NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
SIGNIFICANCE OF CERTAIN FISH SOUNDS

by V. R. Protasov and Ye. V. Romannsko

- USSR -

U. S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
JOINT PUBLICATIONS RESEARCH SERVICE
Building T-30
Ohio Dr., and Independence Ave., S.W.
Washington 25, D. C.

Price: $.50
FOREWORD

This publication was prepared under contract for the Joint Publications Research Service as a translation or foreign-language research service to the various federal government departments.

The contents of this material in no way represent the policies, views or attitudes of the U. S. Government or of the parties to any distribution arrangement.

PROCUREMENT OF JPRS REPORTS

All JPRS reports may be ordered from the Office of Technical Services. Reports published prior to 1 February 1963 can be provided, for the most part, only in photcopy (xerox). Those published after 1 February 1963 will be provided in printed form.

Details on special subscription arrangements for JPRS social science reports will be provided upon request.

No cumulative subject index or catalog of all JPRS reports has been compiled.

All JPRS reports are listed in the Monthly Catalog of U. S. Government Publications, available on subscription at $4.50 per year ($8.00 foreign), including an annual index, from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C.

All JPRS scientific and technical reports are cataloged and subject-indexed in Technical Translations, published semimonthly by the Office of Technical Services, and also available on subscription ($12.00 per year domestic, $16.00 foreign) from the Superintendent of Documents. Semiannual indexes to Technical Translations are available at additional cost.
SIGNIFICANCE OF CERTAIN FISH SOUNDS

Following is a translation of an article by V. R. Protasov and Ye. V. Romanenko in the Russian-language journal *Zoologicheskii Zhurnal* (Zoological Journal), Vol XLII, No 10, Moscow, 1962, pp 1516-1528.

Institute of Animal Morphology of the Academy of Sciences USSR (Moscow) and the Acoustics Institute of the Academy of Sciences USSR (Moscow)

Underlying biohydroacoustics, a new biophysical trend, are the study of sounds made by water animals, and the elucidation of their significance as signals. The history of biohydroacoustics has been given by us previously (Malyukina and Protasov, 1960).

The first work on biohydroacoustics was done during the Second World War, when, in connection with the mass use of underwater position-finding equipment, the question arose as to interference from living water organisms. Even at that time a large number of different and intense underwater noises of biophysical origin were found. Sometimes, these sounds absolutely muffled the propeller noise of passing ships, and sometimes acoustic "mines" exploded. In order to eliminate the "biological" sound interference special filters began to be put into the position finding apparatus. In connection with this, records and acoustic analysis were made of the sounds of some animals in the Pacific and Atlantic oceans by Japan and the United States. After the War, many countries took up the study of the interpretation of biological underwater sounds and their zoning in the seas (USSR, United States, Japan, France, Norway, and others). During the same period special studies (Fish, 1954; Shishkova, 1958) were made on the acoustic analysis of sounds emitted by fish in connection with the problems of the fishing industry.

Even in these works it was noted that many fish have their own sets of sounds, by which schools of them can be sought and found. After the work of Fish (M. Fish, 1954), abroad and in the USSR studies began to appear by J. M. Moulton (1956), W. Tavolga (1958), V. R. Protasova and M. P. Aronova (1960) clarifying the meaning of the sounds made by fish and other underwater organisms: biohydroacoustics became a new trend in animal ecology and a division of physiological acoustics.

The main task of biohydroacoustics has become the study of acoustic interrelationships of water organisms. Do these water inhabitants give signals of danger, of finding food, and others, as is done, for example, by birds and many mammals? Which organs give off these
Natural, the only method of answering all these questions is by experimentation. The sounds of water animals usually appear with certain behavior reactions; therefore, for the purpose of interpreting their biological significance it is necessary to create these reactions (feeding, attack, defense) experimentally, with the simultaneous registration of the sounds made. Proof of the signal significance of one sound or another is the possibility of controlling the behavior of the organisms by bringing about the appropriate reaction by sound.

Experiments for learning the significance of sounds made by fish and other water organisms as signals can be performed only with high quality recording and reproduction of the sounds in the water and knowledge of the details of the biological interrelationships of these organisms.

Clarification of the signal significance of sounds made by water organisms and particularly fish can be of great practical importance. Imitation of sounds which are significant as signals can be the basis for working out acoustical attracting and repelling catch methods.

