputs \(MK_1, MK_2, MK_6, \) and \(MK_{10} \) to 23-mile Cable Simulators.

3.3 Connect Cable Simulator outputs to patchboard command inputs \(C_{2R_1}, C_{2R_5}, C_{2R_6}, \) and \(C_{2R_{10}} \).

3.4 Program the Message Simulator to transmit all "1's" on three lines and 6 "0's" and "1" "0" alternating message on one line. (Make bits no. 8 and 10 of the message a mark).

3.5 Verify that the message with valid sync is retransmitted on the one line.

3.6 Depress LINE RESET on CMFG Indicator Panel.

3.7 Verify that Primary A, B, C and D and Receiver Inoperative indicators on CMFG Indicator Panel are not illuminated.

3.8 Perform the operations noted in Table 1.1.4.8-2 by reprogramming the Message Simulator and observe the noted indications.

3.9 Verify that 18 message lengths of "1's" message pattern is retransmitted on all lines \(C_2X_1 \), through \(C_2X_{10} \).
3.10 Verify that Transmit Tone Lost Indicators on CM40 Indicator Panel are not illuminated.

3.11 Verify that grounding of J1-C on CM40/A2 illuminates all indicators of step 3.10.

4. Equipment in Test

4.1 Data Analysis Central - An/6YK-2
4.2 Message Simulator - 25-29584-1
4.3 Launch Control Console - 25-24172-11
4.4 Cable Simulator - 8318157-501
4.5 Patch Panel - 25-29327-2

5. Test Equipment Required

5.1 Oscilloscope - Tektronix 545
5.2 Voltmeter - Fluke 801
5.3 ERA Instrumentation System - 25-33093-8

6. Data Requirements

Record the signals in Table 1.1.4.8-2 in steps 3.4 and 3.9.
<table>
<thead>
<tr>
<th>Channel</th>
<th>Gain</th>
<th>DC/AC</th>
<th>Monitor</th>
<th>Signal Characteristics</th>
<th>Oscillograph Playback Volts/Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>AC</td>
<td>MX1</td>
<td>Diphas 1300 cps</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>AC</td>
<td>MX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>AC</td>
<td>MX6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>AC</td>
<td>MX10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>AC</td>
<td>C2X1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.0</td>
<td>AC</td>
<td>Audio Osc.</td>
<td>2 volt p-p 1300 cps</td>
<td>2.0</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>AC</td>
<td></td>
<td>Voice Reference</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.0</td>
<td>AC</td>
<td>244</td>
<td>Time Code 100 pps</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 1.1.4.8-1
<table>
<thead>
<tr>
<th>Test Step Number</th>
<th>Line with Sync Message</th>
<th>Net Traffic</th>
<th>Sync Pulse</th>
<th>Biphase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Pri. A</td>
<td>ON</td>
<td>180μs 0V</td>
<td>0V</td>
</tr>
<tr>
<td>2</td>
<td>None</td>
<td>OFF -6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pri. B</td>
<td>ON</td>
<td>180μs 0V</td>
<td>0V</td>
</tr>
<tr>
<td>4</td>
<td>None</td>
<td>OFF -6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pri. C</td>
<td>ON</td>
<td>180μs 0V</td>
<td>0V</td>
</tr>
<tr>
<td>6</td>
<td>None</td>
<td>OFF -6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Pri. D</td>
<td>ON</td>
<td>180μs 0V</td>
<td>0V</td>
</tr>
<tr>
<td>8</td>
<td>None</td>
<td>OFF -6V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When monitoring the following test points, use CMFG/A7 J2-6 as ground reference:

1. J1-3 CMFG/A3
2. J1-4 CMFG/A4
3. J1-C CMFG/A4
4. J1-D CMFG/A4
5. J1-E CMFG/A4
6. J1-P CMFG/A3
7. J1-S CMFG/A3
8. J1-T CMFG/A3
9. J1-X CMFG/A3
10. C2X4 on patchboard to oscilloscope.

Table 1.1.4.8-2
1. Title
LCF/DIC Cycle Detection and Zero Indication

2. Objectives
To determine that cycle detection circuitry and indicators function.
To determine that zero indicator circuitry functions.
To determine that injection alarm circuitry functions.

3. Description
3.1 Connect the equipment per Figures 1.3.1.1-1 and 1.1.4.5-1.
3.2 Connect Message Simulator patchboard outputs \(M_1 \) through \(M_{10} \) to 23 mile simulator.
3.3 Connect Cable Simulator outputs to patchboard inputs \(C_2R_1 \) through \(C_2R_{10} \).
3.4 Program the Message Simulator to transmit a 6 "0's" and "1" = "O" alternating messages on all lines.
3.5 Depress LINE RESET on CMPG Indicator Panel.
3.6 Depress ZERO DETECTOR RESET on C & SMFG Indicator Panel.
3.7 Verify that Zero Indicator and Cycle Detector on C & SMFG Indicator Panel are not illuminated.
3.8 Ground J1-J on C & SMFG/A2.
3.9 (Visual Indication and Test Monitor Points)
(a) Verify that Cycle Detector Indicator is illuminated.
(b) Verify that J1-A on C & SMFG/A2 is C V.
(c) Verify that J1-C on C & SMFG/A2 is -6V approximately 57 ms after ground in step 3.8 is applied.
3.10 Remove ground applied in step 3.8.

3.11 (Visual Indication and Test Monitor Points)
 (a) Verify that Cycle Detector Indicator is extinguished.
 (b) Verify that J1-A on C & SMPG/A2 is -6V.
 (c) Verify that J1-C on C & SMPG/A2 is 0 V.

3.12 Remove cable from J5 on top of C & SMPG rack.

3.13 (Visual Indication and Test Monitor Points)
 (a) Verify that Zero Indicator is illuminated.
 (b) Verify that J1-B on C & SMPG/A2 is 0 V.
 (c) Verify that J1-C on C & SMPG/A2 is -6 V.

3.14 Replace removed cable on J5 and depress ZERO INDICATOR RESET.

3.15 (Visual Indication and Test Monitor Points)
 (a) Verify that Zero Indicator is extinguished.
 (b) Verify J1-B on C & SMPG/A2 is -6 V.
 (c) Verify J1-C on C & SMPG/A2 is 0 V.

3.16 Monitor C₂ with oscilloscope throughout test and record message pattern when cable is off and coop button is activated and de-activated.

4. Equipment in Test
 Data Analysis Central - AN/GTK-2
 Message Simulator - 25-29584-1
 Launch Control Console - 25-24172-11
 Cable Simulator - 8318157-501
 Patch Panel - 25-29327-2
5. Test Equipment Required
 5.1 Oscilloscope - Tektronix 545
 5.2 Voltmeter - Fluke 801
 5.3 Oscillograph Recorder

6. Data Requirements
 Record the signals per Table 1.1.4.10-1 in step 3.16.
<table>
<thead>
<tr>
<th>Tape Channel Number</th>
<th>Gain</th>
<th>DC/AC</th>
<th>Signal Monitor Point</th>
<th>Signal Characteristics</th>
<th>Oscillograph Scale Volts/Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>AC</td>
<td>MX1</td>
<td>1300 cps Diphas</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>AC</td>
<td>C2X1</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>AC</td>
<td>C2R1</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.0</td>
<td>AC</td>
<td>Audio Osc.</td>
<td>2 volt p-p 1300 cps</td>
<td>2.0</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>AC</td>
<td></td>
<td>Voice</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.0</td>
<td>AC</td>
<td>2-44</td>
<td>Time Code, 100 pps</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 1.1.4.10-1
TEST 1.1.4.11

1. Title
LCF/DMC Message Injection

2. Objectives
2.1 To determine that all message injection gates function and that all inputs to the "All Zero" gate function.
2.2 To determine that message injection begins after completion of retransmission.
2.3 To determine that the LCC can initiate Launch, Inhibit, Calibrate, SCh Test, Test, Target messages.

3. Description
3.1 Connect equipment per Figures 1.3.1.1-1 and 1.1.4.11.-1.
3.2 Install Breakwire Encoder Simulator in place of LCC.
3.3 Connect Message Simulator patchboard outputs MX₁ through MX₁₀ to 23 mile Cable Simulator.
3.4 Connect Cable Simulators outputs to inputs C₂₁ through C₂₁₀.
3.5 Program the Message Simulator to produce all "1's" on 9 lines and a sync and "1" - "0" alternating message on C₂₁.
3.6 Connect an oscilloscope to C₂₁ and trigger with the inject pulse signal obtained from SFPG/A2 J1-J.
3.7 Program the Encoder Simulator to inject all "1's" except the first bit.
3.8 Verify the 1st bit of diphase message is "0" by observing oscilloscope display. Permute the "0" bit through the remaining 55 bits and observe that diphase reflects each change. (Note: The Coop Switch on the SFPG rack must be activated during check of last 10 bits).
3.9 Program the Encoder Simulator to inject "0's" in the first 13 bits and "1's" in the remaining bits.
3.10 Verify that oscilloscope reflects the encoded message.
3.11 Progressively make bits 15, bits 15 & 16, bits 15, 16 & 17, etc., of the message in step 3.9 "0's" and verify that oscilloscope display reflects injected message. (When bits 15 to 25 are "0's" the test can be stopped.)
3.12 Disconnect the Breakwire Encoder Simulator and connect the LCC.
3.13 Initiate Launch, Inhibit, Calibrate, Test, Target, and SCN Test with all Launcher addresses and verify by examination of oscilloscope that bit structure agrees with Figure 1.3.1.1-3.
3.14 Verify by recording diphasic that message injection begins at the end of 10 retransmitted messages.

