EFFECTS OF ULTRAHIGH PRESSURES ON THE FORMATION AND PROPERTIES OF ORGANIC, SEMIORGANIC, AND INORGANIC MATERIALS

TECHNICAL DOCUMENTARY REPORT NO. ASD-TDR-62-73, Pt. II
December 1962

Directorate of Materials and Processes
Aeronautical Systems Division
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

Project No. 7340, Task No. 73404

(Prepared under Contract No. AF 33(616)-7471 by
the Battelle Memorial Institute, Columbus, Ohio;
E. J. Bradbury, H. H. Krause, C. B. Sclar, L. C.
Carrison, G. F. Ward, C. R. Gray, R. C. Himes,
C. M. Schwartz, and R. I. Leininger, authors)
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

ASTIA release to OTS not authorized.

Qualified requesters may obtain copies of this report from the Armed Services Technical Information Agency, (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

Copies of ASD Technical Reports and Technical Notes should not be returned to the Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notice on a specific document.
This report was prepared by Battelle Memorial Institute under AF Contract No. AF 33(616)-7471. This contract was initiated under Project No. 7340, "Nonmetallic and Composite Materials", Task No. 73404, "Effects of Ultrahigh Pressures on the Formation and Properties of Organic, Semiorganic, and Inorganic Materials". This work was administered under the direction of the Directorate of Materials and Processes, Deputy for Technology, Aeronautical Systems Division, with Mr. Albert J. Sicree, Jr., acting as project engineer.

This report covers work performed during the period January, 1962, through December 31, 1962.

This work was conducted by E. J. Bradbury, H. H. Krause, C. B. Sclar, L. C. Carrison, G. F. Ward, C. R. Gray, R. C. Himes, C. M. Schwartz, and R. I. Leininger.
ABSTRACT

It was found that superpressure alone could effect crosslinking of polybutadiene and apparent copolymerization of vinyl monomers to polybutadiene. In a somewhat similar fashion, methylmethacrylate was added to polymethylmethacrylate to give increased-molecular-weight products. The pressurization of other polymers such as polystyrene, polycaprolactam, and polymethylmethacrylate did not produce large changes. It was concluded that these pressures would not cause significant reforming of these polymer chains or reactions in the aromatic or carbonyl double bonds. Polymerization of quinone to a relatively heat-stable material was effected by pressurization.

Dimethyldicyanosilane has been converted to an insoluble polymeric material by pressurizing to 105,000 atmospheres at room temperature. Aluminosiloxanes having either acetylacetone or isopropoxide bonded to the aluminum, and methyl, ethyl, or phenyl groups on the silicon, have been polymerized further and probably crosslinked by a combination of pressure and heat. As pressure was increased, the Al-O-C bonding was stabilized, and the rupture of Si-C bonds was inhibited. Decomposition of an arsenosiloxane based on trivalent arsenic was promoted by pressure, while one based on pentavalent arsenic was stabilized. Formation of phthalocyanine polymers appeared to be inhibited as pressure was increased. Polymerization of aluminum phenoxide by pressurization resulted in the same products as were obtained by heating.

The equilibrium composition of stoichiometric and nonstoichiometric iron monosulfide was shown to be pressure-temperature dependent. A new high-pressure form of aluminum phosphate, probably \([\text{Al}_2(\text{PO}_4)_2 \cdot \text{Al(OH)}_3]\), was synthesized from hydrated aluminum phosphate and from the quartz form of \(\text{AlPO}_4\) plus water. This new phase is stable to at least 110,000 atmospheres and 1300 C and is 18 per cent denser than the ambient-pressure quartz form of \(\text{AlPO}_4\). It is harder than spinel and topaz and approaches the hardness of corundum (\(\text{aAl}_2\text{O}_3\)). An iron analogue of this high-pressure aluminum phosphate was synthesized from hydrated ferric phosphate. At pressures between 50,000 and 110,000 atmospheres, another new high-pressure form of iron phosphate was found. Zirconium pyrophosphate transforms to a new high-pressure polymorph between 45,000 and 105,000 atmospheres which is 15 per cent denser than the ambient pressure form.

This technical documentary report has been reviewed and is approved.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>Organic Polymers</td>
<td>1</td>
</tr>
<tr>
<td>Semiorganic Polymers</td>
<td>2</td>
</tr>
<tr>
<td>Inorganic Polymers</td>
<td>3</td>
</tr>
<tr>
<td>III. EXPERIMENTAL SECTION – ORGANIC POLYMERS</td>
<td>5</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Experimental Results</td>
<td>6</td>
</tr>
<tr>
<td>Compression Studies</td>
<td>6</td>
</tr>
<tr>
<td>Analytical Methods</td>
<td>30</td>
</tr>
<tr>
<td>Molecular-Weight Distribution</td>
<td>33</td>
</tr>
<tr>
<td>IV. EXPERIMENTAL SECTION – SEMIORGANIC POLYMERS</td>
<td>33</td>
</tr>
<tr>
<td>Introduction</td>
<td>33</td>
</tr>
<tr>
<td>Apparatus and Techniques</td>
<td>34</td>
</tr>
<tr>
<td>Pressurization Experiments</td>
<td>34</td>
</tr>
<tr>
<td>Dimethylidcyanosilane</td>
<td>35</td>
</tr>
<tr>
<td>Polyaluminosiloxanes</td>
<td>39</td>
</tr>
<tr>
<td>Arsenosiloxanes</td>
<td>53</td>
</tr>
<tr>
<td>Phthalocyanines</td>
<td>53</td>
</tr>
<tr>
<td>'Aluminoxanes</td>
<td>54</td>
</tr>
<tr>
<td>V. EXPERIMENTAL SECTION – INORGANIC MATERIALS</td>
<td>54</td>
</tr>
<tr>
<td>Ultrahigh Pressure – High-Temperature Apparatus</td>
<td>54</td>
</tr>
<tr>
<td>Experimental Results</td>
<td>56</td>
</tr>
<tr>
<td>Effect of Pressure on Sulfides</td>
<td>56</td>
</tr>
<tr>
<td>Effect of Pressure on Phosphates</td>
<td>58</td>
</tr>
<tr>
<td>Aluminum Phosphate</td>
<td>58</td>
</tr>
<tr>
<td>Iron Phosphate</td>
<td>70</td>
</tr>
<tr>
<td>Zirconium Pyrophosphate</td>
<td>77</td>
</tr>
<tr>
<td>Other Phosphates</td>
<td>82</td>
</tr>
<tr>
<td>VI. CONCLUSIONS AND RECOMMENDATIONS</td>
<td>82</td>
</tr>
<tr>
<td>Organic Polymers</td>
<td>82</td>
</tr>
<tr>
<td>Semiorganic Polymers</td>
<td>83</td>
</tr>
<tr>
<td>Inorganic Polymers</td>
<td>83</td>
</tr>
<tr>
<td>VII. REFERENCES</td>
<td>84</td>
</tr>
<tr>
<td>VIII. BIBLIOGRAPHY ON HIGH-PRESSURE RESEARCH</td>
<td>88</td>
</tr>
<tr>
<td>Apparatus and Equipment</td>
<td>88</td>
</tr>
<tr>
<td>General Studies</td>
<td>Page</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Organic Compounds</td>
<td>88</td>
</tr>
<tr>
<td>Semiorganic Compounds</td>
<td>89</td>
</tr>
<tr>
<td>Inorganic Compounds</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>92</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Effect of Polymer Type on Superpressure Behavior</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Appearance of Polycaprolactam Sample After Blowout</td>
<td>9</td>
</tr>
<tr>
<td>3.</td>
<td>Compressed Polymethyl Methacrylate Showing Slip Planes</td>
<td>9</td>
</tr>
<tr>
<td>4.</td>
<td>Infrared Spectra of Quinone</td>
<td>22</td>
</tr>
<tr>
<td>5.</td>
<td>Infrared Spectra of High-Pressure Product of Quinone After Sublimation</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Removal of Unreacted Quinone</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Infrared Spectra of Sublimation-Purified High-Pressure Heated Product of</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Quinone</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Infrared Spectra of Sublimation-Purified High-Pressure Product of Quinone-</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Methacrylate-Benzoyl Peroxide</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Differential Thermal Analysis of Quinone</td>
<td>27</td>
</tr>
<tr>
<td>9.</td>
<td>Differential Thermal Analysis of Superpressure-Treated Quinone</td>
<td>28</td>
</tr>
<tr>
<td>10.</td>
<td>Differential Thermal Analysis of the Superpressure Treated System: Quinone-</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Methylmethacrylate-Benzoyl Peroxide with Heat</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Diagram of Schulken-Sparks Viscometer</td>
<td>31</td>
</tr>
<tr>
<td>12.</td>
<td>Comparison of Flow Data for Different Viscometer-Level Reference Methods</td>
<td>32</td>
</tr>
<tr>
<td>13.</td>
<td>Effect of Pressure and Temperature on Reactivity of Dimethylidicyanosilane</td>
<td>36</td>
</tr>
<tr>
<td>14.</td>
<td>Infrared Spectra of Dimethylidicyanosilane (Solid Line) and Its High-</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Pressure Reaction Product (Broken Line)</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Effect of Pressure and Temperature on the Dimethylsiloxy-Aluminum-Acetyl-</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>acetate Polymer</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Infrared Spectra of Dimethylsiloxy-Aluminum-Acetylacetone Polymer and Its</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>High-Pressure Reaction Product</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Thermogravimetric Curves for the Dimethylsiloxy-Aluminum-Acetylacetate</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Polymer and its Pressurized and Unpressurized Reaction Products</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Effect of Pressure and Temperature on the Diethylsiloxy-Aluminum-Acetyl-</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>acetate Polymer</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

(Continued)