Study of the significance of sounds as signals is associated with the general study of signals made by water organisms. Of particular interest in this connection is the analysis of location types: light, electrical, sonic, infra- and ultrasonic.

The tremendous number of species of underwater fauna living under different conditions have given rise to a great variety in the arrangement and operation of sound-producing and sound-detecting organs among its representatives. Many fish, for example, are capable of orienting themselves to sources of very low sounds with long wavelengths. Their sound detectors (the lateral line and inner ear) make it possible to localize the sources of low- and medium-frequency sounds through a principle different from the used in location technique. No less interesting is the method of production of sounds, distinguished by a high degree of efficiency, by the fish. Biophysical study of living models of perfect sound projectors and receivers may be of interest for hydroacoustical engineering. These, in brief, are the problems confronting biohydroacoustics.

The present report is part of work on biohydroacoustics, done under the direction of Academician N. M. Andreyev and B. P. Pan'kov. In it the sounds made by some fish are described; their signal and biological significance are elucidated, and experiments are described for finding out the capabilities of fish in determining the direction of sources of underwater sounds.

Material and Methods

The experiments and observations were made in 1960-1961 on
marine and fresh water fish in the Black Sea, Rybinsk Reservoir, at the mouth of the Don River, in the water bodies of Moskovskaya Oblast as well as in the aquaria and pools of the Moscow Zoological Park, Moscow University and the Ichthyology Laboratory of the Institute of Animal Morphology of the Academy of Sciences USSR. More than 40 species of marine and fresh water fish were studied. (A complete description of sounds made by fish will be given in the atlas Zvukov Ryby [Atlas of Fish Sounds], being prepared for publication). The volume and nature of the material being analyzed in this article are shown in the Table.

The sounds were recorded within the sound frequency range of 50 to 10,000 cycles a second by means of a specially constructed portable sound recorder, consisting of a hydrophone with a sensitivity of 40 microwatts per bar and a Reporter 2" tape recorder with an improved amplifier.

For the purpose of throwing light on the general nature of the sound signals the latter were photographed with the aid of an MFO-2 loop oscillograph. The photography was conducted during reproduction of the tape recording. The photographs shown below depict the time and amplitude characteristics of the fish sound signals. For the purpose of clarifying the amplitude-frequency characteristic, the tapes were analyzed with a spectral analyzer (of the ASchK-1 type).

For the purpose of interpreting the biological significance of the sounds numerous experimental observations were made of the relationship between certain behavioral reactions and the associated sounds. In some experiments the signal significance of the sounds was made clear. For this purpose, the recorded sounds were reproduced in the water by means of a water-proofed projector.

Often, the fish themselves were used as the sources of the sound. After dividing the sound-producing fish in the aquaria and pools into two parts by an opaque, sound-transmitting cheesecloth and making the fish in one compartment emit sounds (feeding, frightening, and others), we observed the behavior of the fish in the other compartment. The fact that the fish were making sounds was checked with the hydrophone.

For the purpose of finding out about the perceptibility of sounds made by fish the fish were trained with respect to the feeding sounds which they made. Food was used as reinforcement. [In other words, tape-recorded fish sounds were projected at the fish when they were offered food]. A similar method was used for finding out about the capacities of fish for determining the direction of sources of sounds. In this case, with the aim of excluding the possibility of elaboration of a conditioned reflex to place, two identical projectors were used [two identical projectors in different places were used in order to be sure that the conditioned reflex formed was not being formed to the place at which the fish were fed].

