NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
TELEMET COMPANY MODEL 1483-A17

VHF/FM TRANSMITTER

SPECTRUM UTILIZATION CHARACTERISTICS

PREPARED BY:

SYSTEMS ANALYSIS DIVISION
FREQUENCY MANAGEMENT ACTIVITY
U.S. ARMY SIGNAL RADIO PROPAGATION AGENCY
WHITE SANDS MISSILE RANGE
NEW MEXICO

Copy Number 22
In Reply Refer To
Director
ATTN: SIGRP-WS-SA

16 April 1963

SUBJECT: Letter of Transmittal

TO: See Distribution List

1. FMA Report #TM-1-4-63-T, "Telemet Company Model 1483-A17, VHF/FM Transmitter Spectrum Utilization Characteristics," dated 1 Apr 63, on FMA Proj Nr WS-05-5163051 is inclosed for your information and retention.

2. The views as contained therein have not been approved by the Department of the Army and represent only those of the issuing Agency.

3. Suggestions or criticism relative to the form, contents, purposes, or use of this publication should be referred to the Frequency Management Activity, U. S. Army Signal Radio Propagation Agency, ATTN: SIGRP-WS-SA, White Sands Missile Range, New Mexico.

Incl

JOHN C. COMPTON
Acting Director
Frequency Management Activity
TELEMET COMPANY MODEL 1483-A17
VHF/FM TRANSMITTER
SPECTRUM UTILIZATION CHARACTERISTICS
By
Virgilio Cisneros

APPROVED:
WILLIAM H. FICKES
Chief
Systems Analysis Division

1 Apr 63
FMA Report #TM-1-4-63-T
FREQUENCY MANAGEMENT ACTIVITY
U. S. ARMY SIGNAL RADIO PROPAGATION AGENCY
White Sands Missile Range
New Mexico
The spectrum utilization characteristics of VHF/FM Transmitter, Telemet Model 1483-A17, were determined to facilitate the assignment of frequencies on an interference free basis. Operational characteristics were examined empirically against the parameters of operating time, supply voltage variations, and temperature. Interference characteristics (spurious emanations) were also examined.

The frequency stability met the requirements of $\pm 0.01\%$ (as required by WSMR Circular Nr 105-5) for all tests, except for the first two (2) minutes of the operating time test.

All antenna conducted spurious emanations met the requirements of 59 db down from f_0 (252.4 MCS), as specified in WSMR Circular Nr 105-5. (Required db down from $f_0 = 55 + 10 \log P_t$, where P_t is transmitted power in watts.)

There were five (5) spurious emanations, radiated, that exceeded the limits specified in MIL-I-26600, para 4.3.2.

It is recommended that the VHF/FM Transmitter, Telemet Model 1483-A17 be authorized for operational use at White Sands Missile Range provided that:

1. Careful testing of production models be incorporated to insure that units are tuned to the assigned frequency.

2. Primary voltages supplied to the unit do not exceed the limits to which the unit was subjected during the test.

A 508 KCS (± 254 KCS) channel bandwidth is recommended for interference free operation.
PREFACE

All information as contained herein is furnished only with the understanding that it will not be used for other than military purposes; it is further understood that the furnishing of this information to the recipient or recipients does not in any way constitute a basis to make, use, sell, or advertise the subject matter. No information as contained herein and no action taken pursuant thereto shall in any manner bind or obligate the United States Government financially or otherwise.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LETTER (TRANSMITIAL)</td>
<td>1</td>
</tr>
<tr>
<td>TITLE PAGE</td>
<td>11</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>PREFACE</td>
<td>iv</td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>II CONCLUSIONS AND RECOMMENDATIONS</td>
<td>3</td>
</tr>
<tr>
<td>III SUMMARY</td>
<td>4</td>
</tr>
<tr>
<td>IV SUMMARY OF RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>V EXPERIMENTAL DATA</td>
<td>8</td>
</tr>
<tr>
<td>VI APPENDICES</td>
<td></td>
</tr>
<tr>
<td>A. Definitions and Measurement Techniques</td>
<td>16</td>
</tr>
<tr>
<td>B. Connection Diagrams</td>
<td>18</td>
</tr>
<tr>
<td>C. Equipment Tested and Test Apparatus</td>
<td>27</td>
</tr>
<tr>
<td>VII SIGNATURE PAGE</td>
<td>29</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The electromagnetic spectrum is a limited resource and the demand for its use in the White Sands Missile Range and Fort Bliss Area has become excessive. As the required number of transmitters and receivers (both legitimate and inadvertent) increases, a detailed knowledge of their spectrum utilization and/or interference characteristics becomes mandatory. This information is necessary to the Area Frequency Coordinator so that he can intelligently assign frequencies to Range users and achieve efficient utilization of the electromagnetic spectrum with a minimum potential of mutual interference. This report concerns an empirical determination of these characteristics of the Telemet Company, Model 1483-A17, VHF/FM Transmitter.