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Infrared Spectra of Diethylsiloxy-Aluminum-Acetylacetonate Polymer and Its High-Pressure Reaction Product</td>
<td>45</td>
</tr>
<tr>
<td>20</td>
<td>Thermogravimetric Curves for the Diethylsiloxy-Aluminum-Acetylacetonate Polymer and Its Pressurized and Unpressurized Reaction Products</td>
<td>46</td>
</tr>
<tr>
<td>21</td>
<td>Effect of Pressure and Temperature on the Diethylsiloxy-Aluminum-Isopropoxide Polymer</td>
<td>47</td>
</tr>
<tr>
<td>22</td>
<td>Infrared Spectra of Diethylsiloxy-Aluminum-Isopropoxide Polymer and Its High-Pressure Reaction Product</td>
<td>48</td>
</tr>
<tr>
<td>23</td>
<td>Thermogravimetric Curves for the Diethylsiloxy-Aluminum-Isopropoxide Polymer and Its Pressurized and Unpressurized Reaction Products</td>
<td>49</td>
</tr>
<tr>
<td>24</td>
<td>Effect of Pressure and Temperature on the Diphenylsiloxy-Aluminum-Isopropoxide Polymer</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>Infrared Spectra of Diphenylsiloxy-Aluminum-Isopropoxide Polymer and Its High-Pressure Reaction Product</td>
<td>51</td>
</tr>
<tr>
<td>26</td>
<td>Thermogravimetric Curves for the Diphenylsiloxy-Aluminum-Isopropoxide Polymer and Its Pressurized and Unpressurized Reaction Products</td>
<td>52</td>
</tr>
<tr>
<td>27</td>
<td>Calibration of the Modified Belt Apparatus with a 12-Degree Die by Means of the Bi I-II and Bi V-VI Electrical Resistance Transitions</td>
<td>55</td>
</tr>
<tr>
<td>28</td>
<td>Phase-Equilibrium Diagram for the System AlPO<sub>4</sub>-H<sub>2</sub>O.</td>
<td>62</td>
</tr>
<tr>
<td>29</td>
<td>Infrared Spectrum of Fisher Reagent-Grade AlPO<sub>4</sub> Containing 24 Per Cent of Water</td>
<td>64</td>
</tr>
<tr>
<td>30</td>
<td>Infrared Spectrum of Quartz Form of AlPO<sub>4</sub> Obtained From Fisher Reagent-Grade AlPO<sub>4</sub> at 400 C</td>
<td>65</td>
</tr>
<tr>
<td>31</td>
<td>Infrared Spectrum of High-Pressure Form of AlPO<sub>4</sub> Obtained at 80,000 Atmospheres and 900 C</td>
<td>66</td>
</tr>
<tr>
<td>32</td>
<td>Infrared Spectrum of Al(OH)<sub>3</sub> (Gibbsite) in Which Aluminum is Octahedrally Coordinated with Oxygen</td>
<td>67</td>
</tr>
<tr>
<td>33</td>
<td>Infrared Spectrum of Baker Reagent-Grade FePO<sub>4</sub> Containing 23 Per Cent of Water</td>
<td>73</td>
</tr>
</tbody>
</table>
LIST OF FIGURES
(Continued)

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.</td>
<td>Infrared Spectrum of Quartz Form of FePO₄ Obtained from Baker Reagent-Grade FePO₄ at 750°C</td>
<td>74</td>
</tr>
<tr>
<td>35.</td>
<td>Infrared Spectrum of High-Pressure Form of Iron Phosphate (Phase I) Obtained at 45,000 Atmospheres and 750°C</td>
<td>75</td>
</tr>
<tr>
<td>36.</td>
<td>Infrared Spectrum of High-Pressure Form of Iron Phosphate (Phase II) Obtained at 55,000 Atmospheres and 650°C</td>
<td>76</td>
</tr>
<tr>
<td>37.</td>
<td>Infrared Spectrum of Cubic Form of Zirconium Pyrophosphate Obtained From Bios Reagent-Grade ZrP₂O₇ at 700°C</td>
<td>80</td>
</tr>
<tr>
<td>38.</td>
<td>Infrared Spectrum of High-Pressure Form of ZrP₂O₇ Obtained at 55,000 Atmospheres and 750°C</td>
<td>81</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Effect of Blowout on Polycaprolactam Density</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Correlation of Polymer Studies with Compression Treatment</td>
<td>11</td>
</tr>
<tr>
<td>3.</td>
<td>Effect of Superpressure Treatment at Ambient Temperature on Polybutadiene Systems</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>Characterization of Superpressure-Treated Polybutadiene Systems</td>
<td>13</td>
</tr>
<tr>
<td>5.</td>
<td>Encapsulation Studies Using Styrene Polystyrene System</td>
<td>15</td>
</tr>
<tr>
<td>6.</td>
<td>Relation of Viscosity Molecular Weight and Intrinsic Viscosity for Polystyrene</td>
<td>16</td>
</tr>
<tr>
<td>7.</td>
<td>Effect of Superpressure Treatment at Ambient Temperature on Methylmethacrylate Systems</td>
<td>16</td>
</tr>
<tr>
<td>8.</td>
<td>Effect of Superpressure Treatment on Catalyzed Methylmethacrylate Systems</td>
<td>18</td>
</tr>
<tr>
<td>9.</td>
<td>Effect of Superpressure Treatment on Benzoyl Peroxide Catalyzed Styrene Systems</td>
<td>19</td>
</tr>
<tr>
<td>10.</td>
<td>Effect of Superpressure Treatment on Nonmonomer Systems</td>
<td>21</td>
</tr>
<tr>
<td>11.</td>
<td>Exploratory High-Pressure High-Temperature Experiments on Sulfides</td>
<td>57</td>
</tr>
<tr>
<td>12.</td>
<td>Exploratory High-Pressure High-Temperature Experiments on Aluminum Phosphate</td>
<td>60</td>
</tr>
<tr>
<td>14.</td>
<td>Molar Refraction and Specific Refractivity of AlPO₄ (Quartz) and the New High-Pressure Form of Aluminum Phosphate</td>
<td>68</td>
</tr>
<tr>
<td>15.</td>
<td>Exploratory High-Pressure High-Temperature Experiments on Iron Phosphate.</td>
<td>71</td>
</tr>
<tr>
<td>17.</td>
<td>Exploratory High-Pressure High-Temperature Experiments on Zirconium Pyrophosphate</td>
<td>77</td>
</tr>
<tr>
<td>18.</td>
<td>X-Ray Powder Diffraction Data for Zirconium Pyrophosphate</td>
<td>78</td>
</tr>
<tr>
<td>19.</td>
<td>Molar Refraction and Specific Refractivity of the Cubic Form of ZrP₂O₇ and the New High-Pressure Polymorph of ZrP₂O₇</td>
<td>79</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Battelle Memorial Institute has been studying the effects of ultrahigh pressures* on organic, semiorganic, and inorganic monomers and polymers for 2-1/2 years under the sponsorship of the Aeronautical Systems Division. This project was initiated by the Air force as part of its continuing search for new and improved materials. Such new materials are needed as manned and unmanned aircraft reach greater and greater speeds and higher and higher altitudes. Improved thermal and radiation resistance become essential.

During the first portion of this contract, described in Technical Documentary Report No. ASD-TDR-62-73, progress was made towards the determination of the effects of these ultrahigh pressures. Although equipment capable of producing the target pressures was available, modifications of the technique and sample capsules had to be made in order to work with the desired materials. This was especially necessary in the case of the highly compressible organic materials. Because the pressurized samples were quite small, some standard techniques had to be modified for use on a very small scale. Methods used for examination of the pressurized samples included microscopy, infrared spectroscopy, crystallography, X-ray diffraction, densitometry, viscometry, and differential thermal analysis. Using these methods, it was found that measurable changes were effected by these pressures in all of the classes of materials. In the case of organic polymers, changes induced in polymers were found to be quite small. More definite evidence of changes was found in the semiorganic materials, as for example, in the case of the dimethyl dicyanosilane. With the inorganic materials, several new compounds were synthesized, for example, in the CaO-Al₂O₃-SiO₂-H₂O system and in the heteropoly-nuclear acids and salts. The findings during the first phase of the contract warranted further work in each of the areas. This work was planned to be an extension of the most promising areas disclosed in the first report period. With organic materials it was planned to pressurize further polymer types, carry out polymerizations under pressure, and attempt the polymerization of normally inactive materials. In the semiorganic class a more detailed study of the reaction of dimethylidicyanosilane was planned, along with studies of additional similar materials and phthalocyanine polymers. In the area of inorganic polymers it was planned to emphasize the study of iron sulfides, polynuclear sulfides, and various phosphates.

Details of these studies and the results are to be found in the following sections.

II. SUMMARY

Organic Polymers

Superpressure compression studies were conducted on polymers, monomers, and organic compounds, including different generic materials and several types of the same generic material. Studies have included polyethylenes, polyamides, styrene, poly-styrene, methylmethacrylate, polymethylmethacrylate, polyunsaturated materials, and nonconventional monomers under compressions up to 100,000 atmospheres. The

*Ultrahigh pressure is here meant to be equal to or greater than 30,000 atm (new 1960 scale).
Manuscript released by the authors December 31, 1962, for publication as an ASD Technical Documentary Report.
The majority of compressions were conducted at ambient temperature, although several heated runs were made during the preliminary and final phases of this study.

The most influential parameters within the target range of compression appear to be the polymer, the holding period, and the temperature. Results to date do not show any generalized pattern of behavior for polymers. Rather, the data suggest that each material may well have its individual response to compression.

Since compression-induced changes generally were small, exceedingly sensitive methods for evaluation were desired. The use of density-gradient columns for evaluation of compression-induced effects proved very satisfactory for detecting physical changes. No correlation, however, could be established between density and structural changes. Ultimately it was necessary to go to molecular-weight determinations and distribution for characterization of changes on a structural level.

Evaluation of the effects of compression on the molecular level for organic polymers indicates that degradation occurs with polystyrene and polycaprolactam under conditions studied. Polymethylmethacrylate, on the other hand, appears to crosslink under similar conditions to show an increased viscosity molecular weight and a corresponding shift in the molecular-weight distribution. While nominal increases in molecular weight were shown with treatment of polymethylmethacrylate, compressions using monomer-polymer systems showed considerably higher molecular weights.

Results of compression studies on polybutadiene systems were very interesting. Compression-induced changes in hardness and gel content indicate that crosslinking (vulcanization) was effected by the pressure treatment. Graft reactions appeared to take place with polybutadiene and methylmethacrylate under pressure.

Exceedingly interesting was the discovery of a surprisingly high reactivity of quinone under superpressure treatment. Compression gave a conversion to a nonvolatile material thermally stable to above 500 C. Infrared, differential thermal analysis, and solubility studies confirmed significant changes in the material. This reaction appeared sensitive to a threshold pressure, temperature, and the presence of catalyst.

Semiorganic Polymers

Five types of semiorganic monomers or low polymers were subjected to a variety of combinations of ultrapressure and temperature to discover the conditions under which reaction would occur. The research was undertaken to determine whether new polymerization reactions could be achieved or known polymers modified in such a way as to improve their properties.

It was hypothesized that dimethyldicyanosilane, \((\text{CH}_3)_2\text{Si(CN)}_2\), might be polymerized by extreme pressure through conversion of the \(\text{C} = \text{N}\) groups to doubly or singly bonded carbon-nitrogen structures. This compound has proved to be extraordinary in that it reacts at lower temperatures as the pressure is increased. Polymerization has been achieved at room temperature when the pressure reaches 105,000 atmospheres. In a sealed tube under its own vapor pressure, a temperature of 200 C is required to
obtain the same effect. The product is an insoluble brown-to-black polymeric solid which decomposes slowly above 200 °C at atmospheric pressure. Its composition is dependent on the pressure employed, with less rearrangement apparently occurring as pressure is increased. It appears that the presence of oxygen is necessary for the reaction to occur, and there are indications that the oxygen serves as a crosslinking agent between chains. Structures which fit the experimental data for these products have been proposed.

Four low polymers with Al-O-Si bonding (aluminosiloxanes) with either acetylacetone or isopropoxide bonded to the aluminum and with methyl, ethyl, or phenyl groups on the silicon were examined for reactivity over a range of pressures and temperatures. No significant effect of pressure was noted at temperatures below 200 °C. At this temperature and above, ultrapressure stabilizes the aluminum-oxygen-carbon bonding which exists at the acetylacetonate or isopropoxide linkages. The rupture of silicon-carbon bonds is also inhibited by the extreme pressure, and in some cases all reaction is prevented.