The observations of the behavior of the fish during the projection of the sound were made in the sea by means of special underwater equipment and in the aquaria, by means of motion picture photography.
<table>
<thead>
<tr>
<th>№</th>
<th>Были рыб</th>
<th>Характер звуков в наблюдении</th>
<th>Дата наблюдений</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Белуга (Huso huso L.)</td>
<td>A (d, n, o)</td>
<td>1950—1951</td>
</tr>
<tr>
<td>2</td>
<td>Осетр (Acipenser gibelii Fizh.)</td>
<td>A (d, n, o)</td>
<td>V 1951</td>
</tr>
<tr>
<td>3</td>
<td>Севрюга (Acipenser stellatus Pall.)</td>
<td>A (d, n)</td>
<td>V 1951</td>
</tr>
<tr>
<td>4</td>
<td>Тех не (Rutilus rutilus L.)</td>
<td>A (d, n, o)</td>
<td>V 1951</td>
</tr>
<tr>
<td>5</td>
<td>Линь (Abramis brama L.)</td>
<td>A (d, n, o)</td>
<td>V 1951</td>
</tr>
<tr>
<td>6</td>
<td>Сом (Silurus glanis L.)</td>
<td>A (d, n)</td>
<td>1950—1951</td>
</tr>
<tr>
<td>7</td>
<td>Язь (Esoc lucius L.)</td>
<td>A (d, n, o)</td>
<td>V 1951, IV 1951</td>
</tr>
<tr>
<td>8</td>
<td>Речная навага (Leptolebias L.)</td>
<td>A (d, n, o)</td>
<td>I 1951</td>
</tr>
<tr>
<td>9</td>
<td>Войл (Mugil cephalus L.)</td>
<td>A (d, n, o)</td>
<td>1950—1951</td>
</tr>
<tr>
<td>10</td>
<td>Кап (Paralichthys californicus)</td>
<td>A (d, n, o)</td>
<td>1950—1951</td>
</tr>
<tr>
<td>11</td>
<td>Волчок (Leuciscus idus var. orphus L.)</td>
<td>A (d, n, o)</td>
<td>1950—1951</td>
</tr>
<tr>
<td>12</td>
<td>Рыбка (Tinca tinca L.)</td>
<td>A (d, n, o)</td>
<td>1950—1951</td>
</tr>
<tr>
<td>13</td>
<td>Карась (Carassius carassius L.)</td>
<td>A (d, n, o)</td>
<td>1950—1951</td>
</tr>
<tr>
<td>14</td>
<td>Кефаль (Mugil cephalus L.)</td>
<td>A (d, n, o)</td>
<td>1950—1951</td>
</tr>
<tr>
<td>15</td>
<td>Катаки (Lanxan.Marinana)</td>
<td>A (d, n, o)</td>
<td>1950—1951</td>
</tr>
<tr>
<td>16</td>
<td>Телескопик (Hypothalobus molitrix Val.)</td>
<td>A (d, n, o)</td>
<td>1950—1951</td>
</tr>
<tr>
<td>17</td>
<td>Угорь (Anguilla anguilla L.)</td>
<td>A (d, n, o)</td>
<td>1950—1951</td>
</tr>
<tr>
<td>18</td>
<td>Ахир (Chiropterygon dolichus Val.)</td>
<td>A (d, n, o)</td>
<td>IX 1950</td>
</tr>
<tr>
<td>19</td>
<td>Змееотолок (Chelus lucius argus warapachewski Berg.)</td>
<td>A (d, n, o)</td>
<td>IX 1950</td>
</tr>
<tr>
<td>20</td>
<td>Супер (Lucioperca luciperca L.)</td>
<td>A (d, n, o)</td>
<td>II—III 1951</td>
</tr>
<tr>
<td>21</td>
<td>Опун (Perca fluviatilis L.)</td>
<td>A (d, n, o)</td>
<td>I—IV 1951</td>
</tr>
<tr>
<td>22</td>
<td>Темный горбун (Corvina nigra L.)</td>
<td>A (d, n, o)</td>
<td>VII—VIII 1951</td>
</tr>
<tr>
<td>23</td>
<td>Рыбка (Carassius carassius L.)</td>
<td>A (d, n, o)</td>
<td>VII—VIII 1951</td>
</tr>
<tr>
<td>24</td>
<td>Зеленушка-сомлянка (Carassius carassius For.)</td>
<td>A (d, n, o)</td>
<td>VII—VIII 1951</td>
</tr>
<tr>
<td>25</td>
<td>Рыбка (Carassius carassius L.)</td>
<td>A (d, n, o)</td>
<td>VII—VIII 1951</td>
</tr>
<tr>
<td>26</td>
<td>Сом (Silurus glanis L.)</td>
<td>A (d, n, o)</td>
<td>VII—VIII 1951</td>
</tr>
<tr>
<td>27</td>
<td>Кефаль (Mugil cephalus L.)</td>
<td>A (d, n, o)</td>
<td>VII—VIII 1951</td>
</tr>
<tr>
<td>28</td>
<td>Страва (Trachurus trachurus L.)</td>
<td>A (d, n, o)</td>
<td>VII—VIII 1951</td>
</tr>
<tr>
<td>29</td>
<td>Судак (Clupea harengus L.)</td>
<td>A (d, n, o)</td>
<td>VII—VIII 1951</td>
</tr>
<tr>
<td>30</td>
<td>Язь (Leptolebias L.)</td>
<td>A (d, n, o)</td>
<td>VII—VIII 1951</td>
</tr>
<tr>
<td>31</td>
<td>Кефаль (Mugil cephalus L.)</td>
<td>A (d, n, o)</td>
<td>VII—VIII 1951</td>
</tr>
<tr>
<td>32</td>
<td>Кефаль (Mugil cephalus L.)</td>
<td>A (d, n, o)</td>
<td>VII—VIII 1951</td>
</tr>
</tbody>
</table>