The Telemet Model 1483-A17 Transmitter, primarily, is intended for telemetry applications. The transmitter is a crystal controlled-frequency modulated unit, which produces approximately 2.5 watts of power in the telemetry band.

This transmitter was proposed for use by the Sandia Corporation in the PERSHING Missile Project at White Sands Missile Range.

The transmitter (less power supplies and modulator) is approximately 4 1/8" long by 2 7/8" wide by 1 5/8" high.

All work as reported herein, has been conducted under authorized FMA Proj Nr WS-05-5163051.
II. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. The frequency stability met the requirements of ±0.01% (as required by WSMR Circular Nr 105-5) for all tests, except for the first two (2) minutes of the operating time test.

2. All antenna conducted spurious emanations met the requirements of 59 db down from f (252.4 MCS), as specified in WSMR Circular Nr 105-5. (Required db down from $f_0 = 55 + 10 \log P_t$, where P_t is transmitted power in watts.)

3. There were five (5) spurious emanations, radiated, that exceeded the limits specified in MIL-I-26600, para 4.3.2.

B. RECOMMENDATIONS

1. That the VHF/FM Transmitter, Telemet Model 1483-A17 be authorized for operational use at White Sands Missile Range provided that:
 a. Careful testing of production models be incorporated to insure that unit is tuned to the assigned frequency.
 b. Primary voltages supply to the unit do not exceed the limits to which the unit was subjected during the test.

2. A 508 KCS (±254 KCS) channel bandwidth is recommended for interference free operation.
III. **SUMMARY**

The total necessary bandwidth of the transmitter was calculated to be 508 KCS or ± 254 KCS. This value was determined as follows:

1. **Spectrum Width:**

 \[
 \begin{align*}
 2(\text{Nominal deviation}) &= 2(125 \text{ KCS}) = 250 \text{ KCS} \\
 2(\text{Max Mod Freq}) &= 2(70 \text{ KCS}) = 140 \text{ KCS}
 \end{align*}
 \]

2. **Frequency Accuracy With Respect to Assigned Frequency:**

 \[
 2(0.013\%) \times (252.4 \text{ MCS}) = 2(34 \text{ KCS}) = 68 \text{ KCS}
 \]

3. **Safety Factor**

 \[
 2(25 \text{ KCS}) = 50 \text{ KCS}
 \]

 Total 508 KCS

 or $(\pm 254 \text{ KCS})$
IV. SUMMARY OF RESULTS

Test T1 FREQUENCY STABILITY With Respect To:

a. Operating Time

The frequency decreased from \(0.0135\) to \(0.0073\%\) of the assigned frequency (252.4 MCS), during 120 minutes of continuous operation. See Figure 1, page 9.

b. Supply Voltage

(1) The frequency increased from \(0.0052\) to \(0.0071\%\) of the assigned frequency (252.4 MCS), as the filament supply voltage was decreased from 30 to 28 VDC. The plate voltage was held constant at 180 VDC.

(2) The frequency remained essentially constant (\(0.0002\%\)) at \(0.0073\%\) of the assigned frequency (252.4 MCS), as the plate supply voltage was decreased from 181 to 179 VDC. The filament voltage was held constant at 28 VDC.

(3) The frequency increased from \(0.0052\) to \(0.0069\%\) of the assigned frequency (252.4 MCS), as the plate supply voltage was decreased from 181 to 179 VDC and the filament supply voltage was decreased, simultaneously, from 30 to 28 VDC.

c. Temperature

The frequency decreased from \(0.0086\) to \(0.0017\%\) of the assigned frequency (252.4 MCS), as the ambient temperature was increased from \(\sim 30\) to \(\sim 120\) ° F. See Figure 2, page 10.

Test T2 POWER OUTPUT With Respect To:

a. Operating Time

The power output remained essentially constant (\(\pm 2\%\)) at nominal (2.65 watts), during 120 minutes of continuous operation.

b. Supply Voltage

(1) The power output remained essentially constant (\(\pm 1\%\)) at \(\pm 1\%\) of the nominal (2.5 watts), as the filament supply voltage was decreased from 30 to 28 VDC. The plate voltage was held constant at 180 VDC.
(2) The power output remained essentially constant ($\pm 2\%$) of the nominal (2.5 watts), as the plate supply voltage was decreased from 181 to 179 VDC. The filament voltage was held constant at 28 VDC.