An arsenosiloxane formed from trivalent arsenic and having phenyl groups attached to the silicon was also studied. This material is reported to have the structure As[(OSi(C₆H₅)₂O)₃As and is thermally stable to 500 °C at atmospheric pressure. In this case ultrapressure had the effect of promoting decomposition via the breaking of silicon-carbon bonds at 500 °C. An arsenosiloxane based on pentavalent arsenic, (HO)₂AsO(OSi(C₆H₅)₂OAsO(OH))ₙOH, was stabilized somewhat by increased pressure at 100 °C. Nevertheless, it underwent pyrolysis rather than polymerization when pressurized at 200 °C.

Pressurization of mixtures which are known to form phthalocyanine polymers of low molecular weight under ordinary conditions seemed to offer promise of increased molecular weight if moderate rather than ultra pressures are used and the system is catalyzed. Less reaction was observed as the pressure increased. Pressurization without the catalyst resulted in formation of urethane type structures.

Experiments with aluminum phenoxide, Al(OC₆H₅)₃, have indicated that pressure does not effect any reaction that cannot be obtained simply by heating.

Inorganic Polymers

The belt ultrahigh-pressure high-temperature apparatus was used in an exploratory program on the effect of ultrahigh pressure and simultaneous sustained temperature on inorganic materials. The apparatus was modified by using a 2 in. OD tungsten carbide die as opposed to the 2.5 in. OD die used previously. In addition, more massive binding rings were used with the modified apparatus. Both 12- and 4-degree dies were used interchangeably. The modified apparatus was calibrated by means of the electrical-resistance transitions in bismuth: Bi I-II at 25,000 atmospheres and the Bi V-VI at 87,000 atmospheres. The modified apparatus is linear to at least 100,000 atmospheres and it has about the same efficiency as the original apparatus. The modified apparatus can be used routinely at sustained high temperatures up to 1500 °C to about 95,000 atmospheres. The equipment has been used at high temperature between 95,000 and
110,000 atmospheres but the frequency of failure increases exponentially above 95,000 atmospheres.

During the latter part of the program girdle dies and pistons were acquired for use on this project to extend the pressure-temperature range of the experimental work. Using a one-piece pyrophyllite gasket, the apparatus was found to be as efficient as the modified belt apparatus. Pressures of 120,000 atmospheres have been achieved in this device and preliminary results suggest that pressures of 140,000 atmospheres might be achieved by using plastic sheaths on the piston-gasket interface.

Exploratory high-pressure high-temperature experiments on iron monosulfide of stoichiometric (trollite) and nonstoichiometric (pyrrhotite) composition have shown that (1) there is a tendency for these materials to converge to an equilibrium composition under pressure, and (2) pressure will modify the position of the equilibrium boundary between iron monosulfide and iron disulfide. High-pressure high-temperature experiments on Sb$_2$S$_3$, As$_2$S$_3$, Bi$_2$S$_3$, Ag$_3$SbS$_3$, HgS, and PbCuSbS$_3$ gave negative results.

A new high-pressure hydroxyl-bearing form of aluminum phosphate was synthesized at high pressure and high temperature from anhydrous AlPO$_4$ (quartz structure) + H$_2$O and from hydrated AlPO$_4$. The new phase is stable from 23,000 atmospheres at 600 C to at least 110,000 atmospheres at 1300 C. The density of the new phase is 3.10; it is 18 per cent denser than the quartz form of AlPO$_4$. The p-t equilibrium boundary between the quartz form of AlPO$_4$ and the new phase in the presence of water was determined. Some data on the melting behavior of this system under pressure was also obtained. The new phase was characterized by complete chemical analysis, X-ray powder diffraction, optical crystallography, and infrared absorption spectroscopy. The coordination of both aluminum and phosphorus in the quartz form of AlPO$_4$ is 4, but the analytical results suggest that the new phase is an orthophosphate with phosphorus in fourfold coordination and aluminum in sixfold coordination. A tentative structural formula is [Al$_2$(PO$_4$)$_2$.Al(OH)$_3$]. The new phase appears to be structurally related to the lazalite-scorzalite-barbosalite series: [Al$_2$(PO$_4$)$_2$.Mg(OH)$_2$] - [Al$_2$(PO$_4$)$_2$.Fe(OH)$_2$] - [Fe$_2$(PO$_4$)$_2$.Fe(OH)$_2$]. A ferric iron structural analogue of the high-pressure aluminum phosphate has also been synthesized between 15,000 and 50,000 atmospheres from hydrated ferric phosphate. It probably has the formula [Fe$_2$(PO$_4$)$_2$.Fe(OH)$_3$]. This phase is almost opaque but will transmit light when less than about 10 microns in thickness. It exhibits strong pleochroism, intense absorption, and extreme dispersion of the optic axes and bisectices.

Between 50,000 and 110,000 atmospheres hydrated ferric phosphate transforms to a colorless unique new high-pressure phase which has been characterized by X-ray powder diffraction, optical crystallography, and infrared absorption spectroscopy.

Zirconium pyrophosphate (ZrP$_2$O$_7$) is a cubic material which transforms to a new high-pressure phase above about 45,000 atmospheres and is stable to at least 105,000 atmospheres at 1000 C. The new phase is about 15 per cent denser than the cubic form and has been characterized by X-ray powder diffraction, optical crystallography, and infrared absorption spectroscopy. Molar refraction data and the infrared data indicate that the cubic and the high-pressure polymorphs are derived by differences in the stacking of the coordination polyhedra rather than by differences in primary coordination.
III. EXPERIMENTAL SECTION - ORGANIC POLYMERS

Introduction

Studies were conducted during this program on the effects of superpressure treatment, primarily at ambient temperature, on the structures of four general types of organic systems. These included polymers, monomer-polymer systems, monomers, and multifunctional chemical compounds not generally considered to be monomers.

The supporting technique for evaluating pressure-induced structural changes generally was molecular-weight measurement and molecular distribution in the case of polymeric materials. However, thermal data, hardness, infrared, and differential thermal analysis were also used for studying changes in several materials.

Although most references to reactivity under pressure relate to the use of elevated temperature and frequently the use of catalysts, Gonikberg and Zhulin(1)* report the polymerization of butyraldehyde and isobutyraldehyde at high pressures. Yields of these polymeric materials in the order of 60 to 70 per cent were obtained under compressions of 6200 kg/sq cm; lower pressures, however, were less effective. Benzoyl peroxide catalyst was effective in increasing rate, but such catalysis resulted in lower molecular-weight material.

Work was reported by Shchetinin, et al.,(2) in which polymerization of arylcyclopropanes was studied under high pressures and temperature. Polymerization was obtained with p-hydroxy- and p-methoxyphenylcyclopropane under 200 C and 500 to 7500 atmospheres. No polymerization was obtained with phenylcyclopropane or with its derivatives with chlorine, amine, and dimethyl amino substituents in the para position.

Other polymerization studies under elevated pressures have been reported for cyclic unsaturated hydrocarbons, propargyl alcohol, and ethylene. The polymerization of bicyclo-[2,2,1] heptane-2, bicyclo [2,2,1] heptadiene-2,5, and cycloheptatriene was studied by A. M. Polyakova,(3) Polymerization of these materials was investigated under 6000 atmospheres using t-butylperoxide as catalyst. Temperature of the pressure polymerization ranged from 130 to 200 C. Polymer with the highest softening point was prepared at 200 C. For these materials, pressure polymerizations appeared to give increased molecular weight and yield as temperature is increased.

The polymerization of propargyl alcohol under pressures of 1000 to 6000 atmospheres was investigated by Polyakova(4). It was reported that this alcohol undergoes thermal polymerization under pressure with the formation of polymers containing conjugated bonds. Polymerization of ethylene under pressures to 20,000 atmospheres at temperatures to 200 C in the presence of a catalyst and a solvent was disclosed,(5) Improved physical properties are claimed for this material which melts at 127 to 132 C and is more crystalline than conventional polyethylene.

A review on "Addition Polymerization at High Pressures" by Weale(6) discusses the results of other polymerization studies covering a wide range of monomers. The range of pressures investigated generally was limited to 10,000 atmospheres. Even in this range, differences were observed in the polymerization behavior of monomers.

*References are listed on page 84.
under pressure. Thus, the polymerization rate of styrene was shown to increase with pressure in the range studied (to 5,000 atmospheres). Concurrently, molecular weight was shown to increase to about 3000 atmospheres and to remain relatively constant above this. Polymerization of α-methyl styrene was shown to have a sharp maximum in the rate of polymerization as a function of pressure. This was attributed to solidification of the monomer under pressure, and above this, only a dimer was produced.

Since the samples employed in the superpressure study were limited in size, techniques were selected which were reasonably well established and required only small quantities of material. Molecular-weight determination through viscosity changes in a solvent-polymer system appeared to be the best suited for this study. The equipment of Shulkin and Sparks\(^{(7)}\) was used successfully with minor modifications in techniques.

The most useful procedure for the determination of molecular-weight distribution appeared to be the turbidimetric titration method developed by D. R. Morey\(^{(8,9)}\). Modifications of this method were devised for polystyrene and polymethylmethacrylate. Some difficulty was encountered in developing a suitable system for use with polycaprolactam, but techniques were devised to overcome the problems.

Experimental Results

Compression Studies

The major amount of effort in the organic polymer compression program was conducted at ambient temperature using pressurizing techniques reported previously (ASD-TDR-62-73). However, several heated runs were made toward the end of the program to try to accelerate reactivity in catalyzed systems and in the nonmonomer experiments. The belt apparatus was used for most of the work. However, the girdle apparatus was used later in the program to permit more efficient press use and to obtain higher compression.

Effect on Polymers. Polymer-compression studies constituted a minor effort during this period. Some runs were made, however, to complete unfinished studies and to provide correlation data. Much of the work with compressed polymers was to develop analytical techniques and to verify compression-induced structural changes. Thus, many of the polymers discussed were compressed early in the program and re-evaluated during this period.

Initially, compression effects were monitored by means of density change determined in density gradient tubes. It is interesting to note that consistent patterns of behavior were observed for different materials, but similar behavior was shown for generically similar materials. Thus, density-compression data obtained for several different types of polymers under comparable conditions are summarized in Figure 1. Results are too limited to present as a rigorous picture of polymer behavior under compression. It is believed, however, that some correlation is shown and some generalizations may be postulated. Within the range of about 40,000 to 70,000 atmospheres, high- and low-density polyethylene show parallel behavior as might be expected.
FIGURE 1. EFFECT OF POLYMER TYPE ON SUPERPRESSURE BEHAVIOR

Compression holding period – 60 minutes.
Low-density polyethylene deviated from this pattern at 100,000 atmospheres and showed a significant density increase. Comparable data are not available on high-density material to determine whether the initial parallel behavior is continued.