Условные обозначения: A — запись и анализ звуков (п — патчек, d — дыхание, o — остреконечные, n — ныряние, r — речка; B — биометрические показатели; o — определение направления источника звуков; B — биометрические показатели; o — определение направления источника звуков.

Ключ: A — запись и анализ звуков (d — патчек, n — дыхание, o — остреконечные, r — речка; B — биометрические показатели; o — определение направления источника звуков; B — биометрические показатели; o — определение направления источника звуков).

Для получения более подробной информации, обратитесь к следующим источнику:

[the key is continued on the next page]
The titles of the four columns are: Ordinal Number; Species of Fish; Nature of Experiments and Observations; Date of Observation. 1. beluga; 2. sturgeon; 3. sevruga; 4. roach; 5. bream; 6. Danube catfish; 7. pike; 8. burbot; 9. loach; 10. carp; 11. ide; 12. tench; 13. crucian carp; 14. "verkhovka"; 15. "banded catfish" (the Russian name for this catfish is *Pseudobagrus validus*; the species name given is that of *Pseudobagrus validus*; all those of the genus *Crenilabrus* are wrasses); 16. silver carp; 17. eel; 18. grass carp; 19. snakehead; 20. pike-perch; 21. perch; 22. omre; 23. sea-parrot; 24. a kind of wrasses; 25. "ryabehik" (another kind of wrasses); 26. a rockling; 27. mullet; 28. saie; 29. "subariki" (a fish with toothed jaws, belonging to the Characinidae); 30. saie; 31. Black Sea surfmullet; 32. Black Sea pipefish; 33. pike-perch; 34. sole; 35. seahorse; 36. atherinids; 37. fighting fish; 38. angelfish; 39. Cichla; 40. paradise fish; 41. gourami; 42. tilapia; 43. danio.

The Experimental Data and A Discussion of Them

Biological Sounds in Water Bodies. For a number of seas it has been determined that the sounds made by water fauna changes in accordance with the season and time of the day (Debrin, 1947). Thereby, the maximum sound production occurs during periods associated with the reproduction of the water animals and with foraging. Our data confirm this conclusion. Black Sea fish (omre and sea-parrot) begin to make sounds during the reproduction period (May-August). These fish produce sounds most actively at twilight and at dawn, when they feed. The periodicity of sound production by water animals is manifested in the most clear-cut manner in fresh water bodies (Lake Senesh in Moskovskaya Oblast, Rybinsk Reservoir). In the winter, the biological sounds were not detected under the ice. The silence stops in April-May, and the feeding sounds of the fish begin to be heard. At the end of May-beginning of June the specific fish sounds associated with spawning appear: the chirps of the roach, characteristic sounds of the bream, tapping of the perch, etc. During this period the sound background in the water body changes considerably during the day. At sunset and during the night the sound background is greatest. Various hydrodynamic noises are heard (the chirps of bunting fish), with sounds of unknown organisms resembling chirping of crickets, croaking of frogs, calls of night divers, and others. In the daytime, 80 percent of the sounds of biological origin disappear. In the autumn, the biological sounds in the water bodies become quiescent.

Observations in nature showing the relationship between mass production of sounds by fish during spawning were confirmed by us experimentally on aquarium fish (fighting fish, *Pterophyllum*, and others). By stimulating or inhibiting spawning and the initiation of...
The prespawning state in these fish, it is possible at will to increase or reduce their sonic activity.

Feeding Sounds of Fish. Note should be made of the sounds which fish make when they capture and chew the food. Feeding sounds are involuntary; they accompany the act of feeding.