(3) The power output decreased from $\pm 4\%$ to -2% of the nominal (2.5 watts), as the plate supply voltage was decreased from 181 to 179 VDC and the filament supply voltage was decreased, simultaneously, from 30 to 28 VDC.

c. Temperature

The power output decreased from $\pm 2\%$ to -12% of the nominal (2.5 watts), as the ambient temperature was increased from ± 30 to $\pm 120^\circ$ F. See Figure 3, page 11.

Test T3 CONDUCTED INTERFERENCE (Input Power Leads)

All spurious emanations, in the frequency range from 150 KCS to 25 MCS, on both the filament and plate leads, met the requirements of MIL-I-26600, para 4.3.1.

Test T4 RADIATED INTERFERENCE (150 KCS to 10 KCNS)

There were five (5) spurious emanations that exceeded the limits specified in MIL-I-26600. See Table I, page 12.

Test T5 ANTENNA CONDUCTED SPURIOUS EMANATIONS (150 KCS to 10 KCNS)

All antenna conducted spurious emanations met the requirements of 59 db down from f_o as specified in WSMR Circular Nr 105-5. (Required db down from $f_o = 55 - 10 \log P_t$, where P_t is transmitted power in watts.) See Table II, page 13.

Test T7 MODULATION CHARACTERISTICS (Deviation) With Respect To:

a. Operating Time

The deviation remained essentially constant ($\pm 1\%$) at nominal (90 KCS), during 120 minutes of continuous operation.

b. Supply Voltage

(1) The deviation remained essentially constant ($\pm 1\%$) at nominal (89 KCS), as the filament supply voltage was decreased from 30 to 28 VDC. The plate voltage was held constant at 180 VDC.

(2) The deviation remained essentially constant ($\pm 1\%$) at nominal (89 KCS), as the plate supply voltage was decreased from 181 to 171 VDC. The filament voltage was held constant at 28 VDC.
(3) The deviation remained essentially constant (±1%) at nominal (89 KCS), as the plate supply voltage was decreased from 181 to 179 VDC, and the filament supply voltage was decreased, simultaneously, from 30 to 28 VDC.

c. Temperature

The deviation remained essentially constant (±1%) at nominal (90 KCS), as the ambient temperature was increased from 30 to 120° F.

q. Modulation Voltage

The deviation decreased from ±8 to ±89% of the nominal (90 KCS), as the modulation voltage was decreased from 1.58 to 0.091 Vrms. See Figure 4, page 14.

r. Modulation Frequency

The deviation varied between ±4 and ±9% of the nominal (90 KCS), as the modulation frequency was varied from 0.400 to 70 KCS. The modulation input voltage was held constant at 0.79 Vrms. See Figure 5, page 15.
V. EXPERIMENTAL DATA

Supporting data for the following tests are given:

<table>
<thead>
<tr>
<th>Test</th>
<th>Figure</th>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1a</td>
<td>1</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>T1c</td>
<td>2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>T2c</td>
<td>3</td>
<td>I</td>
<td>11</td>
</tr>
<tr>
<td>T4</td>
<td></td>
<td>I</td>
<td>12</td>
</tr>
<tr>
<td>T5</td>
<td></td>
<td>II</td>
<td>13</td>
</tr>
<tr>
<td>T7q</td>
<td>4</td>
<td>II</td>
<td>14</td>
</tr>
<tr>
<td>T7r</td>
<td>5</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
TEST T1a - - - FREQUENCY STABILITY

Relative Frequency With Respect to Operating Time

NOTES: 1. Assigned Frequency: 252.4 MHz ± 0%
 2. Transmitter was mounted on a 12" x 12" x 3/16" aluminum plate, for heat dissipation.
 3. No forced air cooling.
 5. The filaments were turned on 30 seconds before the plate was turned on.
TEST T1o -- FREQUENCY STABILITY

Relative Frequency With Respect to Temperature

NOTES: 1. Assigned frequency: 252.4 MCGS = 0%.
3. A five minute settling period was allowed at each temperature setting prior to frequency measurement.
Table 3c: \(-\) Power Output

Relative Power Output with Respect to Temperature

NOTES: 1. \(0^\circ\) = 2.5 Watts.
2. A five minute settling period was allowed at each temperature setting prior to power measurement.