4. Equipment in Test
4.1 Data Analysis Central - AN/GYX-2
4.2 Launch Control Console - 25-24172-11
4.3 Message Simulator - 25-29594-1
4.4 Breakwire Encoder Simulator - 25-30945
4.5 Cable Simulator - 8318157-501
4.6 Patch Panel - 25-29327-2

5. Test Equipment Required
5.1 Oscilloscope - Tektronix 545
5.2 Voltmeter - Fluke 801
5.3 Breakwire Encoder Simulator
5.4 NRA Instrumentation System - 25-33093-8
6. **Data Requirements**

Record data per step 3/14 and Table 1.1.4.11-1.
<table>
<thead>
<tr>
<th>Tape Channel Number</th>
<th>Gain</th>
<th>DC/AC</th>
<th>Signal Monitor Point</th>
<th>Signal Characteristics</th>
<th>Oscilloscope Scale Volts/Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>AC</td>
<td>C2X1</td>
<td>1300 cps Diphas</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>0.167</td>
<td>DC</td>
<td>305J5-58</td>
<td>0 to -6 V, Initiate</td>
<td>12.0</td>
</tr>
<tr>
<td>3</td>
<td>0.167</td>
<td>DC</td>
<td>305J5-59</td>
<td>0 to -6 V, Coop Hold</td>
<td>12.0</td>
</tr>
<tr>
<td>4</td>
<td>0.167</td>
<td>DC</td>
<td>305J5-2</td>
<td>0 to -6 V, Bit #1</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>DC</td>
<td>305J5-68</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Audio Osc.</td>
<td>2 volt p-p 1300 cps</td>
<td>2.0</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>Voice</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>Time Code, 100 pps</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.0</td>
<td>AC</td>
<td>Audio Osc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.0</td>
<td>AC</td>
<td>2-44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Use Instrumentation Breakout Box #6 for Cable W006 (305J5)

Table 1.1.4.11
Test 1.1.5.1

1. Title
 SIN Ring Generate Test (LOC) and Integration of DSG, CCP and CCC.

2. Objectives
 To verify the ringing tone is generated by the SIN TTE and is transmitted through the Digital Data Group, Ringing Unit.

3. Description
 3.1 Connect the equipment as shown in Figures 1.3.1.1-1 and 1.1.5.1-1.
 3.2 Perform the ring functions in Col. 1, Table 1.1.5.1-1, by pressing the LF ring buttons on the CCC and the CCP. If this is not possible, jumper J3 on the TA-484/GTC-S repeater drawers as shown in Col. 2.
 The two drawers are identical; the upper drawer contains the ringing equipment for LF #1 thru LF #5; the lower drawer for LF #6 thru LF #10.
 3.3 Measure 2600 cps on the upper drawer for LF #1 thru LF #5, and the lower drawer for LF #6 thru LF #10 (Col. 3).
 3.4 Measure the same signal on the ringing unit MX 3681 thru MX 3695 (Col. 4). Terminate the meter with 600 ohms.
 3.5 Measure the output signal (Col. 6) at the same time for each test; terminate the meter in 470 ohms when monitoring the cable test points.

4. Equipment in Test
 4.1 Digital Data Group OA 3541
 4.2 Telephone Connecting and Switching Set AN/GTC-3
 4.3 Communications Control Panel C-3937/GTC
 4.3.1 LOC
 4.3.2 CCC
 4.4 Patch Panel 25-29327-2
5. **Test Equipment Required**

5.1 Frequency Counter - Berkeley 55AB

5.2 VTVM HP 400C

5.3 Oscilloscope - Tektronic 545

6. **Data Requirements**

 Record all data in the Test Log.
<table>
<thead>
<tr>
<th>Test Conditions</th>
<th>Test Monitor Points and Expected Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output of TTE</td>
</tr>
<tr>
<td>#1</td>
<td>#2</td>
</tr>
<tr>
<td>Perform this ring function or Repeater TA 464/GTC-8 Jumper</td>
<td>Measure 2600 cps at 0±1.5 dbm - TA 464/GTC-8</td>
</tr>
<tr>
<td>1</td>
<td>L 2</td>
</tr>
<tr>
<td>2</td>
<td>L 3</td>
</tr>
<tr>
<td>3</td>
<td>L 4</td>
</tr>
<tr>
<td>4</td>
<td>L 5</td>
</tr>
<tr>
<td>6</td>
<td>L 7</td>
</tr>
<tr>
<td>7</td>
<td>L 8</td>
</tr>
<tr>
<td>8</td>
<td>L 9</td>
</tr>
<tr>
<td>9</td>
<td>L 10</td>
</tr>
<tr>
<td>10</td>
<td>L 11</td>
</tr>
</tbody>
</table>

Table 1.1-5.1-1
Test Monitor Points and Expected Signals

<table>
<thead>
<tr>
<th>Test Conditions</th>
<th>Output of TTE</th>
<th>Input to DDC Ring Unit</th>
<th>Output of DDC Ring Unit</th>
<th>Output of DDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>#2</td>
<td>#3</td>
<td>#4</td>
<td>#5</td>
</tr>
<tr>
<td>Perform this ring function or jumper</td>
<td>J3-HH, F (Upper)</td>
<td>J3-h, ½ (Upper)</td>
<td>J1-h, R</td>
<td>J1-3, R</td>
</tr>
<tr>
<td>L 2</td>
<td>J3-HH, G (Upper)</td>
<td>J3-e, ½ (Upper)</td>
<td>J1-e, G</td>
<td>J1-3, R</td>
</tr>
<tr>
<td>L 3</td>
<td>J3-HH, H (Upper)</td>
<td>J3-e, ½ (Upper)</td>
<td>J1-e, G</td>
<td>J1-3, R</td>
</tr>
<tr>
<td>L 4</td>
<td>J3-HH, J (Upper)</td>
<td>J3-e, ½ (Upper)</td>
<td>J1-e, G</td>
<td>J1-3, R</td>
</tr>
<tr>
<td>L 5</td>
<td>J3-HH, K (Upper)</td>
<td>J3-e, ½ (Upper)</td>
<td>J1-e, G</td>
<td>J1-3, R</td>
</tr>
<tr>
<td>L 6</td>
<td>J3-HH, F (Lower)</td>
<td>J3-h, ½ (Lower)</td>
<td>J1-h, R</td>
<td>J1-3, R</td>
</tr>
<tr>
<td>L 7</td>
<td>J3-HH, G (Lower)</td>
<td>J3-e, ½ (Lower)</td>
<td>J1-e, G</td>
<td>J1-3, R</td>
</tr>
<tr>
<td>L 8</td>
<td>J3-HH, H (Lower)</td>
<td>J3-e, ½ (Lower)</td>
<td>J1-e, G</td>
<td>J1-3, R</td>
</tr>
<tr>
<td>L 9</td>
<td>J3-HH, J (Lower)</td>
<td>J3-e, ½ (Lower)</td>
<td>J1-e, G</td>
<td>J1-3, R</td>
</tr>
<tr>
<td>L 10</td>
<td>J3-HH, K (Lower)</td>
<td>J3-e, ½ (Lower)</td>
<td>J1-e, G</td>
<td>J1-3, R</td>
</tr>
</tbody>
</table>

Table 1.1.5.1-1
TEST 1.1.5.3

1. Title
 LCO Ringing Unit Test MX 3681-85 and Integration of DDG, CCP & COC.

2. Objectives
 2.1 To verify ringing functions for SCS, HVC.
 2.2 To verify that HVC Receive circuits function.

3. Description
 3.1 Connect the equipment as shown in Figures 1.1.3.1-1 and 1.1.5.3-1.
 3.2 Perform the ringing functions as shown in Table 1.1.5.3-1. Jumper to simulate the function.
 3.3 Monitor the output frequencies (Col. 7) for a level of -6 dbm tolerance ± 3 dbm; frequency of the signal to be ± 10 cycles.
 3.4 The last two items on the lists require an input signal to operate the tone detectors.
 3.5 Column 5 will have a level of -3 dbm to -9 dbm; frequency of the signals to be ± 25 cycles.
 3.6 Connect the equipment per Figure 1.1.5.3-2.
 3.7 Inject 2200 ± 10 cps signal of 3 - 10 mv to J13-15, 16 for 10 seconds to obtain a tone at the CCC for 30 ± 6 seconds. Verify minimum signal level.
 3.8 Repeat (3.7) using 1400 ± 10 cps input.