In the nature of their feeding fish can be divided into predatory (cannibalic) and "peaceful," feeding on other animals and plants. Differences in the mode of feeding are expressed also in the acoustical characteristics of sounds produced by fish. As a rule, the non-predatory fish are omnivorous.

Predatory fish and some large non-predatory fish, namely, the pike, pike-perch, large perch, snakeheads, Danube catfish, beluga, ocean perch, mates, sharks, large eels, rocklings and others usually swallow their fish whole, without chewing on it. As a rule, the capture is associated with a characteristic clap or impact sound in the snakehead, loach, large perch, rockling, and spiny dogfish; with specific "kick" sounds (Danube catfish) and sometimes with specific shrill sounds (beluga). On Fig. 1, a and b, photographs are shown of the capture sounds made by the pike-perch and snakehead; on Fig. 1, c and d, the spectrum of their frequencies. The capture sounds are different in fish of different species.

Non-predatory and some predatory fish, namely, the carp, ide, tench, crucian carp, "verkhovka," roach, eel, mullet, small scad, and others feed on varied food (plants, relatively sessile bottom organisms and moving plankton). It should be noted that the sounds which they make during feeding depend on the nature of the food. When they feed on relatively immobile organisms (Chironomus, mussels, and others) the capture sounds made by the majority of fish are inaudible. Sometimes, only the hungriest fish capture the food with smacking and sucking noises (roach, bream and others) or with a very much muffled cracking (sea-parrot). When feeding on mobile organisms (Gammarus, insects and others), they usually make sounds during the capture: cracking (sea-parrot, small eels and others), impact sounds (small perch, small pike-perches, angel fish and others), loud champing (crucian carps, carps). It should be noted that many non-predatory fish eat noiselessly.

In contrast to predatory fish, all non-predatory fish usually grind up captured food, thereby making characteristic sounds, which resemble rubbing or grating sounds or the sound of fat being fried ("verkhovka") with various tone shadings in various fish; the amplitude-frequency characteristics of the grinding and food-forcing sounds are similar and represent a continuous spectrum with the irregularity in the frequency range not exceeding 5-6 decibels. On Fig. 2, a and b, photographs are shown of the sounds made by forcing food in by fishes of the perch family (Cichlasoma nigrofasciata) and by grinding with the pharyngeal teeth in members of the carp family; on Fig. 2, c and d, the spectrum of the frequencies of these sounds is shown.

When excited by sensing food, fish make characteristic sounds. Chara puntasso makes a sound resembling the putt-putt of a motorcycle (Fig. 3, a and b); the beluga makes loud rattling.
Among the sounds made by fish when feeding are also the hydrodynamic noises arising from the lungs of the fish for the food. In the present article these sounds are not being analyzed, because their fundamental frequencies are lower than 50 cycles a second.

Perception of Feeding Sounds by Fish. The spectrum of frequencies of the fish feeding sounds extends, as a rule, from 50 to 10,000 cycles a second; the pressure amplitude reaches several bars. The auditory properties of the fish are the following: in the majority of fish the spectrum of sonic frequencies perceived (Malyukina and Protasov, 1960) lies between 25 and 13,139 cycles a second, while the threshold sensitivity amounts to 0.002 bar. Comparison of these data permits drawing the conclusion that the sounds made by fish during feeding can be perceived by other individuals of the same species. With the aim of confirming this conclusion, we performed an experiment on river perch with the elaboration of a conditioned reflex to sounds of capture and grinding of food. The experiment was performed in a pool measuring 2x0.7x0.5 meter with 17 specimens of perch. The feeding sounds were reproduced through an electrodynamic sound projector. Food (chironomid larvae) served as reinforcement. The hungry perch reacted to the first reproduction of the sounds with a unanimous positive reaction: an investigative food-securing reaction appeared in the majority of them; part came up to the source of the sound. The reflex was consolidated after 18 combinations. After this, the reflex to the sounds was manifested even under conditions of considerable sonic interference and not only to the actual feeding sounds but also to rough imitations of them. Therefore, the fact that fish perceive their feeding sounds was shown experimentally.

In parallel with the experiments for the elucidation of the ability of fish to perceive feeding sounds, experiments were performed in aquaria, in pools and in the sea for the purpose of finding out whether fish can determine the direction of the source of underwater sounds. The material of these experiments confirm data in the literature (Malyukina and Protasov, 1960) concerning the capacity of fish for determining the direction of a source of sound. In the pool (19x13x2 meters) the surmullets and scads turned toward the source of sound of a frequency of 500 cycles a second from a distance of 5-6 meters, which exceeded the wavelength of the sound; in the sea the sea-parrot and sole reacted in a clear-cut manner from a distance of four meters.