Figure 3
TABLE I

T-4 RADIATED EMANATIONS (0.150 to 10,000 MCS)

There were five (5) spurious emanations that exceeded the limits specified in MIL-I-26600.

<table>
<thead>
<tr>
<th>FREQUENCY (MCS)</th>
<th>NOMENCLATURE</th>
<th>db/μV ANTENNA INDUCED MEASURED LEVEL</th>
<th>MIL-I-26600 LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5532</td>
<td>Xtal Osc</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>126.2120</td>
<td>4th Multiple of Xtal Osc</td>
<td>45</td>
<td>28</td>
</tr>
<tr>
<td>252.4242</td>
<td>Fundamental (f_0)</td>
<td>82</td>
<td>32</td>
</tr>
<tr>
<td>504.8434</td>
<td>2nd Harmonic of f_0</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td>757.2744</td>
<td>3rd Harmonic of f_0</td>
<td>46</td>
<td>39</td>
</tr>
</tbody>
</table>

TABLE II

T-5 ANTENNA CONDUCTED SPURIOUS EMANATIONS (0.150 to 10,000 MCS)

All antenna conducted spurious emanations met the requirements of 59 db down from f_0 (252.4 MCS), as specified in WSMR Circular Nr 105-5. (Required db down from $f_0 = 55 + 10 \log P_t$, where P_t is transmitted power in watts.)

There were eleven (11) antenna conducted spurious emanations that did not meet the requirements of 84 db down from f_0, as specified in MIL-I-26600. (Required db down from $f_0 = 80 + 10 \log P_t$, where P_t is transmitted power in watts.)

<table>
<thead>
<tr>
<th>FREQUENCY (MCS)</th>
<th>NOMENCLATURE</th>
<th>EMANATION LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>126.2103</td>
<td>4th Multiple of Xtal Osc</td>
<td>-35</td>
</tr>
<tr>
<td>189.3154</td>
<td>6th Multiple of Xtal Osc</td>
<td>-39</td>
</tr>
<tr>
<td>220.8684</td>
<td>7th Multiple of Xtal Osc</td>
<td>-31</td>
</tr>
<tr>
<td>252.4216</td>
<td>Fundamental (f_0)</td>
<td>34</td>
</tr>
<tr>
<td>263.9738</td>
<td>9th Multiple of Xtal Osc</td>
<td>-33</td>
</tr>
<tr>
<td>315.5262</td>
<td>10th Multiple of Xtal Osc</td>
<td>-42</td>
</tr>
<tr>
<td>378.6315</td>
<td>12th Multiple of Xtal Osc</td>
<td>-45</td>
</tr>
<tr>
<td>504.8420</td>
<td>2nd Harmonic of f_0</td>
<td>-30</td>
</tr>
<tr>
<td>1009.6910</td>
<td>4th Harmonic of f_0</td>
<td>-43</td>
</tr>
<tr>
<td>1262.1110</td>
<td>5th Harmonic of f_0</td>
<td>-40</td>
</tr>
<tr>
<td>2271.7968</td>
<td>9th Harmonic of f_0</td>
<td>-43</td>
</tr>
<tr>
<td>2524.2195</td>
<td>10th Harmonic of f_0</td>
<td>-33</td>
</tr>
</tbody>
</table>
TEST T7q — MODULATION CHARACTERISTICS

Relative Deviation With Respect to Modulation Voltage

NOTES:
1. 0% deviation = 90 KCS.
2. Modulation Frequency = 70 KCS.
3. A three minute settling period was allowed at each frequency setting prior to deviation measurement.
4. Transmitter was mounted on a 12" x 12" x 3/16" aluminum plate, for heat dissipation.
5. No forced air cooling.
TEST 77r -- MODULATION CHARACTERISTICS

Relative Deviation With Respect to Modulation Frequency

NOTES:
1. 0% deviation = 90 Kc/s.
2. Modulation Voltage: 0.79 Vrms.
3. A three minute settling period was allowed at each frequency setting prior to deviation measurement.
4. Transmitter was mounted on a 12" x 12" x 3/16" aluminum plate, for heat dissipation.
5. No forced air cooling.
APPENDIX A

DEFINITIONS AND MEASUREMENT TECHNIQUES

1. General Operation

The transmitter was mounted on a 12" x 12" x 3/16" aluminum plate for heat dissipation. Forced air cooling was applied for all tests, except for the operating time and voltage variations tests, where case temperatures were prime factors in data. Cooling was approximately 500 CFM at 200°C and 30% relative humidity air.