4. Equipment In Test
 4.1 Digital Data Group QA 3541, (Rack 303)
 4.2 Communications Control Console QA 3460/GSW-4
5. Test Equipment Required
 5.1 Differential Voltmeter - Fluke 803
 5.2 VTVM HP 400C
 5.3 Frequency Meter - Berkeley 554B
 5.4 Audio Oscillator HP 207A
 5.5 Multimeter - Simpson 260

6. Data Requirements
 Record all data in the Test Log.
<table>
<thead>
<tr>
<th>TESTS CONDITION</th>
<th>TEST MONITOR POINTS - MX 3681</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Perform this function or Jumper J2-</td>
<td>Jumper</td>
</tr>
<tr>
<td>SCS - L3 Safe</td>
<td>B, Y</td>
</tr>
<tr>
<td>SCS - L4 Safe</td>
<td>B, Z</td>
</tr>
<tr>
<td>SCS - L5 Safe</td>
<td>B, X</td>
</tr>
<tr>
<td>SCS - L6 Safe</td>
<td>B, W</td>
</tr>
<tr>
<td>SCS - L7 Safe</td>
<td>B, U</td>
</tr>
<tr>
<td>SCS - L8 Safe</td>
<td>B, T</td>
</tr>
<tr>
<td>SCS - L9 Safe</td>
<td>B, S</td>
</tr>
<tr>
<td>SCS - L10 Safe</td>
<td>E, AA</td>
</tr>
<tr>
<td>SCS - L11 Safe</td>
<td>B, BB</td>
</tr>
<tr>
<td>VERSA Tone (V)</td>
<td></td>
</tr>
<tr>
<td>HVC - Ring 2</td>
<td>N, J</td>
</tr>
<tr>
<td>HVC - Ring 3</td>
<td>N, M</td>
</tr>
<tr>
<td>HVC - Ring 4</td>
<td>N, K</td>
</tr>
<tr>
<td>HVC - Ring 5</td>
<td>N, H</td>
</tr>
<tr>
<td>HVC - Ring All</td>
<td>N, L</td>
</tr>
<tr>
<td>VERSA Tone (V)</td>
<td></td>
</tr>
</tbody>
</table>

TEST CONDITIONS

Perform this Input or Jumper to Sim. | Apply for approx. 10 sec. | Input freq. in cps ± 1% | Location LCF/DDG | Jumper on Drawer | Measure 28V for .5 Min. DDG |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HVC - Ring All</td>
<td>3 - 10 MU</td>
<td>2200</td>
<td>J13-15, -16</td>
<td>J2-P, R</td>
<td>J5-8, -9</td>
</tr>
<tr>
<td>HVC - Ring One</td>
<td>3 - 10 MU</td>
<td>1400</td>
<td>J13-15, -16</td>
<td>J2-P, R</td>
<td>J5-8, -9</td>
</tr>
<tr>
<td>From 600 ± 30 ohm source.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Terminate cable connections in 470 ± 24 ohms.

Table 1.1.5.3-1
1. Title
 LVH/DAC VSFA Receiver Test and VSFA Monitor.

2. Objectives
 To determine that SIN Receive equalization and gain are correctly adjusted.

3. Description
 3.1 Connect the equipment per Figure 1.3.1.1-1, and 1.1.5.4-1.
 3.2 Install cable breakout boxes on J1, J2 and J6 on top of DDG. Do not connect removed cable.
 3.3 Connect a 600 * 30 ohm source signal generator to the input connections noted on Table 1.1.5.4-1.
 3.4 Terminate the output connections in Table 1.1.5.4-1 with a 170 ohm * 24 ohm resistance.
 3.5 Adjust equalizer resistance as follows: 21 ohms (Straps A, B, D, F, H on THL thru TH10; Low Level Adjustment).
 3.6 Gain is initially adjusted when step 1 of Table 1.1.5.4-1 is performed for each channel.
 3.7 Perform each step on Table 1.1.5.4-1 and observe results; also verify that tone can be monitored at P.A. Speaker on CCC for each LF.

4. Equipment in Test
 4.1 Data Analysis Central - AN/GYK-2
 4.2 Communications Control Console 25-27095-2
5. **Test Equipment Required**

5.1 Oscilloscope - Tektronix 545

5.2 Cable Breakout Boxes

5.3 VFM HP 400C

5.4 Signal Generator HP 207A

5.5 Frequency Counter - Berkeley 554B

5.6 Differential Voltmeter - Fluke 803

6. **Data Requirements**

 Record data for each channel in Test Log.
Test Conditions and Expected Signals

<table>
<thead>
<tr>
<th>Test Step</th>
<th>Input Connections</th>
<th>Input Frequency (ops.)</th>
<th>Input Level (mv RMS)</th>
<th>Output Connections</th>
<th>Output Level (dbm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J1-22, -23</td>
<td>1000</td>
<td>10</td>
<td>J6-2, -3</td>
<td>7 ± 1 dbm</td>
</tr>
<tr>
<td>2</td>
<td>J1-24, -25</td>
<td></td>
<td></td>
<td>J6-4, -5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>J1-26, -27</td>
<td></td>
<td></td>
<td>J6-6, -7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>J1-28, -29</td>
<td></td>
<td></td>
<td>J6-8, -9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>J1-30, -31</td>
<td></td>
<td></td>
<td>J6-10, -11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>J2-22, -23</td>
<td></td>
<td></td>
<td>J6-12, -13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>J2-24, -25</td>
<td></td>
<td></td>
<td>J6-14, -15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>J2-26, -27</td>
<td></td>
<td></td>
<td>J6-16, -17</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>J2-28, -29</td>
<td></td>
<td></td>
<td>J6-18, -19</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>J2-30, -31</td>
<td></td>
<td></td>
<td>J6-20, -21</td>
<td></td>
</tr>
</tbody>
</table>

1. Supply the following inputs and verify that output remains constant:

<table>
<thead>
<tr>
<th>Input Frequency</th>
<th>Input Level (mv RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>10-18</td>
</tr>
<tr>
<td>500</td>
<td>9-17</td>
</tr>
<tr>
<td>700</td>
<td>8-15</td>
</tr>
<tr>
<td>1400</td>
<td>6-11</td>
</tr>
<tr>
<td>2100</td>
<td>5-10</td>
</tr>
<tr>
<td>3100</td>
<td>5-9</td>
</tr>
</tbody>
</table>

2. Add 1.06 dbm to adjust for 470 ohm shunt

Table 9.1.5.4-1
Figure 1.1.5.4-1

Signal Generator

Frequency Counter

Differential Voltmeter

J1 and J2 Cable Breakout

DDG

Missile Away

VESA Rcvr.

Cable Breakout

VTVM

470 Ω
TEST 1.1.5.5

1. Title

LCF Ring Unit Test, VRSA Interrogation and Integration of the Communications Control Console.

2. Objectives

2.1 To verify operation of VRSA interrogate switch.
2.2 To verify that the output levels of VRSA Interrogation are within
 -6 + 3 dBm. and 2900 ± 10 cps.

3. Description

3.1 Connect the equipment as shown in Figure 1.1.5.5-1.
3.2 Engage Launch Enable Switch to eliminate "safe" signal from the line.
3.3 Measure the VRSA tone at the output points as indicated by Table
 1.1.5.5-1.

4. Equipment in Test

Digital Data Group OA 3541 (Rack 303)
Ringing Unit WX 3681-5
Communications Control Console 25-27095-2

5. Test Equipment Required

Oscilloscope (Tektronix 545 or equivalent)
HMS VIVI
E-Put Meter

6. Data Requirements

Record all data in the Test Log.
<table>
<thead>
<tr>
<th>VBSA Interrogate</th>
<th>Monitor Output pts.</th>
<th>Frequency Output</th>
<th>Output Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>J13 - 25, -26</td>
<td>2900 ± 10 cps</td>
<td>-6 ± 3 dbm</td>
</tr>
<tr>
<td>L3</td>
<td>J13 - 27, -28</td>
<td>2900 ± 10 cps</td>
<td>-6 ± 3 dbm</td>
</tr>
<tr>
<td>L4</td>
<td>J13 - 29, -30</td>
<td>2900 ± 10 cps</td>
<td>-6 ± 3 dbm</td>
</tr>
<tr>
<td>L5</td>
<td>J13 - 31, -32</td>
<td>2900 ± 10 cps</td>
<td>-6 ± 3 dbm</td>
</tr>
<tr>
<td>L6</td>
<td>J13 - 33, -34</td>
<td>2900 ± 10 cps</td>
<td>-6 ± 3 dbm</td>
</tr>
<tr>
<td>L7</td>
<td>J7 - 25, -26</td>
<td>2900 ± 10 cps</td>
<td>-6 ± 3 dbm</td>
</tr>
<tr>
<td>L8</td>
<td>J7 - 27, -28</td>
<td>2900 ± 10 cps</td>
<td>-6 ± 3 dbm</td>
</tr>
<tr>
<td>L9</td>
<td>J7 - 29, -30</td>
<td>2900 ± 10 cps</td>
<td>-6 ± 3 dbm</td>
</tr>
<tr>
<td>L10</td>
<td>J7 - 31, -32</td>
<td>2900 ± 10 cps</td>
<td>-6 ± 3 dbm</td>
</tr>
<tr>
<td>L11</td>
<td>J7 - 33, -34</td>
<td>2900 ± 10 cps</td>
<td>-6 ± 3 dbm</td>
</tr>
</tbody>
</table>

Add 1.06 dbm for 470 ohm correction.

Table 1.1.5.5-1
TEST 1.2.1.1

1. **Title**
 S&M Simulator Integration with LF/DAC.

2. **Objectives**
 To verify functional compatibility of the S&M Simulator and the LF Data Analysis Central.