The greatest density-compression effects were shown for polycaprolactam and polymethylmethacrylate. Polycaprolactam showed a density increase under low compressions around 40,000 atmospheres, but increasing compression appeared to be less effective in raising polymer density. Around 85,000 atmospheres, the density appeared to be nearly unchanged from the original.

Polymethylmethacrylate, on the other hand, showed a tendency to increase in density with increasing compression in the range of 30,000 to 70,000 atmospheres.

Polystyrene compressions showed some increase in density; however, the observed increase appeared relatively constant over a broad range of times and compressions.

Data available for use in this correlation are limited. Consequently, Figure 1 must be considered qualitative at best, but it is interesting to note that there do appear to be generic differences in behavior. Although considerable care is exercised to maintain comparable operation and to exclude factors which might void the correlation, it must be emphasized that the changes measured are extremely small.

Inspection of the correlation shown in Figure 1 suggests the following possibilities:

1. The resonance structure of polystyrene may exert a stabilizing influence under the conditions of current study.

2. The polymethylmethacrylate may be exhibiting evidence of activation as shown by the increasing density as the compression is increased in the current range.

3. Low-density polyethylene also may be showing evidence of some reactivity at the higher compression range.

4. Polycaprolactam appears to increase in density with prolonged treatment at moderate compressions and to decrease in density under higher compressions.

Normally, polycaprolactam is recovered from a compression run as a discrete although slightly deformed cylinder. However, during the course of normal decompression of Run 18837-4a, a blowout occurred which instantaneously dropped the loading from 60 tons to 30 tons. Examination of the system after completion of the otherwise normal decompression procedure indicated that probably all loading on the sample was lost during the blowout, except for the assembly remaining on the opposite side of the die. A photomacrograph of the sample, Figure 2 shows extreme swelling of the specimen at the blowout. The restrained end of the sample appears relatively normal, but the expanded end shows very marked slip planes induced in the sample by the treatment. Similar slip-plane markings were evident in a sample of compressed polymethylmethacrylate (Figure 3). The latter material appears to be very sensitive to loading and
FIGURE 2. APPEARANCE OF POLYCAPROLACTAM SAMPLE AFTER BLOWOUT

FIGURE 3. COMPRESSED POLYMETHYL METHACRYLATE SHOWING SLIP PLANES
unloading rates. Compression is very frequently accompanied by loud snapping noises which occasionally were mistaken for die damage. Very slow decompression appears necessary to minimize sample cracking.

Following photomacrographic study of the polycaprolactam sample, a series of density studies was conducted on the sample. Results of this work are shown in Table 1. The gross sample shows considerably greater reduction in density than subsequent sections. It is likely that disruptive decompression resulted in voids within the sample and between slip planes. Although all samples are prewet by evacuation under a gravity-adjusted liquid to minimize the effect of surface voids, it may well be that the first prewetting did not completely reach all voids. Subsequent sectioning permitted access to the deeper recesses with a subsequent increase in the relative sample density. Thus, while the gross samples showed a negative density change of 0.0032 gram, the half-section only showed a negative density change of 0.0018 gram. The half-sample was subsequently sectioned to determine the density profile from the exploded to the restrained end. It is believed significant that a density profile was shown in which the section adjacent to blowout was lowest and the restrained end highest. This would seem to confirm suspicions of the importance of decompression rate. This instance is an extreme situation, but it validates the necessity of using a constant decompression procedure in running comparative studies of the effects of compression on polymer properties.

<table>
<thead>
<tr>
<th>TABLE 1. EFFECT OF BLOWOUT ON POLYCAPROLACTAM DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum load, tons</td>
</tr>
<tr>
<td>Compression, atm x 10^-3</td>
</tr>
<tr>
<td>Compression period, min</td>
</tr>
<tr>
<td>Load before blowout (est), tons</td>
</tr>
<tr>
<td>Load after blowout, tons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Density</th>
<th>Initial</th>
<th>Final</th>
<th>Density Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Sample</td>
<td>1.1456</td>
<td>1.1424</td>
<td>-0.0032</td>
</tr>
<tr>
<td>Half-Section</td>
<td>1.1456</td>
<td>1.1438</td>
<td>-0.0018</td>
</tr>
<tr>
<td>Blowout Section</td>
<td>1.1456</td>
<td>1.1447</td>
<td>-0.0009</td>
</tr>
<tr>
<td>Intermediate Section</td>
<td>1.1456</td>
<td>1.1451</td>
<td>-0.0005</td>
</tr>
<tr>
<td>Restrained Section</td>
<td>1.1456</td>
<td>1.1489</td>
<td>+0.0033</td>
</tr>
</tbody>
</table>

Viscosity molecular weights and molecular-weight distributions were determined for controls and selected samples of compressed polystyrene, polymethylmethacrylate, and polycaprolactam. Results of these determinations (Table 2) show changes both in molecular weight and molecular-weight distribution which are attributed to the compression treatment.

However, these attempts to correlate the observed density changes, molecular weights, molecular-weight distributions, and compression data were unsuccessful. Although density-change patterns could be related to compression for different materials as previously shown, results indicate that these changes do not reflect the changes in molecular composition. Thus, it appears that density data reflect either physical changes in the polymer or an unresolved compression parameter.
<table>
<thead>
<tr>
<th>Polymer Run</th>
<th>Maximum Compression, atm x 10^{-3}</th>
<th>Holding Time, min</th>
<th>Density Change</th>
<th>Viscosity Molecular Weight</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polystyrene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18205-93</td>
<td>Control</td>
<td>None</td>
<td>None</td>
<td>230,500</td>
<td>Primarily high-molecular-weight material</td>
</tr>
<tr>
<td>18205-96</td>
<td>Control</td>
<td>None</td>
<td>None</td>
<td>72,800</td>
<td>Evidence for broad range of polymers</td>
</tr>
<tr>
<td>18205-35A</td>
<td>31.5</td>
<td>60</td>
<td>-0.0014</td>
<td>153,000</td>
<td>High- and intermediate-molecular-weight polymers</td>
</tr>
<tr>
<td>18205-31-10B</td>
<td>10</td>
<td>2</td>
<td>+0.0026</td>
<td>21,600</td>
<td>Evidence for similar number of fractions; low-molecular-weight material less prominent than previous run, but intermediate material more prevalent</td>
</tr>
<tr>
<td>18837-4(J)</td>
<td>39</td>
<td>60</td>
<td>+0.0072</td>
<td>20,400</td>
<td>Reduction in high-molecular-weight fraction and accentuation of intermediate- and low-molecular-weight fractions</td>
</tr>
</tbody>
</table>
Results indicate that viscosity molecular-weight determination and molecular-weight-distribution studies are more valuable methods of appraising the effect of compression on polymeric materials. It is interesting to note that evidence was obtained for reactivity under compression for polymethylmethacrylate polymer.

It was projected that a polymer such as polybutadiene might be more active because of the residual unsaturation possibly providing reaction sites. Several compression experiments were conducted with polybutadiene and polybutadiene-monomer systems to verify this postulation. Results of these studies, Table 3, are encouraging in that invariably the character of the starting material is markedly changed. The unsqueezed polybutadiene is a soft, tacky, easily cut material. After compression alone and in the presence of methylmethacrylate and styrene monomers, the material is harder, tack-free, and considerably more cut resistant. The extent of the monomer-polymer interreaction is uncertain, since these runs were made in the girdle apparatus and evidence of monomer leaks was observed at the conclusion of the runs.

Table 3. Effect of Superpressure Treatment at Ambient Temperature on Polybutadiene Systems

<table>
<thead>
<tr>
<th>Run</th>
<th>System</th>
<th>Estimated Maximum Compression, atm x 10^-3</th>
<th>Holding Time, hr</th>
<th>Benzene Solubility(a)</th>
<th>Durometer Hardness</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Polymer</td>
<td>--</td>
<td>--</td>
<td>Soluble</td>
<td>32</td>
<td>Tacky, easily cut</td>
</tr>
<tr>
<td>19433-7</td>
<td>Polymer</td>
<td>50</td>
<td>24</td>
<td>Insoluble</td>
<td>47</td>
<td>Nontacky, tough</td>
</tr>
<tr>
<td>19433-86</td>
<td>Polymer</td>
<td>100</td>
<td>25</td>
<td>Insoluble</td>
<td>60</td>
<td>Nontacky, tough</td>
</tr>
<tr>
<td>19433-14</td>
<td>Methylmethacrylate/polymer (0.33 volume)</td>
<td>80</td>
<td>16</td>
<td>Insoluble</td>
<td>55</td>
<td>Nontacky, tough, capsule leak</td>
</tr>
<tr>
<td>19433-16</td>
<td>Styrene/polymer(0.66 volume)</td>
<td>80</td>
<td>14-2/3</td>
<td>Insoluble</td>
<td>40</td>
<td>Nontacky, tough, capsule leak</td>
</tr>
</tbody>
</table>

(a) Benzene dissolution was started preparatory to running intrinsic viscosities. Little crosslinking was present in the control, as shown by rapid and virtually complete solubility. After 60 hours' extraction, compressed samples were swollen by benzene but were still intact.

Since the Staudinger constants for polybutadiene and these reaction products are not known, an attempt was made to evaluate the respective molecular-weight changes through intrinsic-viscosity measurements. The crosslinked content of the control was very low as evidenced by the rapid and virtually complete dissolution in benzene. Attempts, however, to obtain equivalent dissolution with compressed samples were unsuccessful. Polymer characterization was confined to physical-property measurements, determination of gel content, and intrinsic-viscosity determination of the extracted portion as shown in Table 4.

Thus superpressure treatment of polybutadiene shows evidence of compression-induced reactivity. Prior to compression, the material had a durometer hardness of 32, was tacky to the touch, and was easily cut with a razor blade. However, after a 16-hour compression, the sample had a durometer hardness of 47, was no longer tacky, and was very cut resistant.
Also, results of compressions using polybutadiene and monomers suggest inter-reactivity in the system. The presence of methylmethacrylate apparently contributing to crosslinking in the nongel portion of the samples as shown by the increase in intrinsic viscosity. Styrene had a less beneficial effect, as shown by the lowered hardness and intrinsic viscosity. It would appear that graft reactions can be effected between reactive polymers and dissimilar monomers.

Effect on Monomer-Polymer Systems. Initial experiments involving encapsulated systems were on monomer-polymer systems to reduce the system fluidity, compressibility, and possible reactivity.

Work was initiated on this phase of the compression study using the system styrene-polystyrene. Polystyrene sample slugs (0.227 inch in diameter x 0.337 inch high) machined to fit into a lead foil can were predrilled and prechecked for densities.

The machined and drilled polystyrene sample was placed in the lead-foil can described in the Annual Report, ASD-TDR 62-73. The can was dropped into a snug-fitting aluminum chill block to minimize sample heating during soldering. The styrenemonomer was charged from a hypodermic syringe to the cavity in the center of the polymer. A pretinned lead-foil cap was placed on the lead can and soldered to the flange on the can with a pencil soldering iron. The completed encapsulation was pushed from the bottom to force it out of the chill block. The assembly height was adjusted to 0.345 inch and fitted into the superpressure assembly.