2. Frequency Stability

Transmitter frequency stability measurements were taken with a combination of the Hewlett-Packard Model 540A transfer oscillator and Hewlett-Packard 5248B electronic counter with Hewlett-Packard Model 5258B frequency converter unit. The accuracy of measurements was ±0.0001%. See Connection Diagram 1, page 19.

3. Power Output

Power output was measured with the Hewlett-Packard Model 434A calorimetric power meter. Accuracy of measurements was ±5% absolute; ±1% relative. See Connection Diagram 1, page 19.

4. Modulation Characteristics

Deviation was measured with the Marconi Model TF-928 deviation meter. The accuracy of measurements was ±3% absolute; ±1% relative. See Connection Diagram 1, page 19.

5. Conducted Interference (Input Power Leads)

Conducted interference were any emanations present (narrow or broadband) in the supply voltage leads within the frequency range from 0.150 to 25 MCS. Measurements were made using noise and field intensity meter, Empire Devices Corp., Model NF-105 with a lab built stabilization network used as the pickup device. Tests were conducted according to the test procedures of MIL-I-26600. See Connection Diagram 2, page 20.

6. Radiated Interference

Radiated interference were any emanations radiated from the transmitter case when the antenna output was properly terminated into a non-radiating load. Tests were conducted according to the test procedures of MIL-I-26600. See Connection Diagrams 3, 4, and 5, pages 21, 22, and 23.
7. Antenna Conducted Spurious Emanations (0.15 to 10,000 MCS)

Antenna conducted spurious emanations were any spurious emanations from the RF output of the transmitter, expressed in db below the power level at the fundamental operating frequency \((f_0) \). Spurious emanations were checked by tuning the receiver through the frequency range (100 MCS to 4 GHz). When a response was observed, a wavetrap was inserted temporarily in the circuit to distinguish between actual spurious emissions of the transmitter and spurious responses of the receiver. A signal generator was then tuned to the frequency of the spurious emission by obtaining a zero beat audible in the receiver's audio output. The frequency of the generator was then measured with the Hewlett-Packard transfer oscillator and the Hewlett-Packard electronic counter. The signal generator was then substituted for the transmitter and the output level of the signal generator was adjusted, by means of the General Radio adjustable attenuator, for the same amplitude as the transmitter emission, as indicated by the meter deflection of the receiver. The difference in attenuator settings was combined with the signal generator's output level to calculate the emission amplitude.

The levels of spurious emissions from 4 to 10 MHz were measured in the same manner except that the signal generator attenuator was used in place of the General Radio adjustable attenuator. See Connection Diagram 7, page 25.

Spurious emissions within the frequency range 0.15 to 100 MHz were measured in a similar manner except that the General Radio adjustable attenuator was removed and two Empire Devices fixed attenuators were substituted. The signal generator attenuator was used to measure the spurious emission amplitude by the substitution method. See Connection Diagram 6, page 24.

Additional attenuators were used as required. Low pass filters were inserted temporarily to distinguish between actual spurious emissions of the transmitter under test and spurious responses of the receiver.
APPENDIX B

CONNECTION DIAGRAMS

Connection Diagrams for the following tests are given:

<table>
<thead>
<tr>
<th>Test</th>
<th>Connection Diagram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1a</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>T1b</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>T1c</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>T2a</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>T2b</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>T2c</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>T3</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>T4</td>
<td>3, 4, and 5</td>
<td>21,22,23</td>
</tr>
<tr>
<td>T5</td>
<td>6 and 7</td>
<td>24,25</td>
</tr>
<tr>
<td>T7a</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>T7b</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>T7c</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>T7q</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>T7r</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Power Supply, Voltage Monitoring and Modulation Input Systems</td>
<td>8</td>
<td>26</td>
</tr>
</tbody>
</table>

18
CONNECTION DIAGRAM 1

Used in Tests T1a, T1b, T1c, T2a, T2b, T2c, T7a, T7b, T7c, T7q and T7r

![Connection Diagram](image)

NOTE: For Tests T1c, T2c, and T7c, the transmitter was placed in temperature test chamber, Delta Design Engineers, Model 10606.