3. **Description**
 3.1 The S&M Simulator shall be functionally tested per D2-13806.
 3.2 Connect the equipment per Figures 1.3.1.1-1 and 1.3.1.1-2.
 3.3 Turn on the LF/DAC. **NOTE:** the Site Tailoring Plug shall not be used.
 3.4 Turn on power at the S&M Simulator. Place the DECODER switch in the IN position.
 3.5 Place the INTERNAL/EXTERNAL switch in the EXTERNAL position.
 3.6 Momentarily depress the RESET lever.
 3.7 Reset the LF/DAC.
 3.8 Connect the Message Simulator outputs \(N_{1} \) through \(M_{6} \) to the LF Receive lines \(F_{2R1} \) to \(F_{2R6} \), in that respective order.
 3.9 Program the Message Simulator per Figure 1.2.1.1-2.
 3.10 Monitor the status message at F2ST for STRATEGIC ALU and ARMED.
 (Monitor the status message at F2ST for a bit structure as indicated in Table 1.2.1.1-1).
 3.11 Depress the ALARM lever at the S&M Simulator.
 3.12 Release the ALARM lever.
3.13 Momentarily depress the INNER SECURITY VIOLATED lever at the Simulator.
3.14 Reset the Simulator.
3.15 Momentarily depress the INNER SECURITY VIOLATED lever at the Simulator.
3.16 Momentarily depress the OUTER SECURITY VIOLATED lever at the Simulator.
3.17 Reset the Simulator.
3.18 Momentarily depress the WARHEAD ALARM button on the Simulator.
3.19 Reset the Simulator.
3.20 Press the Message Sim. button to send 20 LCF #2 LAUNCH B messages, followed by 10 LCF #1 LAUNCH A messages on line 6.
3.21 Reset the DECODER in the Simulator.
3.22 Reset the Simulator.
3.23 Reset the LF/DAC and verify that the status message is per Table 1.2.1.1-1, step 10.
3.24 Program the Message Simulator per Figure 1.2.1.1-3.
3.25 Initiate SGN Test messages on line 1, by pressing the Message Sim. RESET button.
3.26 Remove the patchcord from terminal 15 and reconnect to terminal T of the Message Simulator patchboard.
3.27 Send Test messages on line 1 (PRI) by pressing the Message Sim. RESET button.
3.28 Remove the patchcord from terminal T and reconnect to terminal C of the Message Simulator.
3.29 Send Calibrate messages on line 1 by pressing the Message Sim. RESET button.
3.30 Repatch equipment as shown in Figure 1.2.1.1-1.
3.31 Program Message Simulator as shown in Figure 1.2.1.1-4. Verify all marks transmission on all six lines.
3.32 Verify that LP2 Indicator Panel at the LOC indicates STRATEGIC ALERT and ARMED. Reset equipment if necessary.
3.33 Simulate an LEU Fault at the LF/SCN by connecting 401A5JL-S to ground at 401A772-G. The LEU Fault lamp at the SCN should light.
3.34 The status message should indicate a NO-GO (Fault without Strategic Alert).
3.35 Remove the Fault and reset the SCN. The Fault lamp should go out.
3.36 Simulate loss of transmit tone on Line 1 by grounding 402A4JL-G at Cvl25J.
3.37 The status message should indicate an Alarm (Fault with Strategic Alert).
3.38 The MWI lamp at the S&M should be on.
3.39 Remove the Fault - the MWI lamp should go out.
3.40 Simulate a Line Selector Fault by grounding 402A3JL-T (CT22). Send an SCNT to the LF on Line 1 and verify that a NO-GO status is produced by the LF (all marks on Receive lines 2 - 5).
3.41 The LSU Fault lamp at the S&M should go on.
3.42 Remove the fault and reset the LF/SCN.
3.43 Simulate a Line Monitor fault by removing tone (at F2RL) from Receive Line No. 1. The S&M LMU fault lamp should go on. The status message should indicate an ALARM (FAULT-STRATEGIC ALERT) condition.
3.44 Replace tone on Line 1 and verify that the fault indication at the S&M is removed.

3.45 Simulate a Net Traffic Fault by sending an invalid message to the LF (reference Figure 1.3.1.1-3).

3.46 A Fault with Strategic Alert status should be transmitted from the LF. The NT lamp at the S&M should turn on. The fault condition should remain until the LF is reset or per step 3.44.

3.47 Verify that a Net Traffic Fault will be reset by an INHIBIT message or a LAUNCH message or an SCNT on Line 1.

3.48 Verify that a TEST or CAL message on Line 2 produces a Net Traffic Fault.

3.49 Verify that a SCNT message on Line 2 does not reset the Net Traffic Fault.

3.50 Reset the LF/SCN.

3.51 Simulate a Detector, Command Signals Fault by grounding 401A6J1-N. The MDU Fault lamp at the S&M should illuminate.

4. Equipment in Test

4.1 S&M Signal Simulator 25-25085-1

4.2 LF Data Analysis Central AH/GYK-2

4.3 Message Simulator 25-29584-1

4.4 Patch Panel & Cable Simulator 25-29327-1

5. Test Equipment Required

5.1 Oscilloscope, Tektronix 545A or 555.

5.2 Preamp, Tektronix Type CA
6. Data Requirements
 6.1 Record all data and observations in the Test Log.

7. References
 D2-13406, S&M Simulator Test Procedure
<table>
<thead>
<tr>
<th>Step</th>
<th>Status Message Bits</th>
<th>Approx. Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10</td>
<td>1 0 0 0 0 0 1 0 1 0 2 0 2 2</td>
<td>3</td>
</tr>
<tr>
<td>3.11</td>
<td>1 0 0 0 1 0 1 0 1 0 1</td>
<td>5 sec.</td>
</tr>
<tr>
<td>3.13</td>
<td>1 0 0 0 1 0 1 0 1 0 1 0 1</td>
<td>25 sec.</td>
</tr>
<tr>
<td>3.14</td>
<td>1 0 0 0 0 0 1 0 1 0 1 0 1</td>
<td>35 sec.</td>
</tr>
<tr>
<td>3.15</td>
<td>1 0 1 0 0 0 1 0 1 0 1 0 1</td>
<td>3</td>
</tr>
<tr>
<td>3.16</td>
<td>1 0 1 1 0 0 1 0 1 0 1 0 1</td>
<td>10 sec.</td>
</tr>
<tr>
<td>3.17</td>
<td>1 0 0 0 0 0 1 0 1 0 1 0 1</td>
<td>3</td>
</tr>
<tr>
<td>3.18</td>
<td>1 0 0 0 1 1 1 0 1 0 1 0 1</td>
<td>60 sec.</td>
</tr>
<tr>
<td>3.19</td>
<td>1 0 0 0 0 0 1 0 1 0 1 0 1</td>
<td>60 sec.</td>
</tr>
<tr>
<td>3.20a</td>
<td>1 1 0 0 0 0 1 0 1 0 1 0 1</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>1 1 0 0 0 0 1 1 1 0 0 1</td>
<td>5 sec.</td>
</tr>
<tr>
<td>c</td>
<td>1 1 1 1 0 0 1 1 1 0 0 1</td>
<td>25 sec.</td>
</tr>
<tr>
<td>d</td>
<td>1 1 1 1 1 0 1 0 1 0 1 0 1</td>
<td>35 sec.</td>
</tr>
<tr>
<td>3.21</td>
<td>1 0 0 0 0 0 1 0 1 0 1 0 1</td>
<td>3</td>
</tr>
<tr>
<td>3.25a</td>
<td>1 0 0 0 0 0 1 1 1 1 1 1</td>
<td>10 sec.</td>
</tr>
<tr>
<td>b</td>
<td>1 0 0 0 0 0 1 0 1 0 1 0 1</td>
<td>3</td>
</tr>
<tr>
<td>3.27a</td>
<td>1 0 0 0 0 0 1 0 1 1 0 1</td>
<td>60 sec.</td>
</tr>
<tr>
<td>b</td>
<td>1 0 0 0 0 0 1 0 1 0 1 0 1</td>
<td>3</td>
</tr>
<tr>
<td>3.29a</td>
<td>1 0 0 0 0 0 1 0 1 1 0 1</td>
<td>60 sec.</td>
</tr>
<tr>
<td>b</td>
<td>1 0 0 0 0 0 1 0 1 0 1 0 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Bits 12-17 and bits 19-32 are always zeros.

Bits 1, 9 and 18 are always marks.

Less than 01 sec.
Control Panel Settings:

- 2X TNR: UP
- EXT. XMTR: UP
- CONT.: UP
- N: Aux.
- L: Aux.
- ERROR STOP: OFF
- ERROR DISPLAY: 0-0
- OPERATION: TRANSLATOR

Code Panel Settings:

- XMTR LENGTH: Inf.
- TWR LENGTH: Inf.
- 56/32 BIT: 56
- XMTR LINES: 000000000000

Message Simulator Program

Figure 1.2.1.1-4
1. Title
LF/DAC Power Supply Functional Test

2. Objectives
To determine that DAC power supplies are producing in tolerance DC output voltage, ripple voltage is within specification, and on-off sequencing is correct.

3. Description
3.1 Connect the equipment per Figure 1.2.4.1-1.
3.2 Apply +28 VDC at input to LF/DAC racks.
3.3 Turn on DAC racks 402 & 401 in sequence.
3.4 Install Drawer ME Connector breakout box on J2 on front of power supply located at 402/A7.
3.5 Measure DC voltages and ripple voltage at each of the following points, verify that correct signals are obtained.

<table>
<thead>
<tr>
<th>Monitor Points</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2-A to J2-B (Gnd)</td>
<td>+27.5 to +30.0 VDC</td>
</tr>
<tr>
<td>J2-C to J2-G (Gnd)</td>
<td>-5.82 to -6.18 VDC</td>
</tr>
<tr>
<td>J2-D to J2-G (Gnd)</td>
<td>-5.82 to -6.18 VDC</td>
</tr>
<tr>
<td>J2-F to J2-G (Gnd)</td>
<td>-17.46 to -18.54 VDC</td>
</tr>
<tr>
<td>J2-E to J2-G (Gnd)</td>
<td>-17.46 to -18.54 VDC</td>
</tr>
<tr>
<td>J2-J to J2-G (Gnd)</td>
<td>-8.5 to -9.5 VDC</td>
</tr>
<tr>
<td>J2-H to J2-G (Gnd)</td>
<td>+5.82 to +6.18 VDC</td>
</tr>
<tr>
<td>J2-K to J2-G (Gnd)</td>
<td>+28 VDC Isolation Converter</td>
</tr>
</tbody>
</table>

Measure voltage, current and ripple at the input of the Rack.
3.6 Turn off power supplies.
3.7 Connect the above test points to the Instrumentation System as shown on Table 1.2.4-1.
3.8 Turn on power supply for 10 seconds and then turn off; use fast recording speed.
3.9 Perform steps 3.4 through 3.8 for power supply located on Rack 401/A7.