Three ratios (volume) of monomer to polymer were used: 0.12, 0.34, and 1.09. Previous to starting the monomer-polymer compression studies, encapsulated compression runs were made using polystyrene slugs alone. Results of this work provided the basis for the lead-can design and gave encapsulated-polymer calibration date. Immediately prior to making the liquid-polymer runs, calibration data were obtained on encapsulated polystyrene with a bismuth wire positioned between the silver chloride and pyrophyllite sleeves. Since the bismuth monitor could not be installed concentric to the sample in the runs containing liquid, it was planned to use the intersleeve placement of the monitor and extrapolate the results to estimate the sample compression.
It was postulated that trace catalytic materials in the polymer might be effective in initiating polymerization. It was believed, however, that, to be effective, prolonged compression likely would be required because of the exceedingly small concentration of possible catalysts.

Qualitative results of runs to date suggest that a change is occurring in the compressed system. Results, Table 5, show that, while control runs (i.e., encapsulation systems held overnight without pressuring) become sticky and tacky due to solution of the monomer in the polymer, compressed runs were rubbery and nearly free from a tacky character. Free styrene undoubtedly was still present in the compression runs, as evidenced by a strong styrene odor.

Density determinations were not made immediately on the compressed material. It was observed at the time of the density determinations that the samples had hardened considerably, presumably due to the loss of unreacted styrene. Greater density increases were noted in the monomer-polymer runs than were observed at any time previously with the compressed polymer. Among the possible explanations of this effect are: (1) the monomer polymerizes to a more dense form under the high pressure, (2) the monomer grafts to the preformed polymer to give a more dense structure, and (3) the solvent action of the monomer permits densification of the polymer under pressure to a greater extent than in the absence of the solvent. The absence of the polymer-solvent characteristics and the increased densities with higher monomer-to-polymer ratios in the compressed runs would seem to indicate some reactivity of the monomer.

Examination, however, of molecular-weight characterizations, Table 6, of styrene-monomer-polymer and polymer systems shows that these density increases are not reflected in increased molecular weights; hence the density factors must be physical packing.

A comparison of the effect of compression on methylmethacrylate monomer-polymer and polymer systems is shown in Table 7. In general, viscosity molecular weights increase slightly with compression treatment, irrespective of the density behavior for polymethylmethacrylate. This tendency to increase in molecular weight suggests a crosslinking mechanism which appears to be confirmed by the significant increase in molecular weight during compression in the presence of monomer.

Effect on Monomer Systems. The high degree of monomer reactivity, especially with methylmethacrylate, in the monomer-polymer studies suggested that a high order of reactivity might be expected in the monomer polymerization program. Initial experiments, with encapsulated, catalyzed, purified, monomer systems used small quantities of catalyst to minimize the possibility of a runaway reaction. Considerable difficulty was encountered with ruptured capsules and consequent leakage. Initial experiments were conducted with azodiisobutyronitrile. Azodiisobutyronitrile (AIBN) is a good catalyst for methacrylate polymerization, but, under normal activation conditions, requires heating to effect decomposition and catalytic reactivity. It is of interest in this connection to cite the work of Gonikberg and Zhulin\(^1\) on the polymerization of aldehydes at high pressures. Their work at room temperature and high pressures showed that AIBN had no effect on the normal reactivity of these compounds. Benzoyl peroxide, however, was effective in increasing the reaction rate at room temperature and elevated pressures. It also is interesting to note that these researchers found that an induction
<table>
<thead>
<tr>
<th>Run</th>
<th>Press Load at Bi<sub>I-II</sub> Transition, tons</th>
<th>Maximum Compression, atm x 10<sup>-3</sup></th>
<th>Compression Period, min</th>
<th>Vol Monomer Vol Polymer</th>
<th>Density Initial</th>
<th>Density Final</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>18205-82</td>
<td>46.25</td>
<td>79</td>
<td>60</td>
<td>No monomer</td>
<td>1.0516<sup>(a)</sup></td>
<td>1.0532</td>
<td>(b)</td>
</tr>
<tr>
<td>18205-84</td>
<td>45.5</td>
<td>77</td>
<td>60</td>
<td>No monomer</td>
<td>1.0480<sup>(a)</sup></td>
<td>1.0502</td>
<td>(b)</td>
</tr>
<tr>
<td>18205-83</td>
<td>41.25</td>
<td>79</td>
<td>30</td>
<td>No monomer</td>
<td>1.0507<sup>(a)</sup></td>
<td>1.0502</td>
<td>(c)</td>
</tr>
<tr>
<td>18205-93</td>
<td>--</td>
<td>70</td>
<td>30</td>
<td>No monomer</td>
<td>1.0486</td>
<td>1.0511</td>
<td></td>
</tr>
<tr>
<td>18837-26</td>
<td>44.5</td>
<td>65.5</td>
<td>1260</td>
<td>0.12</td>
<td>1.0511</td>
<td>1.0556</td>
<td>(d)</td>
</tr>
<tr>
<td>Control</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>0.12</td>
<td>1.0480</td>
<td></td>
<td>(e)</td>
</tr>
<tr>
<td>18837-27</td>
<td>47.5</td>
<td>62.5</td>
<td>1260</td>
<td>0.34</td>
<td>1.0482</td>
<td>1.0522</td>
<td>(d)</td>
</tr>
<tr>
<td>Control</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>0.34</td>
<td>1.0492</td>
<td></td>
<td>(e)</td>
</tr>
<tr>
<td>18837-32</td>
<td>42.5</td>
<td>72.5</td>
<td>1050</td>
<td>1.09</td>
<td>1.0484</td>
<td>1.0631</td>
<td>(d)</td>
</tr>
<tr>
<td>Control</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>1.09</td>
<td>1.0446</td>
<td></td>
<td>(e)</td>
</tr>
</tbody>
</table>

(a) Qualitative values. Determination in solvent column was shown to result in error due to absorption of solvent.
(b) Control run. Monitor in center of sample.
(c) Control run. Monitor between sleeves.
(d) Rubbery solid when first opened. Tends to harden as styrene volatilizes.
(e) Control samples were softened by the solvent action of the styrene. The resulting systems were sticky and tacky after 1260 minutes. Although the lead can could be stripped from 18837-26 control, the cans could not be removed from the other two controls.
TABLE 6. RELATION OF VISCOSITY, MOLECULAR WEIGHT AND INTRINSIC VISCOSITY FOR POLYSTYRENE

<table>
<thead>
<tr>
<th>Run</th>
<th>Vol Monomer Vol Polymer</th>
<th>Maximum Compression, atm x 10^-3</th>
<th>Compression Period, min</th>
<th>Density, Final</th>
<th>Intrinsic Viscosity</th>
<th>Viscosity Molecular Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>No monomer</td>
<td>--</td>
<td>--</td>
<td>1.0486</td>
<td>0.960</td>
<td>230,500</td>
</tr>
<tr>
<td>18205-93</td>
<td>No monomer</td>
<td>70</td>
<td>30</td>
<td>1.0511</td>
<td>0.890</td>
<td>208,000</td>
</tr>
<tr>
<td>18837-32</td>
<td>1.09</td>
<td>72.5</td>
<td>1050</td>
<td>1.0631</td>
<td>0.625</td>
<td>129,000</td>
</tr>
</tbody>
</table>

TABLE 7. EFFECT OF SUPERPRESSURE TREATMENT AT AMBIENT TEMPERATURE ON METHYL METHACRYLATE SYSTEMS

<table>
<thead>
<tr>
<th>Run</th>
<th>System</th>
<th>Estimated Maximum Compression, atm x 10^-3</th>
<th>Holding Time, hr</th>
<th>Density, Final</th>
<th>Intrinsic Viscosity</th>
<th>Molecular Weight</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Polymer</td>
<td>--</td>
<td>--</td>
<td>0.404</td>
<td>1.049</td>
<td>111,000</td>
<td>Plexiglass VM</td>
</tr>
<tr>
<td></td>
<td>Extruded rod</td>
<td>--</td>
<td>--</td>
<td>1.1900</td>
<td>0.442</td>
<td>125,000</td>
<td>Ditto</td>
</tr>
<tr>
<td>18205-94</td>
<td>Polymer</td>
<td>31</td>
<td>1</td>
<td>0.512</td>
<td>1.1886</td>
<td>153,000</td>
<td>--</td>
</tr>
<tr>
<td>18205-96</td>
<td>Polymer</td>
<td>71.5</td>
<td>1</td>
<td>0.480</td>
<td>1.1916</td>
<td>140,000</td>
<td>--</td>
</tr>
<tr>
<td>19433-10</td>
<td>Polymer</td>
<td>98</td>
<td>2</td>
<td>--</td>
<td>0.473</td>
<td>137,000</td>
<td>--</td>
</tr>
<tr>
<td>19433-5</td>
<td>Monomer/polymer (0.34 volume)</td>
<td>45</td>
<td>34</td>
<td>--</td>
<td>0.804</td>
<td>284,000</td>
<td>--</td>
</tr>
</tbody>
</table>
period and the presence of lead were effective in increasing the reaction rate. Accordingly, other polymerizations were conducted using benzoyl peroxide as a catalyst. Initial runs made in lead cans gave little indication of monomer reactivity. Experiments, therefore, were conducted to determine whether encapsulation components might be poisoning reactivity. Results indicated that the flux and lead both could be deleterious to styrene reactivity. However, satisfactory polymerization reactivity was obtained in control runs in the presence of stainless steel cans washed free of flux. Compression studies subsequently were conducted in stainless steel capsules sealed with a minimum of solder and washed several times to remove all traces of flux. Evidence of some polymerization was finally obtained in these carefully washed stainless steel cans. However, significantly more catalyst and prolonged heating were required to produce partial polymerization of styrene in contrast to the conditions required to produce solid polymer in control runs. Results of control and compression studies for methylmethacrylate and styrene are summarized in Tables 8 and 9.

It would seem from these results that lead is an inhibitor for benzoyl peroxide catalyzed styrene polymerizations. This is not unreasonable in that lead is recognized as a free-radical trap. The apparent inhibiting effect of superpressure on the polymerizations studied was not anticipated. Several postulations can be suggested to account for the apparent anomaly between the reactivity of monomer in polymer and catalyzed monomer systems.

1. Residual free radicals and compression-induced free radicals in polymers such as polymethylmethacrylate appear to react readily with available monomer in a chain propagation mechanism to give increased molecular weights; the styrene-polystyrene system appears to react by chain degradation and termination mechanisms to give lowered molecular-weight material under the conditions studied.

2. Superpressure treatment of polymeric materials causes mechanical fracture of the polymer chain to produce a reactive site, but similar compression of a catalyzed liquid system may repress the fragmentation of conventional catalysts, thus requiring a higher activation energy in order to become functional.

3. The compression used in these studies may produce sufficient increase in monomer viscosity or possibly solidification such that the orientation and immobility of the monomer militated against polymerization propagation.