* See Connection Diagram 8, page 26, for power supply, voltage monitoring, and modulation input systems.
Two stabilization networks were used with this unit, (filament and plate leads).
Two stabilization networks were used with this unit, (filament and plate leads).
CONNECTION DIAGRAM 4

Used in Test T-4 (25 - 1000 MCS)

Dipole Antenna

* Two stabilization networks were used with this unit, (filament and plate leads).
* Two stabilization networks were used with this unit, (filament and plate leads).
CONNECTION DIAGRAM 6

Used in Test T-5 (150 KCS to 100 MCS)

VHF/FM Transmitter
Telemet
Model 1483-A17
S/N 1203

Coaxial Termination
Sierra Elec Corp
Model 150-20F

Shielded Enclosure

Attenuators
(10 and 3 db)
Empire Devices
Model AT-70

Coaxial Switch
Bird Electronic Corp
Model 74

Position 1

**

Adjustable Attenuator
General Radio
Type 874-GA

Signal Generators
Hewlett-Packard
Model 506A and 606C

Position 2

D

FI Meter
Empire Devices
Model NF-105

Electronic Counter
HP Model 524B
w/Frequency
Converter
HP Model 525A

A to A2 = A1 to D in cable length and loss.

* See Connection Diagram 8, page 26, for power supply, voltage monitoring, and modulation input systems.

** Additional attenuators and/or filters, as required, were inserted here.
CONNECTION DIAGRAM 7

Used in Test T-5 (100 MCS to 10 KMCS)

VHF/FM Transmitter
Telemet
Model 1483-A17
S/N 1203

Coaxial Termination
Sierra Elec Corp
Model 160-20F

Adjustable Attenuator
General Radio
Type 674-GA, NSN

Coaxial Switch
Bird Elec Corp
Model 74

Wavetrap
Type F-19/UPR
Type F-20/UPR

Signal Generators
Hewlett-Packard
Models 608C, 612A,
614A, 616A, 616B,
and 620A

Adjustable Attenuator
General Radio
Type 674-GA, NSN

Calorimetric
Power Meter
Hewlett-Packard
Model 434A

FI Meters
Empire Devices
Model NF-105 and
Model NF-112

Electronic Counter
Hewlett-Packard
Model 524B

Transfer Oscillator
Hewlett-Packard
Model 540A

A to A2 = A1 to D in cable length and loss.

* See Connection Diagram 8, page 26, for power supply, voltage monitoring and modulation input systems.
CONNECTION DIAGRAM 8

Power Supply, Voltage Monitoring, and Modulation Input Systems

Used in All Tests

DC Voltage Standard
Kintel
Model 301
S/N 3253

- 180 VDC

DC Power Supply
Hewlett-Packard
Model 712B

Modulation
Test Oscillator
Hewlett-Packard
Model 540A

Filament 28 VDC

DC Power Supply
Perkin Eng Corp
Model M60V

Vacuum Tube
Voltmeter
Hewlett-Packard
Model 400H

- DC Voltage Standard
Kintel
Model 301
S/N 3667

VHF/FM Transmitter
Telemet
Model 1483-A17
S/N 1203

26
APPENDIX C

EQUIPMENT TESTED AND TEST APPARATUS

1. Equipment Tested:
 VHF/FM Transmitter, Telemet Co., Model 1483-A17, S/N 1203

2. Test Apparatus:
 e. Signal Generator, Hewlett-Packard, Model 616A, S/N 1482.
 f. Signal Generator, Hewlett-Packard, Model 618B, S/N 64.
 g. Signal Generator, Hewlett-Packard, Model 620A, S/N 216-02574.
 h. Test Oscillator, Hewlett-Packard, Model 650A, S/N 3101.
 l. Frequency Converter Unit, Hewlett-Packard, Model 525A, S/N 150.
 m. Frequency Converter Unit, Hewlett-Packard, Model 525B, S/N 2216.
 n. Noise and Field Intensity Meter, Empire Devices, Model NF-105, S/N 1030.
 p. FM Deviation Meter, Marconi Inst. Ltd., Type TF-928, S/N 509304.
 q. DC Power Supply, Hewlett-Packard, Model 712B, S/N 3589.

t. DC Voltage Standard, Kintel, Model 301 (2), S/N 3253 and 3667.

v. Condenser Wavetrap, Hudson American Corp., Type F-19/UPR, S/N 780.

w. Stub Wavetrap, Designers for Industry Inc., Type F-20/UPR, S/N 772.

x. Stabilization Network, Lab Built, (2), NSN.

y. Dual Directional Coupler, Hewlett-Packard, Model 764D (2), S/N 102 and 135.

z. Adjustable Attenuator, General Radio Co., Type 874-GA (2), NSN.

a'. Coaxial Switch, Bird Electronics, Model 74, NSN.

b'. Coaxial Switch, Bird Electronics, Model 72R, NSN.

c'. Attenuator, Empire Devices, Model AT-70 3DB, NSN.