4. Equipment in Test
4.1 Data Analysis Central - AN/GYK-2
4.2 S&M Signal Simulator 25-25085-1

5. Test Equipment Required
5.1 Oscilloscope - Tektronix 545
5.2 Voltmeter - Fluke 801
5.3 NRA Instrumentation System

6. Data Requirements
6.1 All measurements are to be recorded in Test Log for NRA-I functional test. Record tapes at 60 ips and play back at 7.5 ips onto the oscilloscope.
<table>
<thead>
<tr>
<th>Tape Channel No.</th>
<th>Gain</th>
<th>DC/AC</th>
<th>Signal Monitor Point</th>
<th>Signal Characteristics</th>
<th>Osc. Scale V/In.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>DC</td>
<td>Power Supply J2-G</td>
<td>Output Common (0 V)</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>DC</td>
<td>J2-C</td>
<td>-6 V #1</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>DC</td>
<td>J2-D</td>
<td>-6 V #2</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>0.167</td>
<td>DC</td>
<td>J2-E</td>
<td>-18 V #1</td>
<td>10.0</td>
</tr>
<tr>
<td>5</td>
<td>0.167</td>
<td>DC</td>
<td>J2-F</td>
<td>-18 V #2</td>
<td>10.0</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>DC</td>
<td>J2-B</td>
<td>+28 V Return (0 V)</td>
<td>2.2</td>
</tr>
<tr>
<td>7</td>
<td>0.25</td>
<td>DC</td>
<td>J2-H</td>
<td>+6 V</td>
<td>5.0</td>
</tr>
<tr>
<td>8</td>
<td>0.25</td>
<td>DC</td>
<td>J2-J</td>
<td>-9 V</td>
<td>5.0</td>
</tr>
<tr>
<td>9</td>
<td>0.167</td>
<td>DC</td>
<td>J2-M</td>
<td>+28 V (4 amp)</td>
<td>10.0</td>
</tr>
<tr>
<td>10</td>
<td>0.167</td>
<td>DC</td>
<td>J2-N</td>
<td>+28 V (2 amp)</td>
<td>10.0</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.0</td>
<td>AC</td>
<td>Audio Osc.</td>
<td>1000 ops 2 V p-p reference</td>
<td>2.0</td>
</tr>
<tr>
<td>13</td>
<td>1.0</td>
<td>AC</td>
<td>Time Code 100 pps</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>14</td>
<td>1.0</td>
<td>AC</td>
<td>Voice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All points referenced to instrumentation ground.
TEST 1.2.4.2

1. Title
Functional Test of LF/DDG Command Receive Channels

2. Objectives
To adjust gain of amplifiers.
To verify the proper bandwidth and frequency response.

3. Description
3.1 Connect the equipment per Figures 1.2.4.2-1 and 1.3.1.1-2.
3.2 Install cable breakout boxes on J10 and J4 on top of LF/DDG; do not reconnect removed cables.
3.3 Connect a 600 Ω 30 ohm output impedance audio oscillator to J10 cable breakout points as listed in Table 1.2.4.2-1; also connect VTVM and one channel of an oscilloscope across resistor.
3.4 Connect a 600 Ω 30 ohm resistor across the J4 cable points as listed in Table 1.2.4.2-1; connect remaining channel of oscilloscope and VTVM across the resistor.
3.5 Assure that repeat coil is adjusted for 470/600 Ω 19 AWG impedance ratio (Strap B on TB1 through TB6).
3.6 Assure equalizer resistance is 21 ohms (Straps A, B, D, F and H on TB9 through TB14); this adjustment is for 22-24 miles of Ω 19 AWG cable.
3.7 Adjust gain to obtain the values shown on Table 1.2.4.2-1 for 1000 cps. Perform the remaining indicated steps on Table 1.2.4.2-1 and make the noted observations.
4. Equipment in Test
 4.1 LF Data Analysis Central AN/GYK-2

5. Test Equipment Required
 5.1 Audio Oscillator - Hewlett-Packard 200CD
 5.2 VTM - Hewlett-Packard
 5.3 True RMS Voltmeter - Ballantine 320A
 5.4 Electronic Counter - Berkeley 554B
 5.5 Oscilloscope - Tektronix 555

6. Data Requirements
 Record all data in Test Log.

7. Reference
 D2-12004 Model Specification, Data Analysis Central AN/GYK-2
Test Conditions

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Line</th>
<th>Input Point</th>
<th>Input Frequency</th>
<th>Input Voltage (volts rms)</th>
<th>Output Point</th>
<th>Output dbm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>J10-2, -3</td>
<td>1000</td>
<td>.010</td>
<td>J4-2, -3</td>
<td>3 ± 1 dbm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>.011 to .019</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>.010 to .018</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>.009 to .017</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700</td>
<td>.008 to .015</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1400</td>
<td>.006 to .011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2100</td>
<td>.005 to .010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>J10-2, -3</td>
<td>3100</td>
<td>.005 to .009</td>
<td>J4-2, -3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>J10-4, -5</td>
<td>2</td>
<td>3</td>
<td>J4-4, -5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>J10-6, -7</td>
<td>2</td>
<td>3</td>
<td>J4-6, -7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>J10-8, -9</td>
<td>2</td>
<td>3</td>
<td>J4-8, -9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>J10-10, -11</td>
<td>2</td>
<td>3</td>
<td>J4-10, -11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>J10-12, -13</td>
<td>2</td>
<td>3</td>
<td>J4-12, -13</td>
<td>3 ± 1 dbm</td>
</tr>
</tbody>
</table>

1. Adjust gain at 1000 cps.
2. Input frequencies are the same as Test 1.
3. Input voltages are the same as Test 1.

Table 1.2.4.2-1
Configuration for Test of Command Receive Channels

Figure 1.2.4.2-1
TEST 1.2.4.3

1. Title
Functional Test of LF/DDG, Command and Status Transmit Channels

2. Objectives
To verify that transformer attenuation is not excessive.
To verify that frequency response is in tolerance.

3. Description
3.1 Connect the equipment per Figure 1.2.4.3-1 and 1.3.1.1.2.
3.2 Install a Cable Breakout Box on J3 and J5 of LF/DDG rack.
 Do not connect removed cables.
3.3 Connect a 470 ohm resistor to the output connections located
 on J3 Cable Breakout as listed in Table 1.2.4.3-1. Also, connect
 voltmeter and frequency counter to resistor.
3.4 Connect a 600 ohm output impedance audio oscillator to J5
 Cable Breakout points as listed in Table 1.2.4.3-1.
3.5 Assure that transformers in Receiver-Transmitter drawer are adjusted
 for 470 ohm output impedance (lead attached to transformer terminal 6,
 #17 AWG).
3.6 Perform the operations noted on Table 1.2.4.3-1 and observe the
 indications.

4. Equipment in Test
4.1 LF/Data Analysis AN/GYK-2
5. Test Equipment Required

5.1 Audio Oscillator - Hewlett-Packard 200CD

5.2 VTMF - Hewlett-Packard

5.3 Frequency Counter - Berkeley 554B

6. Data Requirements

Record all data in Test Log.
<table>
<thead>
<tr>
<th>Test Number</th>
<th>Line</th>
<th>Input Point</th>
<th>Input Freq.</th>
<th>Input Voltage</th>
<th>Output Point</th>
<th>Output Voltage (across 470Ω)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>J5-2, -3</td>
<td>1000</td>
<td>4 dbm</td>
<td>J3-2, -3</td>
<td>4 ± 1 dbm</td>
<td>Add 1.06 dbm to output reading when measuring across 470 ohm load.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>J5-2, -3</td>
<td>2100</td>
<td>4 dbm</td>
<td>J3-2, -3</td>
<td>4 ± 1 dbm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>J5-4, -5</td>
<td>Repeat</td>
<td>Repeat</td>
<td>J3-4, -5</td>
<td>Repeat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above</td>
<td>above</td>
<td>above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above</td>
<td>above</td>
<td>above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above</td>
<td>above</td>
<td>above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above</td>
<td>above</td>
<td>above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above</td>
<td>above</td>
<td>above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above</td>
<td>above</td>
<td>above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>J5-6, -7</td>
<td>Repeat</td>
<td>Repeat</td>
<td>J3-6, -7</td>
<td>Repeat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above</td>
<td>above</td>
<td>above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>J5-8, -9</td>
<td>Repeat</td>
<td>Repeat</td>
<td>J3-8, -9</td>
<td>Repeat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above</td>
<td>above</td>
<td>above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above</td>
<td>above</td>
<td>above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>J5-10, -11</td>
<td>Repeat</td>
<td>Repeat</td>
<td>J3-10, -11</td>
<td>Repeat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above</td>
<td>above</td>
<td>above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>J5-12, -13</td>
<td>Repeat</td>
<td>Repeat</td>
<td>J3-12, -13</td>
<td>Repeat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above</td>
<td>above</td>
<td>above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Status</td>
<td>J2-49, -51</td>
<td>Repeat</td>
<td>Repeat</td>
<td>J2-8, -21</td>
<td>Repeat</td>
<td>J2 of Receiver-Transmitter Digital Data Drawer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above</td>
<td>above</td>
<td>above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.2.4.3-1
1. **Title**

LF/DAC Valid Message Retransmission

2. **Objectives**

To verify that no invalid messages will be transmitted.