The Significance of Feeding Sounds as Signals. The answer to the question of the significance of fish feeding sounds as signals was given in a number of experiments and observations.

The experiments on the reactions of river perches and sea-parrots were performed in a pool and in aquaria. Reproduction of the feeding sounds (sounds of capture and grinding of food) made by domesticated hungry river perch in a pool measuring 2x0.7x0.5 meter caused a positive reaction in them: investigative food reactions and a purposeful movement toward the source of the sound. When the feeding-
sounds were repeated many times without food reinforcement the reaction
to these sounds by the perches died out. This speaks for the naturally
elaborated conditioned-reflex character of this reaction.

During feeding, different species of wrasses make loud
sounds: "cracking" and sounds of food grinding. The first observations
(Protsasov and Aronov, 1960) were made on a group of hungry sea-parrots
(Cremilabrus occellatus) and "руен" (Cremilabrus tinaia), separated
from several feeding fish by an opaque, sound-transmitting partition.
The isolated fish became excited when they heard the sounds coming
from the other side of the partition and began to swim about actively
over the whole aquarium. However, there were no purposive reactions
in the direction of the source of the sound. Only in individual cases,
when the experimental fish were at a distance of less than 15 cm from
the partition, was a purposeful movement observed toward the source
of the sound.

Subsequently, an experiment was performed on the reactions of
sea-parrots to reproduction of feeding sounds. The majority of sea-
parrots became excited and swam directly toward the source. This
reaction occurred most vigorously in the aquarium if, at the same time,
one of the sea-parrots near the projector made investigative movements
(visual signal).

The significance of the sounds of feeding as signals is also
confirmed by numerous observations of the behavior of hungry fish
under experimental conditions. The Cichlasoma aquarium fish make
loud noises when grinding food (Fig. 2). Unfed Cichlasoma fish
were separated from feeding specimens by an opaque soundproof sound
transmitting intended partition. When the Cichlasoma behind the
partition heard the feeding sounds, first an orientating and then an
investigative food reaction appeared. The larger individuals at a
distance of less than one meter from the "source" of the sound reacted
with a persistent motor reaction to the source of the sound, trying to
get through the cheesecloth.

In our observations a positive reaction of some specimens
to the feeding sounds of others was noted repeatedly. When in turbid
water, the sea parrots swam up to the other sea parrots, making the
food capture sounds, from a distance of 10-30 centimeters. Very often,
by the feeding sounds the male fighting fish seeks out a hiding female
from a distance of 50-50 cm. The fish feeding sounds are of signal
significance not only for the individuals of the same species; they often
acquire the nature of interspecies signals.

In one of the observations the aquarium with several species
(loach, "banded catfish", river and blue perch, mullets and grass carps)
was incompletely separated into two parts. The fish were able to go
freely from one compartment to the other, although when they were in
different compartments they could not see one another. "When fish of
the same species were in one of the compartments they were given food.
If the feeding fish were loaches or perchs the other fish, which were
at a distance of 50-70 cm from them, were excited and swam to the other compartment as soon as the feeding sounds began. It should be noted that the rate of the reaction of fish to feeding sounds is practically instantaneous, whereas the reaction time (in a control observation) of the same fish to squeezed juice occurs after several minutes and is manifested differently. This excludes the possible idea of chemical attraction of the fish to the feeding place.

Predatory fish react in a particularly clear-cut manner to the feeding sounds of non-predatory and predatory fish. Unfed perch are very excited by reproduction of feeding sounds of perch, "banded catfish" and loaches, and go directly toward the sound projector from distances of 10-60 cm.

Both in the experiments and in the observations a clear-cut purposeful reaction by some fish to the feeding sounds of others occurs at short distances, of the order of a few score centimeters. In the majority of cases the feeding sounds are orientative signals, which are interpreted by the fish as "attention!" The combination of this signal with others, namely, the sight of investigative movement by other fish (visual signal) or juice squeezed out of food (olfactory and gustatory signal) immediately causes a purposeful reaction of going toward the source of the sound. In the literature facts are well known which also speak for the signal significance of sounds of feeding. R. Busnell (1958) and J. Westenberg (1955) describe means of catching some predatory fish of Africa and Indonesia by making the feeding sounds of some non-predatory fish. The watching of the Danube catfish by the "klok" sound (Babaneyev, 1911) has also been known a long time; it apparently imitates the sound made by this fish in catching food.