d'. Attenuator, Empire Devices, Model AT-70 10DB, NSN.

e'. Temperature Test Chamber, Delta Design Engineers, Model 1060S, S/N 1138.
VII. SIGNATURE PAGE

Responsible for laboratory investigation, interpretation of data, and preparation of basic report:

For WILLIAM E. CASTILLO
Asst Project Engineer

For VIRGILIO CISNEROS
Project Engineer

MERWIN A. OLSON
Chief, Electronic Equipment Evaluation Branch

Reviewed for technical accuracy and adequacy:

WILLIAM H. FICKES
Chief, Systems Analysis Division

Credit is due Mrs. Ophelia D. Dickson for typing the manuscript.
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Organization</th>
<th>Copy Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director</td>
<td></td>
</tr>
<tr>
<td>Frequency Management Activity</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Signal Radio Propagation Agency</td>
<td></td>
</tr>
<tr>
<td>White Sands Missile Range</td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td></td>
</tr>
<tr>
<td>ATTN: SIGRP-WS-SA (Record Copy)</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SIGRP-WS-SA</td>
<td>2 - 11</td>
</tr>
<tr>
<td>ATTN: SIGRP-WS-SAE</td>
<td>12 & 13</td>
</tr>
<tr>
<td>ATTN: SIGRP-WS-AF</td>
<td>14</td>
</tr>
<tr>
<td>ATTN: SIGRP-WS-FE</td>
<td>15</td>
</tr>
<tr>
<td>ATTN: SIGRP-WS-AL</td>
<td>16</td>
</tr>
<tr>
<td>ATTN: SIGRP-WS-EL</td>
<td>17</td>
</tr>
<tr>
<td>ATTN: SIGRP-WS-HL</td>
<td>18</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Signal Radio Propagation Agency</td>
<td></td>
</tr>
<tr>
<td>ATTN: SIGRP</td>
<td>19</td>
</tr>
<tr>
<td>Fort Monmouth, New Jersey</td>
<td></td>
</tr>
<tr>
<td>Chief Signal Officer</td>
<td></td>
</tr>
<tr>
<td>ATTN: SIGFD-b</td>
<td></td>
</tr>
<tr>
<td>Department of the Army</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td>20</td>
</tr>
<tr>
<td>Director</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic Compatibility Analysis Center</td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Engineering Experiment Station</td>
<td></td>
</tr>
<tr>
<td>ATTN: ACX</td>
<td>21</td>
</tr>
<tr>
<td>Annapolis, Maryland</td>
<td></td>
</tr>
<tr>
<td>Area Frequency Coordinator</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Signal Radio Propagation Agency</td>
<td></td>
</tr>
<tr>
<td>ATTN: SIGRP-FH</td>
<td>22 - 24</td>
</tr>
<tr>
<td>Fort Huachuca, Arizona</td>
<td></td>
</tr>
</tbody>
</table>
Chairman, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. Robert J. Taylor
 Code 3241, PMR Box 8
Pacific Missile Range
Point Mugu, California

Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. N. B. Shafer
 Code 3131, PMR Box 7
Pacific Missile Range
Point Mugu, California

Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. Richard E. Jones
 MTORC
Air Force Missile Test Center
Patrick Air Force Base, Florida

Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. O. B. Rawls
 MJ-943
RCA Missile Test Project
Patrick Air Force Base, Florida

Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. E. J. Tyzenhouse
 MTORC-2
Air Force Missile Test Center
Patrick Air Force Base, Florida

Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: 1st Lt James H. Haynes, USAF
 FTMC
Air Force Flight Test Center
Edwards Air Force Base, California

Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. Raymond L. Atkinson
 PGMCF
Air Proving Ground Center
Eglin Air Force Base, Florida
Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. Charles B. Mitchell
POMF
Air Proving Ground Center
Eglin Air Force Base, Florida

Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. J. F. Christie
Code 8543
Naval Ordnance Test Station
China Lake, California

Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. G. R. Sutherlen
Code 8508
Naval Ordnance Test Station
China Lake, California

Associate Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. A. J. Gravell
STEEP-30
Army Electronic Proving Ground
Fort Huachuca, Arizona

Associate Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Maj M. Carmack, USAF
AEROSPACE
Aeronautical Systems Division
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

Associate Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Maj S. A. Cable
ESLIT
Air Force Ballistic Systems Division
Air Force Systems Command
Norton Air Force Base, California

Associate Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. F. J. Sharkey
ESMC
Electronics Systems Division
Air Force Systems Command
L. G. Hanscom Field
Bedford, Massachusetts
Associate Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Lt Col J. C. Morris, USAF
Mr. H. C. Zabriskie
MDOC
Air Force Missile Development Center
Holloman Air Force Base, New Mexico

Associate Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Maj William E. Birks, USAF
SSOQL
Headquarters, Space Systems Division
Air Force Unit Post Office
Los Angeles 45, California

Associate Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. A. L. Manning, Jr.
SCMOC-2
Headquarters, Air Force Systems Command
Andrews Air Force Base
Washington 25, D. C.