3. **Description**

3.1 Connect the equipment per Figures 1.3.1.1-1 and 1.2.4.4-1.

3.2 Program the Message Simulator per Figure 1.2.4.4-2. The Simulator will generate command messages on LF Receive Line No. 1 and all-mark messages on Receive lines 2 through 6.

3.3 Monitor the LF Command Transmit output at Patch panel Jack P2X1. Verify that retransmission occurs for valid messages.

3.4 Insert the Ripple Error tape into the Message Simulator. Start the tape and monitor the oscilloscope to verify that no retransmission occurs for the duration of the program. The tape will stop at the end of the program.

3.5 The valid message level may be monitored at 403J1-06. The signal will be 0 volts for a valid message.

3.6 The above test should be repeated for each LCF address by changing the Message Simulator program per Figure 1.3.1.1-3.

3.7 Repeat the test for an Inhibit Message with bits 8 through 56 inverted by inverting one bit at a time.
4. **Equipment in Test**

4.1 LF Data Analysis Central AN/GYK-2

4.2 Patch Panel and Cable Simulators 25-29327

4.3 Message Simulator, Digital Data 25-29584-1

4.4 S&M Signal Simulator 25-25085-1

5. **Test Equipment Required**

5.1 Oscilloscope, Tektronix 545A or 555 with Type CA Preamps

5.2 Ripple Error Tape for Message Simulator

6. **Data Requirements**

Record all data and observations in the Test Log.
TEST 1.2.4.15

1. Title
 LV/DIC Functional Test of Loss of Transmit Tone and Critical Error
 Circuitry.

2. Objectives
 2.1 To verify Loss of Transmit Tone is detected.
 2.2 To verify that a Critical Error will be detected and Inhibit Fire
 Code read out.

3. Description
 3.1 Connect the equipment per Figure 1.3.1.1-2.
 3.2 Connect the Message Simulator patchboard outputs MX₁ through MX₆
 to inputs of a 23 mile Cable Simulator.
 3.3 Connect output of Cable Simulator to patchboard inputs L₁₁ through
 L₁₆.
 3.4 Program the Message Simulator to transmit "1's" on all lines.
 3.5 Provide a True Strategic Alert condition.
 3.6 Provide the test conditions as shown in Table 1.2.4.15-1 and
 observe the noted indications.
 3.7 Perform steps in Table 1.2.4.15-2.

 [CAUTION: Do not short incorrect pins to common; or damage may occur.

 3.8 Place a -6 volts on J1-P of the Launch Enable drawer from 401A732-C.
 3.9 (Test Point) Connect an oscilloscope to 401A6J1-3 and monitor
 for Fire Code output.
3.10 (Visual Indication) Verify that the Strategic Alert Status bit is a zero and the Fault bit is a mark at P2ST.

3.11 Send an LCF #1 Launch message.

3.12 The Launch Commanded, and Launch in Process status bits shall be marks at P2ST.

3.13 Send an LCF #2 Launch message.

3.15 Remove signal at A5J1-2.

3.16 Reset the LF/DAC.

3.17 Repeat steps 3.11, 3.13 and verify Fire Code readout at A6J1-5.

4. Equipment in Test

4.1 LF and Data Analysis Center AN/GYK-2

4.2 SAM Simulator 25-25085-1

4.3 Message Simulator 25-29584-1

5. Test Equipment Required

Oscilloscope - Tektronix 545

6. Data Requirements

Record all data in the Test Log.

7. References

RCA Logic Dwg. #8323671 Rev. J (5/10/62)
<table>
<thead>
<tr>
<th>Test Condition</th>
<th>Visual Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Point</td>
<td>Status Status</td>
</tr>
<tr>
<td>Number Grounded</td>
<td>Indication</td>
</tr>
</tbody>
</table>

1. J1-s Alarm 4, 9 Converter
2. J1-t Alarm 4, 9 Waveform
3. J1-u Alarm 4, 9
4. J1-v Alarm 4, 9
5. J1-w Alarm 4, 9
6. J1-x Alarm 4, 9
7. None 9

- Test point is located on J1 connector of 402/A4 Converter Waveform drawer CV-1254.

- P.S. on patchboard can be monitored with an oscilloscope; trigger can be obtained from J1-M on 401/A6 (Inject pulse).
<table>
<thead>
<tr>
<th>Step</th>
<th>Function</th>
<th>Connect A7J1-G to</th>
<th>Then A7J1-G to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>One Net Launch A - One Launch A</td>
<td>A5J1-V</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>One Net Launch B - One Launch A</td>
<td>A5J1-E</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>End of Launch Plan - One Launch Vote</td>
<td>A5J1-W</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>End of Timer - One Launch Vote</td>
<td>A5J1-S</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Two Votes - One Launch A</td>
<td>A5J1-EE</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Shift Fire Code - One Launch A</td>
<td>A5J1-FF</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MD Reset - One Launch A</td>
<td>A5J1-U</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>One Net Launch B</td>
<td>A5J1-B</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>One AEnable Ctr. - TwoNOT</td>
<td>A5J1-C</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>MD Reset</td>
<td>A5J1-T</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>One Launch Vote</td>
<td>A5J1-n</td>
<td>A5J1-n</td>
</tr>
<tr>
<td>12</td>
<td>Two Simultaneous Launch Votes</td>
<td>A5J1-n</td>
<td>A5J1-n</td>
</tr>
</tbody>
</table>

NOTES:

1. For each step A5J1-A changes to -6 volts.
2. Reset between each step and verify that A5J1-A changes to 0 volts.

Table 1.2.4.15-2
Title
LF/DAC MD Reset Pulse Generation

Objectives
To determine if MD Reset pulses are generated consistently when the second Launch Command is received at the LF.

Description
3.1 Connect the equipment per Figure 1.3.2.1-1.
3.2 Connect the Message Simulator MX output to the input of a 20 mile

#19 AWG Cable Simulator.
3.3 Connect the output of the Cable Simulator to the F2F1 patch panel
input.
3.4 Program the Message Simulator to generate a Launch LCP #1 (Mode B)
and Launch LCP #2 (Mode A) message in sequence. Vary the time be-
tween messages.
3.5 Connect one channel of a Dual channel oscilloscope to 401A5J1-U on
the Launch Enable Unit.
3.6 Connect one channel of a dual channel oscilloscope to 401A5J1-G on
the Launch Enable Unit.
3.7 Connect the oscilloscope common to 401A7J2-G.
3.8 Trigger both sweeps from A5J1-C.
3.9 (Visual Indication)
A 100 ms, -6 volt pulse should appear at A5J1-G when the second Launch
is registered.
3.10 Reset the SCM equipment after each launch sequence and repeat the launch sequence to determine if a correct MD reset pulse is generated whether J1-U is 0 or -6 volts when the MD Reset pulse starts.

4. Equipment in Test
 4.1 LF/Data Analysis Central -- AN/GYK-2
 4.2 Message Simulator 25-29584-1
 4.3 Cable Simulator and Patch Panel 25-29327-1

5. Test Equipment Required
 5.1 Dual Channel Oscilloscope -- Tektronix 555
 5.2 Oscilloscope Camera

6. Data Required
 6.1 Record all data in the Test Log.
 6.2 Photograph observed waveforms.
1. **Title**
 SCM Equipment Integration with the LF/SCN Interface Simulator, ACO-101.

2. **Objectives**
 To verify functional compatibility of the SCN equipment and ACO 101.

3. **Description**
 3.1 Connect the equipment per Figure 1.2.5.2-1.
 3.2 Place the ACO 101 Master Control switch to LCF CONTROL and turn on power.
 3.3 Turn on power to the SCN Equipment and LCC.
 3.4 Place the ACO 101 Master Control switch to MANUAL.
 3.5 Initiate a Calibrate Command from the LCC and verify that the Calibrate Command Delivered lamp illuminates at the ACO 101.
 3.6 Initiate a Test Command from the LCC and verify that the Test Command Received lamp illuminates at the ACO 101.
 3.7 Initiate a SCNT-S&M from the LCC and verify that the SCNT-S&M lamp illuminates at the ACO 101.
 3.8 Activate the Decoder Enabled switch to the ON position at the ACO 101.
 3.9 Initiate a launch vote from the LCC and the Message Generator and verify that the Launch Command Received lamp illuminates at the ACO 101.
 3.10 Initiate the following status conditions at the ACO 101 and verify that the correct status lamp illuminates at the LCC.

 Strategic Alert
 Test in Process
Calibrate in Process
No-Go
Alarm
Warhead Alarm
Launch in Process
Inner Security Violated
Outer Security Violated

3.11 Simulate SCN Faults per Table 1.2.5.2-1 and verify that the proper Fault indicator illuminates at the ACO 101 and the LCC. Reset the SCN after Fault removal and verify that the Fault lamps are out.

3.12 Test Complete

4. Equipment in Test

4.1 ACO 101

4.2 SCN Equipment

4.3 LCC

4.4 Message Generator

4.5 ACO 107

5. Test Equipment Required

None

6. Data Requirements

6.1 Record all data in the Test Log.
<table>
<thead>
<tr>
<th>Fault</th>
<th>Method of Obtaining Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSU Fault</td>
<td>Connect 401A3J1-S to ground at 401A7J2-G.</td>
</tr>
<tr>
<td>NRU Fault</td>
<td>Connect 402A4J1-2 to ground at CV1254.</td>
</tr>
<tr>
<td>LSU Fault</td>
<td>Connect 402A3J1-T to ground at CT22.</td>
</tr>
<tr>
<td>Line Monitor Fault</td>
<td>Remove tone at P2R1 from Receive Line No. 1.</td>
</tr>
<tr>
<td>Net Traffic Fault</td>
<td>Send an invalid message to the LF (reference Figure 1.3.1.1-3).</td>
</tr>
<tr>
<td>MDU Fault</td>
<td>Remove the decoder drawer.</td>
</tr>
</tbody>
</table>
TEST 1.2.6.1

1. **Title**
 Verification of Line Equalizer Adjustments for Simulated Malmstrom EWO Circuits.

