Bracket and Exponential for a New Type of Vector Field
by
Harold H. Johnson

Technical Report No. 17
December 14, 1962

Contract No. 477(15)
Project Number NR 043 186

Department of Mathematics
University of Washington
Seattle 5, Washington

Reproduction in whole or in part is permitted for any purpose of the United States Government.
Bracket and Exponential for a New Type of Vector Field

by

H. H. Johnson

In [2] Robert Hermann introduced the concept of tangent vector fields on the space of functions from one manifold to another. He applied these to give a new proof of the Cartan-Kahler theorem. An example of such vector fields are maps from the jet space to the tangent bundle of the target space which commute with projections. It is this class of vector fields which we study here.

Using prolongations a Lie bracket operation is defined and justified on the grounds that it agrees with the primitive definition when the latter has meaning here. By similar methods an exponential expansion is deduced. An example is given which shows that the 1-parameter transformation groups on the function space cannot be considered a parameter space for a pseudo group in Kuranishi's sense [3], for it need not involve infinite analytic mappings.

1. Introduction

Every mapping and manifold will be smooth of class C^∞ unless otherwise noted. If N and M
are two manifolds, \(J^k = J^k(N,M) \) is the manifold of k-jets \(j^k_x(f) \) of order \(k \) of maps \(f:N \to M \) (see [1]). \(\alpha \) and \(\beta \) denote the customary source and target projections. \(T(M) \) is the tangent bundle of \(M, M_y \) the tangent space at \(y \in M \). \(\pi:T(M) \to M \) is the bundle projection. \(C^\infty(N,M) \) is the set of all \(C^\infty \) maps on \(N \) into \(M \).

Definition 1. A k-vector field on \(C^\infty(N,M) \) is a map \(\omega:J^k \to T(M) \) such that \(\pi \circ \omega = \beta \).

Hermann studied k-vector fields as a special class of "formal tangent vector" fields [2, p. 57]. If \(f:N \to M \), a "vector" along \(f \) is a map \(\Psi:N \to T(M) \) with \(\Psi(x) \in M_{f(x)} \) for all \(x \in N \). This is what one would get as the derivative of a 1-parameter family \(f_t \in C^\infty(N,M) \) where \(f_0 = f \). Each k-vector field \(\omega \) defines a vector along \(f \) by \(\Psi(x) = \omega(j^k_x(f)) \).

Let \(I = (-\epsilon, \epsilon) \). An integral curve of \(\omega \) starting at \(f_0 \in C^\infty(N,M) \) is a 1-parameter family of \(f:N \times I \to M \) with \(f(x,0) = f_0(x) \) and

\[
\frac{df(x,t)}{dt} = \omega(j^k_x(f)).
\]

In coordinates this is seen to be a Cauchy-Kowalewski system of order \(k \). By uniqueness of \(C^\infty \) (i.e., analytic) solutions we see that in the \(C^\infty \) case if \(\omega_0(x) = f(x,t) \),
and $g(x, t)$ is an integral curve starting at g_0, then $g(x, t) = f(x, t + t)$. Thus, these integral curves, when they exist and are unique, behave as the orbits of a local 1-parameter group.
2. An Example

Let \(N - M - E^1 \), Euclidean 1-space. Let \((x), (y), \) and \((x,y,p)\) be coordinates on \(N, M, \) and \(J^1(N,M), \) respectively. Consider the 1-vector field \(\xi(x,y,p) = \frac{\partial}{\partial y} y \). Given \(f_o(x): N \rightarrow M, \) \(f(x,t) \) must satisfy

\[
\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x}, \quad f(x,0) = f_o(x).
\]

We think of \(f(x,t) \) as the image of \(f_o \) under a transformation \(F_t \) on functions: \(f(x,t) = F_t(f_o) \).

To compare the action of \(F_t \) with M. Kuranishi's concept of infinite analytic mappings \([3] \), consider all convergent power series at the origin: \(f_o = \sum a_n x^n \). Then

\[
F_t(f_o) = \sum_{n=0} (\sum_{m=0} \frac{t^m}{m!} a_{n+m} \frac{(n+m)!}{n!}) x^n
\]

is not an infinite analytic mapping in Kuranishi's sense because the coefficient of \(x^n \) in \(F_t(f_o) \) is an infinite series in the coefficients of \(f_o \) rather than a polynomial.
3. Lie Bracket

If \(\mathcal{Q} \) is a \(k \)-vector field let \(h_t: J^k \to M \) for \(-\xi < t < \xi\) satisfy \(h_0 = \mathcal{Q} \) and \((\partial h_t/\partial t)_{t=0} = \mathcal{Q} \).