These latter postulations are supported by the recent publication by Weale in which the pressure dependence of catalyst decomposition was reviewed. It was shown that the unimolecular decomposition of benzoyl peroxide in carbon tetrachloride is retarded by pressure. The equilibrium constant at 3000 atmospheres was reported to be about half the value at 1 atmosphere. Thus, projection of this behavior to the extreme loading in the present study would tend to reinforce the validity of the postulation.

The freezing behavior of α-methyl styrene with pressure also was reviewed. The freezing point of this monomer was shown to increase linearly from -23.2 C at 1 atmosphere to 60 C at 4860 atmospheres. It seems very likely that at 100 C styrene may be frozen under the compressions used.
<table>
<thead>
<tr>
<th>Run</th>
<th>Catalyst Material</th>
<th>Per Cent</th>
<th>Press Load, tons</th>
<th>Holding Time, hr</th>
<th>Estimated Temperature, °C</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>19433-6</td>
<td>None</td>
<td></td>
<td>120</td>
<td>17</td>
<td>Ambient</td>
<td>Lead capsule leaked, no evidence of polymer</td>
</tr>
<tr>
<td>19433-11</td>
<td>Azodiisobutonitrile</td>
<td>0.05</td>
<td>160</td>
<td>16</td>
<td>Ambient</td>
<td>Lead capsule leaked, no evidence of polymer</td>
</tr>
<tr>
<td>19433-22</td>
<td>Benzoyl peroxide</td>
<td>0.15</td>
<td>58</td>
<td>4-1/2</td>
<td>Ambient</td>
<td>No evidence of polymer in liquid in lead capsule</td>
</tr>
<tr>
<td>19433-23</td>
<td>Benzoyl peroxide</td>
<td>0.15</td>
<td>80</td>
<td>18</td>
<td>Ambient</td>
<td>No evidence of polymer in liquid in lead capsule</td>
</tr>
<tr>
<td>19433-29</td>
<td>Benzoyl peroxide</td>
<td>0.20</td>
<td>78</td>
<td>2</td>
<td>100</td>
<td>No evidence of polymer in liquid in stainless capsule</td>
</tr>
<tr>
<td>19433-31</td>
<td>Benzoyl peroxide</td>
<td>0.20</td>
<td>80</td>
<td>16</td>
<td>100</td>
<td>Decompression blowout, tacky material remaining in stainless capsule</td>
</tr>
<tr>
<td>Run</td>
<td>Catalyst, per cent</td>
<td>Press Load, tons</td>
<td>Holding Time, hr</td>
<td>Estimated Temperature, °C</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.2</td>
<td>--</td>
<td>2</td>
<td>80</td>
<td>Solid polymer, reaction in glass vial</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.2</td>
<td>--</td>
<td>2</td>
<td>80</td>
<td>Solid polymer, reaction in stainless can</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.2</td>
<td>--</td>
<td>2</td>
<td>80</td>
<td>Viscous liquid, reaction in lead can</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.2</td>
<td>--</td>
<td>2</td>
<td>80</td>
<td>Viscous liquid, flux in vial</td>
<td></td>
</tr>
<tr>
<td>19433-32</td>
<td>0.2</td>
<td>78</td>
<td>14-1/2</td>
<td>100</td>
<td>No evidence of polymer in stainless capsule</td>
<td></td>
</tr>
<tr>
<td>19433-37</td>
<td>0.2</td>
<td>80</td>
<td>21</td>
<td>100</td>
<td>Small amount of viscous liquid in stainless capsule</td>
<td></td>
</tr>
<tr>
<td>19433-41</td>
<td>0.7</td>
<td>100</td>
<td>14-1/2</td>
<td>100</td>
<td>No evidence of leak during run, viscous, tacky, product in stainless capsule</td>
<td></td>
</tr>
<tr>
<td>19433-42</td>
<td>3.0</td>
<td>110</td>
<td>89</td>
<td>Ambient</td>
<td>No evidence of leak, no evidence of polymer</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>3.0</td>
<td>--</td>
<td>89</td>
<td>Ambient</td>
<td>No evidence of polymer in glass vial</td>
<td></td>
</tr>
</tbody>
</table>
Consistent with these postulations it would be interesting to verify the effect of superpressures on catalyst decomposition rates. It also would be of interest to study the effect of monomer compression in the presence of different permanent radical-containing compounds to see whether these used with pressure could produce significant monomer activation. It also would be of interest to determine optimum pressure-temperature conditions needed for different monomer-catalyst systems.

Effect on Nonmonomers. Possibly the area of greatest interest and promise is that of pressure-induced reactivity of nonmonomers. Experimental superpressure work was initiated with several compounds which possess potentially reactive groups, but which normally do not give (high-molecular-weight) polymers. Since polymerizations have been reported\(^{(1-4,6)}\) for several aliphatic multifunctional compounds under elevated pressures and temperatures, aromatic compounds with similar functionality were selected to take advantage of possible ring-induced stabilization. Compounds studied in this series have included aromatic compounds containing carbonyl, hydroxyl, carboxyl, and (-CHO) and combinations of nonmonomers with conventional monomer systems.

No change was noted in the thermal behavior or appearance of any of the compounds studied except quinone (Table 10). The compressed material was observed to be darker and to have a slightly higher melting or softening point and then subsequently appeared to become solid. It is likely that the melting point observed was due to unreacted quinone. Infrared and differential-thermal-analysis studies conducted on several products verified the reactivity and provided some structural data. Samples of the products purified by heating above the sublimation temperature of quinone for 3 hours reverted to a light-yellow color. Data on the treatment indicated that varying conversions of the quinone to nonvolatile compounds had been obtained which appear to correlate with the compression conditions. Comparison of the infrared spectra of quinone (Figure 4) and a heat-purified product (Figure 5) confirms a chemical change. Data are not sufficient to project the reaction mechanism with certainty. However, the presence of new absorption bands in the product at 6.8, 8.4, and 12.3 microns suggests that aromatic ether and phenolic hydroxyl groups were formed during the reaction. Similar absorptions were shown for several runs.

The use of heat and compression, however, does produce a product with a spectral pattern (Figure 6) which is different from that of both the quinone and compressed quinone. In addition to the absorptions shown by the compressed quinone, strong absorptions were recorded at 9.4 and 10.6 microns.

It is very interesting to note that the spectra (Figure 7) from a sublimation-purified sample of compressed and heated quinone-methylmethacrylate-benzoyl system was very similar to the spectra of the compressed, unheated quinone. It also seems highly significant that the unreacted quinone in this system was quite low. It is not known definitely whether the methylmethacrylate catalyst system entered this reaction or whether the reactivity was due primarily to the quinone-benzoyl peroxide system. Since there is virtually no spectral evidence for the presence of polymethylmethacrylate in this product, it is suspected that the monomer may have volatilized and not contributed significantly to the product. This is further strengthened by the results in Run 19433-25 in which monomer was added to the reaction. This compression gave very little non-sublimable product. However, neither did a similar compression of quinone alone.
Table 10. Effect of Superpressure Treatment on Nonmonomer Systems

<table>
<thead>
<tr>
<th>Run</th>
<th>System</th>
<th>Press Load, tons</th>
<th>Holding Time, hr</th>
<th>Estimated Temperature, °C</th>
<th>Thermal Behavior Before Compression</th>
<th>Thermal Behavior After Compression</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>19433-8</td>
<td>Anthraquinone</td>
<td>120</td>
<td>24-1/2</td>
<td></td>
<td>Sublimes 285 C</td>
<td>Sublimes 285 C</td>
<td>--</td>
</tr>
<tr>
<td>19433-12</td>
<td>Catechol</td>
<td>140</td>
<td>16</td>
<td></td>
<td>Melts 105 C</td>
<td>Melts 105 C</td>
<td>--</td>
</tr>
<tr>
<td>19433-13</td>
<td>Phthalaldehydic acid</td>
<td>140</td>
<td>6</td>
<td></td>
<td>Melts 97-97.5 C</td>
<td>Melts 97-98 C</td>
<td>--</td>
</tr>
<tr>
<td>19433-9</td>
<td>Quinone</td>
<td>110</td>
<td>18-1/2</td>
<td></td>
<td>Melts 115 C</td>
<td>Melts and solidifies 120-122 C</td>
<td>Differences noted in infrared(e)</td>
</tr>
<tr>
<td>19433-24</td>
<td>Quinone</td>
<td>82</td>
<td>44-1/2</td>
<td>R. T.</td>
<td>Melts 115 C</td>
<td>Melts and portion solidifies</td>
<td>3.3% nonsublimable</td>
</tr>
<tr>
<td>19433-28</td>
<td>Quinone</td>
<td>82</td>
<td>2</td>
<td>100</td>
<td>Melts 115 C</td>
<td>Color changes with different</td>
<td>14.1% nonsublimable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>temperatures</td>
<td></td>
</tr>
<tr>
<td>19433-33</td>
<td>Quinone</td>
<td>190</td>
<td>21</td>
<td>R. T.</td>
<td>Melts 115 C</td>
<td>Color changes with different</td>
<td>15.7% nonsublimable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>temperatures</td>
<td></td>
</tr>
<tr>
<td>19433-25</td>
<td>Quinone Methylmethacrylate</td>
<td>82</td>
<td>16-1/2</td>
<td>R. T.</td>
<td>--</td>
<td>--</td>
<td>2.9% nonsublimable</td>
</tr>
<tr>
<td>19433-26</td>
<td>Quinone Methylmethacrylate Benzoyl peroxide (0.15 per cent)</td>
<td>65</td>
<td>2</td>
<td>100</td>
<td>--</td>
<td>Volatilization at 230-240 C</td>
<td>94.6% per cent sublimation at 100 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Black residue</td>
</tr>
<tr>
<td>19433-30</td>
<td>Benzoic acid</td>
<td>80</td>
<td>18</td>
<td>100</td>
<td>Melts 122 C</td>
<td>Melts 122 C</td>
<td>No change</td>
</tr>
<tr>
<td>19433-34</td>
<td>Phosphorhalein</td>
<td>80</td>
<td>15-1/2</td>
<td>100</td>
<td>Melts 261 C</td>
<td>Melts 261-265 C</td>
<td>No change</td>
</tr>
</tbody>
</table>

(a) Lead capsule squeezed in belt apparatus.
(b) Lead capsule squeezed in girdle apparatus.
(c) Stainless steel capsule squeezed in girdle apparatus.
(d) Stainless steel capsule squeezed in belt apparatus.
(e) New absorption bands at 6.8, 8.4, and 12.3 microns.
(f) Less endotherm at 100 C for the compressed product and introduction of an exothermic reaction around 500 C.
FIGURE 7. INFRARED SPECTRA OF SUBLIMATION-PURIFIED HIGH-PRESSURE PRODUCT OF QUINONE-METHYLMETHACRYLATE-BENZOYL PEROXIDE
Examination of the DTA thermograms on quinone and the unpurified compressed product (Figures 8 and 9, respectively) confirms that a significant change was produced through compression. Samples were admixed with aluminum oxide and heated at 10°C per minute under a blanket of nitrogen. Both samples show significant endothermic reactions around 100°C which are attributed to sublimation of residual quinone. This loss of sample results in a comparable base-line shift in both runs. There is no further significant pattern shown on the quinone thermogram since both analyses were conducted under extremely high sensitivity due to the small amount of sample used. The minor fluctuations in signal for both runs are attributed to instrument noise and changes in nitrogen-gas flow rate. Examination of the thermogram for the compressed material, Figure 10, shows that not all the product was sublimed and that an exothermic reaction occurs from 500 to 600°C. This appears to be due to oxidation of the remaining organic materials since an increase in nitrogen flow rate was shown to reduce the exotherm. Since a relatively low nitrogen flow rate was used to blanket the samples, it is believed that sufficient back-diffusion of oxygen occurred to oxidize the nonvolatile portion of the product.