2. **Objectives**
 2.1 To verify that the equalizer settings given for the non-loaded EWO lines at Malmstrom will give an essentially flat frequency response.

3. **Test Description**
 3.1 Connect the equipment as shown in Figure 1.2.6.1-1. Use channels one and two of drawer D in the loaded cable simulator.
 3.2 Apply a 1000 cps +3 dbm signal to the input of 37 miles of #19 AWG NL cable.
 3.3 Adjust gain of A12 to give -10 dbm at the output of channel 1.
 3.4 Connect the output of channel 1 to the input of channel 2.
 3.5 Connect shunts across equalizer #2 to remove it from line.
 3.6 Adjust gain of A10 to give +3 dbm at the output of channel #2.
 3.7 Vary frequency of input signal from 200 to 3000 cps, keeping a constant input level of +3 dbm.
 3.8 Observe and record frequency response at the output of channel #2.
 3.9 Re-patch cable simulator to include 7 miles of crosstalk simulation at the near end of the 37 miles of #19 AWG NL cable.
 3.10 Apply a recorded voice message to the simulator line. Use an average level of approximately +3 dbm.
3.11 Apply a 3000 cps square wave at +15 dbm to an adjacent channel in the crosstalk simulator.

3.12 Using a set of headphones at the output of channel #2, verify that the voice message is intelligible.

3.13 Apply white noise to the line at the far end. Use a signal level of approximately +3 dbm.

3.14 Using the headphones, again verify that the voice message is intelligible.

3.15 Restrap repeat coils T10 and T5 for #16 AWG NL cable. Strap 35 - 36 and 1 - 2 on TB18 and TB21.

3.16 Repeat steps 2 through 14 for 40 and 47 miles of #16 AWG NL. For #16 AWG cable one stage of amplification will be used. Adjust gain at A12 for +3 dbm out of channel #1 (CH10T).

4. Equipment in Test

4.1 SAC/CTE Repeater Telephone Drawer TA-493/GTC P/N 8324411-501
 S/N 08-1

4.2 Non-loaded Equalizer

5. Test Equipment Required

5.1 Oscillator - HP 207A

5.2 Square wave generator - Precision Instruments

5.3 Noise generator - General Radio 1390B

5.4 VTVM (2) - HP 400H

5.5 Decade resistance boxes (2)
<table>
<thead>
<tr>
<th>Cable size & length</th>
<th>R_1</th>
<th>R_2</th>
<th>C</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>37 mi. #19</td>
<td>1.5 ohm</td>
<td>Inf.</td>
<td>0.268 mfd</td>
<td>6 mH</td>
</tr>
<tr>
<td>40 mi. #16</td>
<td>4.0 ohm</td>
<td>1000 ohm</td>
<td>0.268 mfd</td>
<td>6 mH</td>
</tr>
<tr>
<td>47 mi. #16</td>
<td>0.5 ohm</td>
<td>1950 ohm</td>
<td>0.268 mfd</td>
<td>6 mH</td>
</tr>
</tbody>
</table>

Table 1.2.6.1-1
1. **Title**
 PAS Monitor Panel Assembly Load Requirements Test.

2. **Objectives**
 2.1 To determine the load requirements of the PAS Monitor Panel Assembly, ITT Kellogg P/N 820200 G-1 as modified for STP III WJ15.2 tests.
 2.2 To determine the signal output of the PAS Monitor Panel.

3. **Test Description**
 3.1 Disconnect leads from the LI terminal 1, 2, 7, 8, 16 and 17 in the simulated top hat.
 3.2 Supply +24 VDC ± 0.5 VDC power to L1-2 (+24) and L1-1 (return) from a separate power supply.
 3.3 Connect a 0 - 50 VDC Voltmeter in parallel with the power supply across L1-1 and L1-2.
 3.4 Connect a 0 - 300 ma DC ammeter in series with the power supply and PAS (in lead L1-2).
 3.5 Apply the noise signal from the PAS tape recording used in WJ15.2 directly to L1, 7 and 8, at a level of -20 + 2 dbm.
 3.6 Turn ON the power supply.
 3.7 Vary the volume control on the KAFH speaker of the PAS Panel from the minimum to a nominal setting and to the maximum volume setting. Monitor the input voltage and current drain.
 3.8 Measure the output sound level for each volume setting at the LCC operation position and at a distance of 15 ± 1 feet from the Panel.
 3.9 Verify that the signal is intelligible at both positions.
4. **Equipment in Test**

 PAS Monitor Panel Assembly, ITT Kellogg P/N 820200 0-1 as modified by
 STB III W15.2 tests.

5. **Test Equipment Required**

 5.1 0 - 50 VDC Voltmeter

 5.2 0 - 300 mA DC Ammeter

 5.3 General Radio Sound Level Meter Type 1551-B.
TEST 1.3.1.1

1. Title
 LCC, LCF, LF, Message Simulator and S&M Simulator Single Thread

2. Objective
 2.1 To verify the functional compatibility of the LCC, LF, LCF, Message
 Simulator and S&M Simulator.

3. Description
 3.1 Connect equipment per Figures 1.3.1.1-1 and 1.3.1.1-2.
 3.2 Connect Message Simulator outputs to LF Receive Lines P2R2 through
 P2R6.
 3.3 Connect:
 (a) LCF Transmit C2X1 to LF Receive P2R1.
 (b) LCF Receive C2R1 to LF Transmit P2X1.
 (c) LCF Status Receive C2S1 to LF Status P2ST.
 3.4 Program Message Simulator to generate bursts of 20 Test Launch
 Messages alternating with marks for 20 message lengths. Use Test
 Launch Message formats of LCF #2, #3, #4 or #5 on Figure 1.3.1.1-3.
 3.5 Perform steps 1 through 16 of Table 1.3.1.1-1 and make note of the
 observations.

4. Equipment in Test
 4.1 Message Simulator 25-29534
 4.2 Launch Control Console 25-24172-11
4.3 SAM Simulator 25-25083
4.4 Patch Panel and Cable Simulator 25-29327
4.5 LF Data Analysis Central AN/GYK-2
4.6 LCF Data Analysis Central AN/GYK-1

5. Test Equipment Required

None

6. Data Requirement

Record observations of the steps in Table 1.3.1.1-1 on M&IR Log.
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Response Delay</th>
<th>Strategic</th>
<th>Alert</th>
<th>Fault</th>
<th>Standby</th>
<th>Armed</th>
<th>Launch Commanded</th>
<th>Launch Process</th>
<th>Missile Away</th>
<th>Other Security Violated</th>
<th>Hold Security</th>
<th>Illegal Hold</th>
<th>Alarms 1</th>
<th>Alarms 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reset LF, LCF and SAM Simulator</td>
<td>* x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Send Launch from DD/MS</td>
<td>* x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Send Launch from LGG</td>
<td>3 sec.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Reset LF/DAC & SUM Simulator, Security Reset, Missile Away and Audible Alarms</td>
<td>* x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Send Launch from DD/MS</td>
<td>* x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Reset Alarms 1</td>
<td>* x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Send Inhibit from LGG</td>
<td>* x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Send Launch from DD/MS</td>
<td>* x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Inhibit from LGG</td>
<td>* x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Reset Audible Alarms</td>
<td>* x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Launch from LGG 60 secs. after Inhibit</td>
<td>* x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Reset Audible Alarms, SAM Simulator, and LF/DAC</td>
<td>* x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Send Test from LGG</td>
<td>* x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.3.1-1 (Continued next page)
<table>
<thead>
<tr>
<th>Step</th>
<th>Send Calibrate from LCC</th>
<th>Send SCNT from LCC</th>
<th>Send SCNT from DD/MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>* X 60 sec. X</td>
<td>* X 10 sec. X</td>
<td>* X 10 sec. X</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.3.1.1-1
Figure 1.3.1.1-2

Connection required only for volatile decoder test.
TEST 1.3.1.9

1. **Title**
 Equalizer Test, Simulated Short Lines

2. **Objectives**
 To determine the effects of transmission across short copper paths.
 To determine the effects of the 12 db pad used in the lines at YAFB.

3. **Description**
 3.1 Connect the equipment per Figure 1.3.1.9-1.
 3.2 Program the Message Simulator to generate all marks.
 3.3 Set \(R_1 \) to 127 ohms and record waveforms at \(A' \), \(A'' \) and \(A''' \).
 3.4 Repeat 3.3 with \(R_1 \) disconnected.
 3.5 Repeat 3.4 using an LCF #1 LAUNCH A Test Code. (See Fig. 1.3.1.1-3).
 3.6 Reconnect \(R_1 \) and repeat step 3.5.
 3.7 Insert the 12 db pad between \(MX_1 \) and the cable simulator and repeat above steps, recording waveforms at \(A' \), \(A'' \), \(A''' \) and \(A'''' \).