If \(f \in C^\infty(N,M) \), the \(k \)-th prolongation of \(f \), \(p^k(f) \in C^\infty(N,J^k) \) is defined by \(p^k(f)(x) = j_x^k(f) \).

Similarly, the \(r \)-th prolongation of \(h_t \), \(p^r(h_t) \in C^\infty(J^{k+r}, J^r) \), is defined by

\[
p^r(h_t)(j^{r+k}_x(f)) = j^r_x(h_t \circ p^k(f)).
\]

Definition 2. \(F^r(\mathcal{Q}) \), the \(r \)-th prolongation of \(\mathcal{Q} \), is defined to be

\[
P^r(\mathcal{Q})(j^{r+k}_x(f)) = \frac{\partial}{\partial t} |_{t=0} p^r(h_t)(j^{r+k}_x(f)) = \frac{\partial}{\partial t} |_{t=0} j^{r+k}_x(h_t \circ p^k(f)).
\]

Then \(F^r(\mathcal{Q}): J^{r+k} \to T(J^r) \), and if \(\pi \) denotes the projection of \(T(J^r) \) onto \(J^r \) and \(e_{r+k}^r \) carries \(j^{k+r}_x(f) \) in \(J^{k+r} \) to \(j^r_x(f) \) in \(J^r \), then \(\pi \circ F^r(\mathcal{Q}) = e_{r-k}^r \).

Kuranishi's notion of formal partial derivative is very useful in describing \(F^r(\mathcal{Q}) \) in coordinates. If

\((x^1, \ldots, x^n)\) and \((y^1, \ldots, y^m)\) are local coordinates on \(U \subset N \) and \(V \subset M \), respectively, let
(x^i, y^j, p_{j_1}^{i_1}, ..., p_{j_k}^{i_k}) be local coordinates on
\mathbb{R}^n \cap \mathbb{R}^m, where i = 1, ..., m; j = 1, ..., n.

If \(u : \mathbb{R}^n \rightarrow \mathbb{R} \) (real numbers), define \(\delta_j u : \mathbb{R}^{n+1} \rightarrow \mathbb{R} \) to be

\[
\delta_j u(j^{k+1}(f)) = \frac{\partial u}{\partial x^j} \frac{\partial}{\partial y^j} p_j^i \frac{\partial}{\partial y^{j_1} \ldots \partial y^{j_k}}.
\]

This operator is linear and has the important property
that if \(f : U \rightarrow V \), then \(\delta(u \circ p^k(f)) \frac{\partial}{\partial x^j} = \delta_j u(j^{k+1}(f)) \).

Using these facts and Definition 2, it is possible to prove the following

Lemma 1. If on \(\mathbb{R}^n \cap \mathbb{R}^m \), \(\phi = \phi(\partial / \partial y^x) \),

\[
p^r \phi = \phi \left(\frac{\partial}{\partial y} \frac{\partial}{\partial y^j} \frac{\partial}{\partial y^{j_1} \ldots \partial y^{j_r}} \right).
\]

Moreover, \(p^r \) is linear.

Definition 3. Let \(\phi \) and \(\psi \) be \(r \)- and \(s \)-vector
fields, respectively. Then the Lie bracket of \(\phi \) and \(\psi \)
is

\[
[\phi, \psi] = p^r \phi \circ \psi - p^r \psi \circ \phi.
\]

By the composition notation we mean to interpret \(\psi \) as an
operator carrying \(C^\infty(X, \mathbb{R}) \) into \(C^\infty(J^s, \mathbb{R}) \). Similarly,
P^O carries $C^\infty(J^s, R)$ into $C^\infty(J^{r+s}, R)$.

Alternatively, if $h_t: J^r \to M$ and $g_t: J^s \to M$ satisfy $h_0 = \hat{Q}, g_0 = \hat{Q}$, $-\varepsilon < t < \varepsilon$, $-\xi < \tau < \xi$, and $(\partial h_t/\partial t)_{t=0} = \hat{Q}$, $(\partial g_t/\partial \tau)_{t=0} = \hat{Q}$, then

$$(P^O \circ \psi)(J_x^{r+s}(f)) = \frac{\partial^2}{\partial t^2}_{x} [g_t \circ P^O h_t(J_x^{r+s}(f))]_{t=0} = 0.$$

This representation is convenient when proving

Lemma 2. $[\hat{Q}, \hat{Q}]$ is an $r + s$-vector field.