Although infrared did not show a significant difference between the purified products from compressed quinone (19433-9) and the compressed quinone methylmethacrylate-benzoyl peroxide system (19433-26), differential thermal analysis of the unpurified products were quite different. Study of Figures 9 and 10 shows the following:

2. Very little sublimable quinone was present in 19433-26.
3. The product from 19433-9 was thermally stable to around 500°C at which time oxidation started.
4. The product from 19433-26 showed a pronounced exotherm around 210°C.
5. Upon completion of the 210°C exotherm, the instrument returned to the base line and gave evidence of an oxidative reaction similar to the product from 19433-9.

The compression-induced reactivity was further verified by studying the solubility of the converted material. Small samples of the compression-treated materials were heated overnight in an oven at 212°F to volatilize unreacted quinone. Small samples of the residues after sublimation was placed in water, alcohol, and ether for 72 hours to determine whether any solubility would be manifested. No significant solubility was shown either by color in the solvent or by disappearance of the product. Quinone, run as a comparison, quickly dissolved to give a yellow solution.

In summary, work with nonmonomer systems has indicated that quinone is unique among the materials studied in that it possesses a pressure-induced reactivity. There appears to be a threshold pressure below which conversion is not affected. The reactivity appears to be sensitive to thermal conditions and catalysis. The product appears to have fair thermal stability and to be insoluble in common quinone solvents. Physical properties have not been highly defined nor have structural details been completely established.
FIGURE 8. DIFFERENTIAL THERMAL ANALYSIS OF QUINONE
FIGURE 9. DIFFERENTIAL THERMAL ANALYSIS OF SUPERPRESSURE-TREATED QUINONE
FIGURE 10. DIFFERENTIAL THERMAL ANALYSIS OF THE SUPERPRESSURE TREATED SYSTEM: QUINONE-METHYLMETHACRYLATE-BENZOYL PEROXIDE WITH HEAT
Analytical Methods

Evaluation of the effects of compression were generally simple observations of changes in appearance and state. These observations were augmented by density, durometer hardness, and melting-point determinations on appropriate samples. However, it was necessary to include more fundamental measurements on several products to better determine the structural changes during compression.

These techniques included infrared spectral measurements, differential thermal analysis, viscosity molecular weight, and molecular-weight distribution.

Infrared Analysis. Attempts to use Infracord measurements early in this program were discontinued when it was shown that changes in compressed polymers were not sufficient to show spectral differences in the microtomed film specimens. More recently, work with the nonmonomer compressions showed that considerable changes were effected in the compressed material and infrared studies proved valuable in confirming structural changes. Materials studied during this phase of the program generally were compressed powders. These were very amenable to the KBr pellet technique so this was used in obtaining the spectra presented in this report.

Differential Thermal Analysis. Powdered samples were admixed with aluminum oxide and heated at 10 °C per minute under a blanket of nitrogen. Since very small amounts of sample were used, the runs were conducted under extremely high sensitivity with shifts as necessary to keep the pen on scale. This undoubtedly resulted in a greater amount of noise and base-line shift than would be encountered with a larger sample size. Normally a fixed standard nitrogen flow was used to blanket this operation. Momentary adjustments in flow, however, were used to verify trends shown on the thermogram. Thus evidence for an exothermic oxidation due to back-diffusing oxygen was strengthened by increasing the nitrogen flow to lessen the oxygen accessibility.

Viscosity Molecular-Weight Measurement. Although several methods are available for molecular-weight determination, it was believed that the viscosity technique would have the best over-all applicability. Such determinations are usually based on the empirical relationship

\[\eta = K M^a \]

where

- \(\eta \) is the viscosity extrapolated to zero concentration
- \(K \) and \(a \) are constants for the polymer and solvent system
- \(M \) is the molecular weight.

Viscosity data for a given system are obtained by accurately measuring and comparing the flow time of the solvent and solutions of known concentrations. In this instance the viscometer used was of the design by Schulken and Sparks (see Figure 11). Preliminary flow measurements in which the solute level was adjusted conventionally by aspiration showed an undesirable lack of reproduction. Investigation revealed that this spread in results, Figure 12, line C, was due to lack of satisfactory reproducibility in the back pressure as governed by the solution level.
FIGURE 11. DIAGRAM OF SCHULKEN-SPARKS VISCOMETER
FIGURE 12. COMPARISON OF FLOW DATA FOR DIFFERENT VISCOMETER-LEVEL REFERENCE METHODS
The viscosity η is calculated from an equation of the form

$$\eta = \alpha \rho \left[t - \frac{\beta}{at} \right],$$

where

- p is solution or solvent density
- α and β are calibration constants in which β makes the correction for kinetic energy.

As the Shulkin and Sparks unit is designed to eliminate the kinetic-energy factor, this may be neglected so that the relative viscosity is equivalent to the solution flow time divided by the solvent flow time, since the α and ρ will cancel.

Molecular-Weight Distribution

Studies were made of the molecular-weight distribution of selected samples to determine whether significant changes occurred in the molecular spread. The method used for this study was the turbidimetric titration procedure of Morey and Tamblin. (8,9) This method requires only a dilute solution of polymer, and is both rapid and sensitive in contrast to molecular-weight-distribution determinations by weight methods of separation. This procedure can be used for quantitative determination of molecular-weight distribution by calibration against known molecular-weight materials of the same type. For the purposes of the present study, the technique was used for comparison of the molecular weight of the compressed sample with that of a standard material. There are criticisms of this procedure when strict reliance is placed on it for quantitative evaluation of polymeric materials. However for indication of differences between samples of polymer such as are currently under study, this appeared to be a sensitive tool.

Essentially this method consists of running a precipitant into a dilute solution of polymer and measuring the turbidity of the solution due to precipitated polymer. Requirements for the procedure are that the solvent and precipitant are miscible in all proportions and that the precipitated polymer does not coagulate or settle out. Polymer concentrations of 0.01 per cent were used for these studies to give acceptable resolution on the Beckman DU spectrometer used for measuring turbidity. Coagulation was encountered in polycaprolactam precipitated from formic acid by water. This difficulty, however, was overcome by using water containing 0.1 per cent of an acid-stable wetting agent (Kreelon 8 D).

IV. EXPERIMENTAL SECTION - SEMIORGANIC POLYMERS

Introduction

A variety of semiorganic polymers have been prepared in recent years. In most of these materials a high degree of thermal stability has been obtained by avoiding
carbon-carbon bonds in the primary chain. The elements for such chains have been selected from various combinations of aluminum, boron, silicon, tin, or titanium alternating with less electropositive elements such as oxygen, sulfur, nitrogen, phosphorus, or arsenic. Preparation of polymers of this type having alkyl or aryl side chains has been accomplished by conventional reactions of organometallic compounds. Although polymers of moderately high molecular weight have been obtained, none of them combined all the desired properties of thermal stability, plasticity, and resistance to hydrolysis. Consequently, it is of value to investigate the possibility of using extreme pressure to achieve new polymerization reactions or modifications in known polymers that would result in improved properties.

The materials used in this program, with the exception of aluminum phenoxide, were all prepared previously, as described in Technical Documentary Report No. ASD-TDR-62-73. Those monomers and low polymers which offered the most promise of conversion to new products as a result of pressure were carried over from last year's program: (1) dimethyldicyanosilane, (2) four polyaluminosiloxanes, and (3) two arsenosiloxanes. In addition, the possibility of forming phthalocyanine polymers and polyaluminoxanes under ultrapressures was also investigated.

Apparatus and Techniques

For all of the pressurization experiments, the sample was enclosed in a platinum capsule 1/2 inch long and 1/16 inch in diameter. To form the capsule, a length of platinum tubing was held in a steel die while the bottom was sealed by tamping platinum foil into the base. The sample was then tamped into the capsule, and the top seal of platinum foil applied similarly. When the sample was to be heated beyond its melting point, the end seals were strengthened by sandwiching wadded foil between disks of platinum. For experiments at elevated temperatures, the platinum capsule served as a resistance heater.

For materials which are sensitive to oxygen or moisture, it was found necessary to load the capsules under a blanket of dry nitrogen or argon. Lamp-grade nitrogen proved to be suitable for this purpose in many cases, but for prolonged use of the "inert atmosphere box" the greater density of argon made it preferable. After pressure experiments with these sensitive materials, the capsules were opened in the inert atmosphere and the contents sealed in a vial under the same atmosphere for study of changes in properties and structure.

The pressurization experiments were carried out with both the belt and the girdle type of binding rings, pistons, and die. Experiments at 90,000 atm and above were carried out using the girdle equipment.

Pressurization Experiments

The materials which underwent a different reaction under ultrapressure from that which occurred on heating alone were studied under a variety of pressure-temperature combinations. In this way a reactivity diagram was constructed for each such material, delineating conditions of pressure and temperature at which reaction of some type occurs.
Dimethyldicyanosilane

Investigation of the temperature and pressure conditions under which \((\text{CH}_3)_2\text{Si(CN)}_2\) undergoes reaction has revealed a possibly unique situation. The reactivity diagram, which is presented in Figure 13, shows that reaction occurs at lower temperatures as the pressure is increased. The zone of reactivity appears to be separated from the nonreactive zone by a straight line, whose position indicates that reaction is possible at room temperature if a pressure in the range 105,000 to 120,000 atmospheres is used. Polymerization has indeed been achieved by pressurization at 105,000 atmospheres at room temperature, although pyrolysis sometimes has occurred under these same conditions. When the pressure was increased to 115,000 atmospheres, only the pyrolytic reaction was obtained.

The products obtained when this compound reacts are quite different from the starting material. Dimethyldicyanosilane is a colorless crystalline solid which has a melting point of 81 to 83°C and is very sensitive to moisture and oxygen. When exposed to the atmosphere it changes within 2 minutes to a colorless oil having an infrared spectrum typical of silicones. However, the reaction product obtained in these experiments is a brown to black powder which does not melt, but decomposes slowly above 200°C. It is no longer reactive to moisture or oxygen, and it is insoluble in water and common organic solvents. These property changes are indicative of polymer formation. Unfortunately, the products obtained have been too insoluble to permit molecular-weight determination.