Sounds occurring during feeding cause more than just a positive reaction; the hydrodynamic sounds created by predatory fish in capturing fish cause a defense reaction in small fish. On hearing the hydrodynamic sounds of the lunging of omores, small atherinids scatter from their schools; fading away on the surface of the water (the experiment was performed with poor illumination).

Aggressive Sounds and Their Biological Significance. Defense and attack are the main elements in the inter- and intraspecies relations of fish. Aggressive behavior of fish is often expressed in: food relations, in defense of territory, in relations between males during the spawning period. Previously, threat signals in the form of a drum beat by Crenilobrus griseus have been described (Protasov and Aronov, 1960). Sound signals of threat during excitement by food are made by unfed river perch (clapping noise), thereby raising the dorsal fin. The strongest fish make the loudest claps. Often, after these claps, the strong perch begin to race after the weak ones which have captured food. A distinct reaction of the perch (swimming away) is seen in response to these sounds when made at short distances, less than 10 cm. Some marine fish, namely, sea parrots, sargoes, and others, makes the same sounds (clapping) during excitement from sensing
food. In aquarium fish—angel fish, Ophiasoma, banded catfish—as well as in marine fish—sea parrots and sardines—the warning sounds often appear in connection with the defense of territory captured in the aquarium. In this connection the behavior of the Ophiasoma is most significant. In the aquarium they usually divide off in pairs (male and female), occupying a certain territory. The "capture" of the territory leads to fights. At a distance of 15-30 cm the males assume threatening poses and make loud claps. The small specimens near the sites of the fights, drop to the bottom, assuming defensive poses. The observations showed that during the fights these sounds do not occur from mechanical impacts of colliding fish but are made as signals of threat.

These clapping threatening signals are made by male Ophiasoma, fighting fish and angel fish during fights for the female as well as when the male chases the female. Experiments with the separation of fish by opaque sound-transmitting partitions showed that the occurrence of these sounds in the aquarium excites the fish.

A clear-cut defense reaction (swimming away, flight) is manifested when the source of sound is at a distance of several centimeters (less than 10). In the majority of fish the defense reaction is expressed in the most clear-cut manner when the sound and "visual" signals act simultaneously.

Threatening signals occur among fish not only in the form of clapping. The banded catfish make threatening signals similar to a shrill squeak. They usually make these sounds when chasing after fleeing fish.

In Fig. 4, a and b, the menacing signals of angel fish and Ophiasoma are shown. On Fig. 4, c and d, the spectrum of the frequencies of these sounds is shown.

Sounds of Fright and Pain in Fish. When frightened some fish also utter sounds. The roach, caught in a casting net during its reproductive period, makes a loud chirping sound. This sound evidently is a signal of defensive significance, apparently causing the nearby roaches to run away.

Characteristic hydrodynamic sounds are made by the following schools of fish when frightened: perch, roaches, young eel, eel, sea perch and others.

The acoustic fright signals of schools of fish are apparently of definite importance as signals, making it possible for individuals in the schools to carry out rapid maneuvers. This is also indicated by some data in the literature (Loulton, 1960). On Fig. 5 the fright sounds of schools of young carp are shown. The spectrum of these sounds is mainly of low frequencies.

In the literature (Ross, 1969) there are statements to the effect that wounded fish must utter cries of pain. With the aim of clarifying this problem experiments were performed with wounded fish. Small specimens of various species (roach, crucian carp, perch, sea parrot, bream, ocean perch, sea and others) fail to make characteristic sounds when wounded. Large fish (sturgeon, roach, roach and bream) frequently make loud sounds when wounded: the roach and bream—loud
Practical Utilization of Fish Sounds. Previously, it has been mentioned (Malyukina and Protasov, 1960; Shishkina, 1958) that sounds made by fish are characteristic of different species and can be used in the practice of exploratory fishing for localization and detection. Specifically, we believe that it is possible, with the aid of sounds made by schools of fish, to observe the migration of commercial schools with the use of a special cybernetic automat. A detailed description of the method will be given in the future.