Lemma 3. $P^Q(P^O \circ \psi) = P^{Q+O} \circ \psi Q$.

Proof. This follows from $P^Q(g_t \circ P^O h_t) = p^Q g_t \circ P^{Q+O} h_t$, which is a consequence of the definitions.

Lemma 4. (Lie Identity)

$$[[\hat{Q}, \psi] \hat{Q}] + [[\psi, \hat{Q}] \hat{Q}] + [[\hat{Q}, \psi] \hat{Q}] = 0.$$

Proof. Suppose \hat{Q}, ψ, ψ are $r-, s-$, and q-vector fields, respectively. The left side of the above equation is

$$p^Q(P^Q \circ \psi - P^Q \circ \psi \circ \hat{Q}) \circ \hat{Q} - P^{Q+O} \circ \hat{Q} (P^Q \circ \psi - P^Q \circ \psi \circ \hat{Q})$$

$$+ P^Q(P^Q \circ \psi - P^Q \circ \psi \circ \hat{Q}) \circ \hat{Q} - P^{Q+O} \circ \hat{Q} (P^Q \circ \psi - P^Q \circ \psi \circ \hat{Q})$$

$$+ P^Q(P^Q \circ \psi - P^Q \circ \psi \circ \hat{Q}) \circ \hat{Q} - P^{Q+O} \circ \hat{Q} (P^Q \circ \psi - P^Q \circ \psi \circ \hat{Q}).$$

This equals zero by the Lemma 3 above.

It follows from Definition 3 of the Lie bracket that $[\hat{Q}, \hat{Q}] < 0$. Hence we have proved
Theorem 1. If V^k is the linear space of all k-vector fields, $k = 0, 1, \ldots$, then the direct sum

$$V = \sum_{k=0}^{\infty} \otimes V^k$$

is a graded Lie algebra under the Lie bracket.

A definition of Lie bracket in the older literature used local 1-parameter transformation groups. If \mathcal{Q} and \mathcal{U} are vector fields on a manifold generating local transformation groups \mathcal{G}_t and \mathcal{U}_t, respectively, then $[\mathcal{Q}, \mathcal{U}]$ is the vector field obtained by transforming \mathcal{Q}_t by \mathcal{U}_t. That is,

$$[\mathcal{Q}, \mathcal{U}] = \frac{\partial^2}{\partial t^2} \left[\mathcal{U}_t \circ \mathcal{Q}_t \circ \mathcal{U}_t \right]_{t=0}.$$

We do not have 1-parameter local group on $C^\infty(N,N)$ in general. However, one may observe how individual functions behave when they belong to integral curves of \mathcal{Q} and \mathcal{U}.

Theorem 2. Let \mathcal{Q} and \mathcal{U} be r- and s-vector fields, respectively. Let $I = (-\xi, \xi)$. Let $f(x): N \to M$. Suppose:

a. $\bar{f}(x, t): N \times I \to M$ and satisfies

$$\frac{\partial \bar{f}}{\partial t}(x, t) = \mathcal{U}(j_x^r(\bar{f})), \quad \bar{f}(x, 0) = f(x);$$
b. \(f^*(x,t,t') : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{M} \) and satisfies

\[
\frac{\partial f^*}{\partial t}(x,t,t') = \mathcal{L}(j_x^S(f^*)), \quad f^*(x,t,0) = \mathcal{F}(x,t);
\]

c. \(f^*(x,t,t') : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{M} \) and satisfies

\[
\frac{\partial f^*}{\partial t}(x,t,t') = \mathcal{L}(j_x^C(f^*)), \quad f^*(x,t,t',0) = f^*(x,t,t);
\]

Then

\[
\frac{\partial^2}{\partial t \partial t'} f^*(x,-t,t',t)|_{t=-t'} = \mathcal{L}(j_x^{S+R}(f^*)).
\]

Proof.

\[
\frac{\partial^2}{\partial t \partial t'} f^*(x,-t,t',t)|_{t=-t'} = -\frac{\partial^2}{\partial t \partial t'} f^*(x,t,t',t)|_{t=t'=0} + \frac{\partial^2}{\partial t \partial t'} f^*(x,t,t',t)|_{t=t'=0}
\]

\[
= -\frac{\partial^2}{\partial t \partial t'} f^*(x,t,t')|_{t=0} + \frac{\partial}{\partial t'} \mathcal{L}(j_x^C(f^*)|_{t=t'=0}.
\]

\[
- \frac{\partial^2}{\partial t \partial t'} (j_x^S(f^*))|_{t=0} + \frac{\partial}{\partial t'} \mathcal{L}(j_x^C(f^*(x,0,t'))|_{t=0}
\]