4. **Equipment in Test**
 4.1 Attenuator - Balanced, Assy of 29-26032-1
 4.2 Message Simulator, Digital Data 25-29584-1
 4.3 Patch Panel and Cable Simulator 25-29327-1
 4.4 Repeat Coil Assy EED&I 71-1/SK 51
 4.5 Equalizer Simulator Assy EED&I 71-1/SK 52
 4.6 One Mile Simulator EED&I 71-1/SK 50

5. **Test Equipment Required**
 5.1 Oscilloscope, Tektronix 555 or 545A with differential preamp
 5.2 Oscilloscope camera
6. **Data Requirements**

Photograph waveforms for all steps, using calibrated scales. Record peak-to-peak voltages in the Test Log.
TEST 1.3.1.11

1. Title
Verification of Line Equalizer Adjustment.

2. Objectives

2.1 To verify that the SCN equalizer settings proposed in RCA document MTDR-C-019A will equalize lines in accordance with the Model Specification D2-12003.

2.2 To verify that the SCN equalizer settings proposed in MTDR-C-019A are satisfactory for the SIN line.

2.3 To establish new equalizer settings provided the Model Specifications are not met using the RCA settings.

3. Description

A SCN Line Tests

3.1 Connect the equipment as shown in Figure 1.3.1.11-1.

3.2 Monitor diphas signals on pins 3 and 4 of the IMU Receiver Filter No. 1.

3.3 Use drawer extension cables on 401/A2. Remove bottom cover of drawer.

3.4 Turn on LCF and LF.

3.5 Photograph waveform of marks from LCF. Monitor at C2X1. LCF should be transmitting all marks.

3.6 Using 19 AWG cable simulator, determine the values of resistance (Rm) for 20%, 0%, and 40% tilt for each of the cable lengths specified in Table 1.3.1.11-1. Vary the resistance by changing straps on Equalizer No. 1 (See Figure 1.3.1.11-3).
3.7 Shut down LF.
3.8 Change strap on repeat coil strapping board from position "B" to position "A".
3.9 Repeat 3.5 using 16 AWG Cable Simulators.
3.10 Shut down LCF and LF.
3.11 Return equalizer and repeat coil strapping boards to original configuration.

B SIM LINE TESTS
3.1 Connect the equipment as shown in Figure 1.3.1.11-2.
3.2 Monitor SIM line at 401/A3 J1-AA and J1-BB.
3.3 Use drawer extension cable on detector drawer, (401/A3). Remove bottom cover on drawer to gain access to equalizer strapping board.
3.4 Turn on audio oscillator and set output to a value between 6 and 9 V p-p at 1000 cps.
3.5 Using 19 AWG Cable Simulators, determine the values of series resistance for the frequency response conditions given in Table 1.3.1.11-2. Use the response at 1000 cps as reference. Measure also the response at 300 cps for each condition. At 3.1 KC and 0.3 KC, adjust line input voltage to the 1 KC value read for each resistance.
3.6 Repeat 3.5 for 16 AWG Cable Simulators.

4. Equipment in Test
4.1 LF/CTE Digital Data Group P/N 8323616-502 S/N 0000005
4.2 LF/DPE Command Message Processing Group P/N 8323562-501 S/N 0000004
4.3 LCF/CTE (303) Digital Data Group P/N 8323562-501 S/N 0000004
4.4 LCF/DPE (304) Common Message Processing Group P/N 8323614-501
S/N 0000005

4.5 LCF/DPE (305) Status Message Processing Group P/N 8323615-501
S/N 0000004

5. Test Equipment Required
5.1 Oscilloscope - Tektronix Model 545
5.2 Audio Oscillator - Hewlett-Packard 200CD
5.3 VTM - Hewlett-Packard 400D

6. Data Requirements
 Record all data in Test Log.
SCN LINE TESTS

<table>
<thead>
<tr>
<th>Line Size</th>
<th>Line Length</th>
<th>Resistance (for +20% Tilt)</th>
<th>Resistance (for 0% Tilt)</th>
<th>Resistance (for +40% Tilt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#19 AWG</td>
<td>6 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#16 AWG</td>
<td>20 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.3.11-1
SIN LINE TESTS

<table>
<thead>
<tr>
<th>Line Size</th>
<th>Line Length</th>
<th>Flat Response from 1 KC to 3.1 KC</th>
<th>+2 dB Rise from 1 KC to 3 KC</th>
<th>-2 dB Drop from 1 KC to 2 KC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Resistance</td>
<td>Response at 300 cps</td>
<td>Resistance</td>
</tr>
<tr>
<td>#19 AWG</td>
<td>6 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#16 AWG</td>
<td>6 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 mi.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.3.1.11-2
LCF/DAC
C₂X₁

ESD Sim.
20 Ω
20 Ω

Cable
Simulator

ESD Sim.
20 Ω

LF/DAC
FR₁

Wire Wrap FL-1
Pin 4

Oscilloscope

Line Monitor
Unit

Wire Wrap FL-1
Pin 3

Figure 1.3.1.11-1
Figure 1.3.1.11-3
1. Title
 SIN Integration, Ring & Voice

2. Objectives
 To verify functionally the operation of the SIN voice and ringing circuits between the LCC, CCC, and the LF.

3. Description
 3.1 Connect the equipment per Figures 1.3.1.1-4, 1.3.1.1-5, and 1.3.2.1-1.
 3.2 Turn on all equipment.
 3.3 Release all buttons at the Communication Control Console (CCC) and Launch Control Console (LCC) Communication panels. Place the MIKE SWITCH in the TEL position at the LCC and CCC.
 3.4 Depress the upper OPR button at the LCC. Depress LF3 button. The LF3 lamps at both the LCC and CCC shall commence flashing. The buzzer at the LF Wall Phone shall sound.
 3.5 Lift the handset at the wall phone from its cradle and verify that the buzzer stops. The LF3 button lamps at the communication panels shall stop flashing and remain ON.
 3.6 Replace the handle in its cradle and release the buttons at the LCC.
 3.7 Repeat steps 3.4, 3.5, with the Interphone Switch in the IN position.
 3.8 Repeat 3.6.
 3.9 Repeat steps 3.4 and 3.5, but initiate the ringing from the CCC. Turn the VOL control counter clockwise.
3.10 Repeat 3.6.

3.11 Depress the upper OPR button and attempt ringing all other LF lines to verify that these are not detected at the LF.

3.12 Repeat 3.6.

3.13 Lift the handset from its cradle at the LF Wall Phone. The LF5 lamp at the LCC and CCC shall commence flashing and an audible alarm shall sound.

3.14 Depress the LF5 and upper OPR buttons at the LCC. The audible alarm shall cease and the lamp shall light continuously.

3.15 Release the buttons at the LCC.

3.16 Depress the LF5 and upper OPR buttons at the CCC. The audible alarm shall cease and the lamp shall light continuously.

3.17 Verify voice communications between the LF Wall Phone and the LCC handset and the CCC handset with the LF Wall Phone Interphone switch in the OUT position.

3.18 With the LF Wall Phone Interphone Switch in the IN position, verify voice communications between the LCC or CCC and the LF Wall Phone handset, and each interphone jack box.

3.19 Throw the Interphone switch to the OUT position.

3.20 Talk between the two LF Interphone jack boxes.

3.21 Verify that this cannot be heard by the LF Wall phone; nor can the Wall phone to LCC conversation be heard by the interphone.

3.22 Turn the VOL. control clockwise to increase the VOL. Talk between the LF Wall Phone and the LCP. The voice should be clearly audible without encountering feedback.
4. Equipment in Test

4.1 Launch Control Console 25-24172-11
4.2 LDF Data Analysis Central AN/GY-1
4.3 LF Data Analysis Central AN/GY-2
4.4 Telephone Connecting & Switching Set AN/GTC-8
4.5 Repeater, Telephone Set AN/GTC-10
4.6 Jack Box (SIN/LF) J-1308/GTC-8
4.7 LF Wall Phone TA 466/GTC-8
4.8 Interphone Headset Fig. A 4144
4.9 Patch Panel & Cable Simulators 25-29327-1
4.10 LCF Wall Phone TA 462/GTC-8

5. Test Equipment Required

None

6. Data Requirements

Record all observations in the Test Log.

7. References

RCA Dwg. 1272051 LF Wall Phone Schematic
RCA Dwg. 1272052 SCC Phone Schematic
RCA Dwg. 1274072 CCP Schematic
RCA Dwg. 1274154 LF Repeater Telephone Set
RCA Dwg. 1274155 LCF Telephone Connecting and Switching Set
RCA Dwg. 1274184
1. **Title**

 Single Thread Test Procedures - SCN, Network Resolution Area (NRA),

2. **Objectives**

 2.1 The primary objective of this test is to verify that the WGO9 and WGO10 configurations of the Network Resolution Area are acceptable for integration with STP-III Test Program.

 2.2 Acceptance will be verified by satisfactory performance per document D2-14330.

 2.3 In general, the test will verify the acceptance of the following items:

 2.3.1 Cabling System
 2.3.2 Cooling System
 2.3.3 Patching System
 2.3.4 Equipment Power
 2.3.5 Message Simulator
 2.3.6 S&M Signal Simulator
 2.3.7 SCN Equipment
 2.3.8 SIN Equipment
 2.3.9 HVC Equipment

3. **Description**

 The test procedure will be performed in accordance with document D2-14330. The entire test is to be conducted under surveillance by QC (Quality Control) assigned to the Network Resolution Area.
4. **Equipment in Test**

 The equipment in test is as prescribed in D2-14330, paragraph 3.1.

5. **Test Equipment Required**

 5.1 Oscilloscope - Tektronix 545
 5.2 Stopwatches (3)

6. **Data Requirements**

 The subject test will be recorded on M&LR Test Log provided by Planning (Dept. 2-3660).

7. **References**

 See D2-14330, paragraph 2.1.