Another aspect of practical application of fish sounds is the possibility of using them for attracting and repelling fish. Along this line, the problem has not yet been finally solved (no critical experiments have been made in the sea; no study has been made of the ultra- and infrasonic ranges of the majority of the sounds). The data obtained on the sound range make it possible to express certain tentative considerations. From experiments and observations on the significance of feeding and danger signals in various fish it follows that the motor reaction of fish to these sounds is manifested at short distances; in some fish, only with the participation of other signals. This characteristic is apparently related to the dominant role of one analyzer (sense organ in entirety) or another of the fish in the existing ecological relationships. For fish (Danube catfish and some others) in which acoustic signals are basic, the sounds which are of importance as signals can be used for attracting and repelling fish in fishing practice. For the majority of fish, in which, aside from hearing, vision and olfaction are of significance, the food and defense reactions (signal, direction and control) are manifested in response to the action of the total signals (sound, light, chemical agents).

The behavior of these fish can be controlled through the action of a combination of signals, which bring about the expression of investigative or defense reactions.

Conclusions

1. The sounds made by various fish species are characteristic, which can be shown easily by listening and by acoustic analysis. This characteristic feature can be used practically.

2. Fish are capable of perceiving the sounds made and, at short distances (less than one meter), of determining the direction from which they come.

3. Feeding and threatening sounds in some fish are of significance as signals for attracting and repelling other fish, but they exert their effects at short distances. In the majority of fish the food and defense reactions can be controlled only through the comprehensive action of several signals (sound, light and others).
4. Sounds of fright and pain are characteristic of wounded fish and probably are of importance as signals.

5. There is reason to believe that the majority of the sounds studied are part of the acoustic signals covering larger areas of the sound spectrum. Therein lies one of the possible reasons for the low reactivity of the majority of fish to biological signals in the sonic range.

Bibliography

3. Sabaneyev L. M. 1911. Ruby Rossii. (Fish of Russia), Moscow.

Fish M. 1954. The Character and Significance of Sound Production among Fishes of the Western North Atlantic. *Bull.ingham, Oceanogr.* Collection, 14, Art 311-169.

Captions of Photographs

Fig. 1. Sounds Made by the Pike-Perc (a, c) and Snakehead (b, d) in Capturing Fish (Verkhovka). a,b—general nature of the signals; c,d—amplitude-frequency characteristics of sounds (the frequency in kilocycles a second is plotted on the abscissa; on the ordinate, the amplitudes of the spectral components in relative units). (Linear scale). 1. frequency, kilocycles a second.

Fig. 2. Sounds Made by Percidae (Cichlasoma nigrofasciata) when Forcing Food in (a, c) and by Carp when Grinding with the Pharyngeal Teeth (b, d). a,b—general nature of the signals; c,d—amplitude-frequency characteristics of the sounds.

Fig. 3. Sound Made by Black Sea "Zubark" (Chara punctata) during the Period of Food Excitation. a—general nature of signal; b—amplitude-frequency characteristic of sound.

Fig. 4. Menacing Sounds Made by Angelfish (a, c) and Cichlasoma (b, d). a,b—general nature of the signals; c,d—amplitude-frequency characteristics of the sounds.

Fig. 5. Sounds of Fright Made by Schools of Young Carp.

Fig. 6. Sounds Made by the Loach when Wounded. a—general nature of the signal; b—amplitude-frequency characteristics of the sound.
NOTICE TO PURCHASERS OF TRANSLATIONS

The main purpose of the translator of this report was to provide a translated text for use with the original material containing charts, tables, diagrams, drawings, or other supporting data. Because of expense over and beyond the scope of purpose, originating agencies are unable to provide copies of supporting data to OTS.

Upon receipt, OTS announces the availability of these translations, and where apparent indicates the absence of any supporting data. Release of translated text is made on the grounds of its value to those who may make use of it despite the absence of supporting material.

As a rule, the Library of Congress or other libraries throughout the country have copies of the original material from which the translations have been made. A request with complete reference directed to the Library of Congress, Photoduplication Service Section, will determine if material is available and the cost at which it can be obtained. The charts, tables, or diagrams can thus be purchased separate from the text, if desired, and used with the translation obtained through OTS.

This office regrets the awkward arrangement sometimes necessary through which text and supporting material are brought together. However, the over-all value of supplying translations where possible, even when incomplete, is believed sufficient to offset the disadvantage of having much valuable material withheld from public use.