We can calculate these using local coordinates (see above).
\[
\frac{\partial}{\partial t} \phi (x^1, \tau, \frac{\partial}{\partial x_j}, \ldots, \frac{\partial^s x^M}{\partial x_{j_1} \ldots \partial x_{j_s}}) \\
- \frac{\partial}{\partial y} \phi (x^1, \tau, \frac{\partial}{\partial x_j}, \ldots, \frac{\partial^s x^M}{\partial x_{j_1} \ldots \partial x_{j_s}}) \\
- \frac{\partial}{\partial \tau} \phi (x^1, \tau, \frac{\partial}{\partial x_j}, \ldots, \frac{\partial^s x^M}{\partial x_{j_1} \ldots \partial x_{j_s}}) \\
- \phi^r (x^1, \tau, \frac{\partial}{\partial x_j}, \ldots, \frac{\partial^s x^M}{\partial x_{j_1} \ldots \partial x_{j_s}}) \\
= F^r \phi_0 \phi.
\]

In the same way the last term in the first equation becomes \(F^s \phi_0 \phi \). \(\ast \ast \ast \).
3. The Exponential Map

Lemma 5. Let \(\Theta \) and \(\Psi \) be \(r \)- and \(s \)-vectors, respectively. Suppose \(f(x,t):N \times I \rightarrow M \) satisfies \(\Theta(j^r_x(f)) = (\partial f/\partial t)(x) \). Then

\[
\frac{2}{3} t \omega_{j^s_x(f)} = p^s \circ \Psi (j^{r+s}_x(f)) .
\]

Proof. In the previous local coordinates, we are given that \(\omega_{j^r_x(f)} = (\partial f/\partial t)(x,t) \). Hence

\[
\frac{2}{3} t \omega_{j^s_x(f)} = \frac{\partial}{\partial t} \frac{\partial f}{\partial t} + \frac{\partial}{\partial x^j} \frac{\partial^2 f}{\partial t \partial x^j} + \ldots
\]

\[
+ \frac{\partial^2}{\partial p_{j_1} \ldots j_s \partial t \partial x^{j_1} \ldots \partial x^{j_s}} \frac{\partial^2 f}{\partial t \partial x^{j_1} \ldots \partial x^{j_s}}
\]

\[
= \frac{\partial^2}{\partial y^{j_1}} \frac{\partial^2}{\partial p_{j}} + \frac{\partial^2}{\partial y^{j_1}} \frac{\partial^2}{\partial p_{j}} \ldots \frac{\partial^2}{\partial p_{j}} \ldots \frac{\partial^2}{\partial p_{j}} (\ldots \frac{\partial}{\partial x^{j_1}} \ldots \frac{\partial}{\partial x^{j_s}}),
\]

evaluated at \(j^{s+r}_x(f) \). The result follows from Lemma 1.
Theorem 3. Let \mathcal{Q} be an r-vector field, where $N = \mathbb{R}^n$, $M = \mathbb{R}^m$. Let $f(x,t):\mathbb{R}^n \times [0,1] \rightarrow \mathbb{R}^m$ satisfy

$$(\partial f/\partial t)(x,t) = \mathcal{Q}(j^r_x(f)), \text{ where}$$

$$f(x,t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} f_n(x)$$

converges on \mathbb{R}^n. Then

$$f_n(x) = p^{(n-1)}r \circ \cdots \circ p^{(n-2)}r \circ \cdots \circ p^1r \circ \mathcal{Q}(j^n_x(f)) = \mathcal{Q}(j^n_x(f)).$$

Proof. By repeated application of Lemma 5 and from

$$(\partial f/\partial t) = \mathcal{Q}(j^r_x(f)),$$ it follows that

$$\frac{\partial^2 f}{\partial t^2}(x,t) = p^2r \circ \mathcal{Q}(j^{2r}_x(f)),$$

$$\frac{\partial^3 f}{\partial t^3}(x,t) = p^3r \circ \cdots \circ \mathcal{Q}(j^{3r}_x(f)), \ldots, \ldots.$$

Theorem 3 shows that in thinking of \mathcal{Q} as an infinitesimal transformation on $C^\infty(N,M)$, one should consider

$$\exp(\mathcal{Q})(f_0) = \sum_{n=0}^{\infty} \frac{t^n}{n!} p^{(n-1)}r \circ \cdots \circ p^1r \circ \mathcal{Q}(j^n_x(f_0))$$

as a generalized exponential formula.
References