Associate Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Maj G. A. Turkiewicz, USAF
SWMC
Air Force Special Weapons Center
Kirtland Air Force Base, New Mexico

Associate Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. Robert Simmons
AMSNI-MDE
Army Missile Command
Huntsville, Alabama

Associate Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. E. D. Hildreth
M-MS-A
National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Huntsville, Alabama

Associate Member, FCWG
Inter-Range Instrumentation Group
ATTENTION: Mr. C. J. Alizio
RRM-2
Headquarters, Office of Aerospace Research
United States Air Force
Tempo "E" Building
Washington 25, D. C.
Chief
Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia

Telemet Company
2509 S. Broadway
Santa Ana, California

Commanding Officer
U. S. Army Electronics Research and Development Activity
ATTN: SELWS-ET
FOR: Mr. Barto
White Sands Missile Range
New Mexico

Commanding Officer
Picatinny Arsenal
ATTN: SMUPA-IT
FOR: Mr. J. Greenfield
Dover, New Jersey
Spectrum utilization characteristics of Vebert Model 1459-417, VHF/WM Transmitter were determined to facilitate the assignment of frequencies on an interference-free basis. The frequency stability met the requirements of ±0.025 (as required by NMB Circular No 105-4) for all tests, except for the first two minutes of the operating time test. All severance conducted spurious emissions met the requirements of 50 dB down from the carrier. It is recommended that this transmitter be authorized for operational use at White Sands Missile Range. A 505 MHz channel bandwidth is recommended for interference-free operation.

UNCLASSIFIED

1. Aircraft and Flight Equipment
2. Communications
3. Electronics and Electronic Equipment
4. Guided Missiles

DISTRIBUTOR: U.S. MILITARY ORGANIZATIONS REQUEST COPIES FROM OFFICER OR AGENT. OTHERS SUBMIT REQUESTS THROUGH TRANSMITTING AGENTS TO ORIGINATION.

AD

Frequency Management Activity, U.S. Army Signal Radio Propagation Agency, White Sands Missile Range, New Mexico

UNCLASSIFIED

1. Aircraft and Flight Equipment
2. Communications
3. Electronics and Electronic Equipment
4. Guided Missiles

DISTRIBUTOR: U.S. MILITARY ORGANIZATIONS REQUEST COPIES FROM OFFICER OR AGENT. OTHERS SUBMIT REQUESTS THROUGH TRANSMITTING AGENTS TO ORIGINATION.

AD

Frequency Management Activity, U.S. Army Signal Radio Propagation Agency, White Sands Missile Range, New Mexico

UNCLASSIFIED

1. Aircraft and Flight Equipment
2. Communications
3. Electronics and Electronic Equipment
4. Guided Missiles

DISTRIBUTOR: U.S. MILITARY ORGANIZATIONS REQUEST COPIES FROM OFFICER OR AGENT. OTHERS SUBMIT REQUESTS THROUGH TRANSMITTING AGENTS TO ORIGINATION.

AD

Frequency Management Activity, U.S. Army Signal Radio Propagation Agency, White Sands Missile Range, New Mexico

UNCLASSIFIED

1. Aircraft and Flight Equipment
2. Communications
3. Electronics and Electronic Equipment
4. Guided Missiles

DISTRIBUTOR: U.S. MILITARY ORGANIZATIONS REQUEST COPIES FROM OFFICER OR AGENT. OTHERS SUBMIT REQUESTS THROUGH TRANSMITTING AGENTS TO ORIGINATION.

AD

Frequency Management Activity, U.S. Army Signal Radio Propagation Agency, White Sands Missile Range, New Mexico

UNCLASSIFIED

1. Aircraft and Flight Equipment
2. Communications
3. Electronics and Electronic Equipment
4. Guided Missiles

DISTRIBUTOR: U.S. MILITARY ORGANIZATIONS REQUEST COPIES FROM OFFICER OR AGENT. OTHERS SUBMIT REQUESTS THROUGH TRANSMITTING AGENTS TO ORIGINATION.