The infrared spectra of the original dimethyldicyanosilane and its reaction product are presented in Figure 14. In the reaction product, the absorption at 2.9 microns can be attributed to N-H bonding, and the band at 6.2 microns, to C=N. The C=N absorption at 4.6 microns has not been completely lost, although its intensity has been sharply reduced. A strong, broad band has appeared between 9 and 10 microns, and this absorption probably is the result of Si-O bonding.

Elemental analysis of these polymerized products for carbon, hydrogen, nitrogen, and silicon invariably accounts for approximately 80 per cent of the composition. In view of the infrared evidence, the remaining 20 per cent may be attributed to oxygen. Experiments in which contact with the atmosphere was prevented during loading and unloading of the press have demonstrated that very little reaction occurs when the system is pressurized under these circumstances. Since there is also an increase in the H/Si ratio in the products, it is probable that water vapor takes part in the reaction.

A comparison of the analyses of the starting \((\text{CH}_3)_2\text{Si(CN)}_2\) and a typical reaction product is presented in the tabulation below.

<table>
<thead>
<tr>
<th>Weight Per Cent of Element</th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical</td>
<td>43.6</td>
<td>5.4</td>
<td>25.5</td>
<td>25.5</td>
</tr>
<tr>
<td>Starting Material</td>
<td>43.1</td>
<td>5.8</td>
<td>23.4</td>
<td>25.4</td>
</tr>
<tr>
<td>Reaction Product</td>
<td>36.3</td>
<td>6.1</td>
<td>17.9</td>
<td>18.7</td>
</tr>
</tbody>
</table>

The low nitrogen in the starting material is believed to be due to some hydrolysis which was observed during handling of the sample. The analysis of the reaction product accounts for only 79.0 per cent of the sample, and the remaining 21.0 per cent can be attributed to oxygen.
FIGURE 13. EFFECT OF PRESSURE AND TEMPERATURE ON REACTIVITY OF DIMETHYLDICYANOSILANE
Figure 14. Infrared spectra of dimethyldicyanoisilane (solid line) and its high-pressure reaction product (broken line).
The polymeric reaction products obtained under different conditions of temperature and pressure are not identical in composition, although they do have similar infrared absorption spectra. Elemental analysis of three products obtained by reaction at different pressures and 250°C shows distinct differences in composition. The atom ratios of these products compare with those of the starting material as follows:

<table>
<thead>
<tr>
<th>Pressure, atm</th>
<th>C/Si</th>
<th>H/Si</th>
<th>N/Si</th>
<th>O/Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>6</td>
<td>11</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>30,000</td>
<td>4.5</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>75,000</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Starting Material</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

These results indicate that the configuration of the original material is maintained more closely during polymerization under the higher pressures. Structures can be postulated that fit the experimental data for the products obtained under these different conditions. The following structure is proposed for the material which results at 75,000 atm:

\[
\begin{align*}
\text{NH} & \quad \text{NH}_2 \\
\text{C} & - \text{CH}_2 - \text{Si} - \text{O} - \text{CH}_2 - \text{CH} - \\
\text{NH}_2 & \\
\text{CH} & - \text{CH}_2 - \text{Si} - \text{O} - \text{CH}_2 - \text{CH} - \\
\text{O} & \\
\text{C}_4\text{H}_9\text{N}_2\text{O}_2\text{Si}
\end{align*}
\]

An increase in both the C/Si and H/Si atom ratios was found in the product which was obtained at 30,000 atm. This result can be accounted for by the structure:

\[
\begin{align*}
\text{NH} & \quad \text{NH}_2 \quad \text{NH}_2 \\
\text{C} & - \text{CH}_2 - \text{Si} - \text{O} - \text{CH}_2 - \text{CH} - \text{CH} - \text{CH}_2 - \text{O} - \text{Si} - \text{CH}_2 - \text{CH} - \\
\text{O} & \\
\text{C}_4.5\text{H}_{10}\text{N}_2\text{O}_2\text{Si}
\end{align*}
\]

The product obtained when the dimethyldicyanosilane is heated in a sealed tube under its own vapor pressure shows an increase in all the atom ratios, indicating that extensive rearrangement has occurred, resulting in a structure such as:
The weak $C=\text{N}$ infrared absorption band that remains in the reaction products is possibly due to end groups of such chains.

Polyaluminosiloxanes

These materials are low polymers having the structure:

$$\begin{array}{c}
\text{R'} \\
\text{Al} - \text{O} - \text{Si} - \text{O} \\
\text{O} \\
\text{R}
\end{array} \qquad \begin{array}{c}
\text{R'} \\
\text{Al} - \text{O} - \text{Si} - \text{O} - \text{Al} - \text{O} \\
\text{O} \\
\text{R'} \\
\text{R}
\end{array}$$

The preparations used in this study included acetylacetone and isopropoxide (as the OR bonded to the aluminum) and methyl, ethyl, or phenyl (as R' attached to silicon).

However, for the material in which R' is methyl and OR is chelated acetylacetone, a 2 to 1 ratio of aluminum to silicon was indicated by elemental analysis. This result could be explained by postulating the structure:

$$\begin{array}{c}
\text{R'} \\
\text{Al} - \text{O} - \text{Si} - \text{O} - \text{Al} - \text{O} \\
\text{O} \\
\text{R'} \\
\text{R}
\end{array}$$

If y in the above structure is 2, and the end groups are acetylacetone and isopropyl, both of which were employed in the preparation, the calculated molecular weight is 874. A molecular-weight determination was made on the material by elevation of the boiling point of benzene, using a Menzies-Wright differential water thermometer. A value of 867 was obtained by this technique.

The effect of various combinations of pressure and temperature on this material is shown in Figure 15. Pressure has an inhibiting effect on reactivity, as indicated in the plot. In addition, the reaction occurring under ultrapressure is different from that found at 1 atmosphere, although in both cases the product is less soluble and has greater thermal stability, indicating some further polymerization.
FIGURE 15. EFFECT OF PRESSURE AND TEMPERATURE ON THE DIMETHYLSIOXY-ALUMINUM-ACETYLACETONATE POLYMER
The amount of silicon-methyl bonding is sharply reduced in the extreme-pressure product, as shown by decreased absorptions at 7.95 and 12.5 microns in the infrared spectrum (Figure 16). At the same time there is an increase in the amount of OH bonding (2.9 microns), probably at the sites where the methyl groups are lost. On the other hand, the product of reaction at 1 atmosphere shows no loss of methyl groups, but rather a rearrangement in the acetylacetonate portion of the molecule.

The thermogravimetric curves (in vacuo) for the starting material and the products resulting from (1) pressurizing at 60,000 atmospheres and 300 C and (2) heating in an evacuated, sealed tube at 300 C are given in Figure 17. An appreciable increase in thermal stability is shown in the pressurized product above 100 C, although it contains a larger fraction of material volatilizing below 100 C. This difference may be related to the increase in OH bonding observed for the reaction product. Such groups may split out water when heated to 100 C in a vacuum. The unpressurized product obtained at 300 C displays a thermal stability which is better than that of the starting material, but not so good as that of the pressurized product. This difference probably results from a larger amount of crosslinking in the pressurized product.

The reactivity plot for the aluminosiloxane in which R' is ethyl and OR is acetylacetone is presented in Figure 18. The nature of the high-pressure reaction is the same as for the methyl derivative, resulting in breaking of Si-C bonds and formation of additional OH bonds at 60,000 atmospheres. At 1 atmosphere, rearrangement of the acetylacetonate ring occurs at 300 C.

The infrared spectra shown in Figure 19 indicate less difference between starting material and product than was observed for the corresponding methyl derivative. This effect is also noticed when the products obtained at 30,000 atmospheres and 200 C are compared. For the methyl derivative, the infrared spectrum of the product resembles that obtained at 60,000 atmospheres rather than the one obtained in a sealed-tube reaction. Just the reverse is true in the case of the ethyl derivative. The thermogravimetric curves presented in Figure 20 show that an appreciable increase in stability results from pressurization of the sample at 60,000 atmospheres and 300 C. Again, the unpressurized product obtained at 300 C has an intermediate thermal stability.

For the material in which R' is ethyl and OR is isopropoxide, the typical behavior under pressure is noted. Silicon-carbon bonds are broken when reaction occurs at 60,000 atmospheres, whereas the isopropoxide group alone is affected by reaction at 1 atmosphere (Figures 21 and 22). An important difference from the materials having acetylacetone chelated to the aluminum is that, at 350 C, higher pressures (even up to 90,000 atmospheres) do not prevent the breaking of silicon-carbon bonds. The thermogravimetric data shown in Figure 23 bear out the fact that not much thermal stability is gained by pressurizing this material.

In the case where isopropoxide is bonded to aluminum, and phenyl is on the silicon, the initiation of reaction is noted at only 100 C when the pressure is 60,000 atmospheres, and pyrolysis occurs at 300 C (Figures 24 and 25). Loss of -CH₃ from the isopropoxide is indicated by the infrared spectrum, together with some substitutional changes on the phenyl rings, and increase of OH bonding. Another difference from previously discussed materials is the prevention of the pyrolysis by increasing the pressure to 75,000 atmospheres. The thermogravimetric curves which are shown in Figure 26 show that little difference in thermal stability exists among the starting material, the pressurized
FIGURE 16. INFRARED SPECTRA OF DIMETHYLSILOXY-ALUMINUM-ACETYLACETONATE POLYMER AND ITS HIGH-PRESSURE REACTION PRODUCT
FIGURE 17. THERMOGRAVIMETRIC CURVES FOR THE DIMETHYLSILOXY-
ALUMINUM-ACETYLACETONATE POLYMER AND ITS
PRESSURIZED AND UNPRESSURIZED REACTION PRODUCTS
FIGURE 18. EFFECT OF PRESSURE AND TEMPERATURE ON THE DIETHYLSILOXY-ALUMINUM-ACETYLACETONATE POLYMER
FIGURE 19. INFRARED SPECTRA OF DIETHYLSILOXY-ALUMINUM-ACETYLACETONATE POLYMER AND ITS HIGH-PRESSURE REACTION PRODUCT
FIGURE 20. THERMOGRAVIMETRIC CURVES FOR THE DIETHYLSILOXY-ALUMINUM-ACETYLACETONATE POLYMER AND ITS PRESSURIZED AND UNPRESSURIZED REACTION PRODUCTS
FIGURE 21. EFFECT OF PRESSURE AND TEMPERATURE ON THE DIETHYLSILOXY-ALUMINUM-ISOPROPXIDE POLYMER
FIGURE 22. INFRARED SPECTRA OF DIETHYLSILOXY-ALUMINUM-ISOPROPOXIDE POLYMER AND ITS HIGH-PRESSURE REACTION PRODUCT
FIGURE 23. THERMOGRAVIMETRIC CURVES FOR THE DIETHYLSILYL-OXY-ALUMINUM-ISOPROPoxide POLYMER AND ITS PRESSURIZED AND UNPRESSURIZED REACTION PRODUCTS.
FIGURE 24. EFFECT OF PRESSURE AND TEMPERATURE ON THE DIPHENYLISILOXY-ALUMINUM-ISOPROPOXIDE POLYMER
FIGURE 25. INFRARED SPECTRA OF DIPHENYLISILOXY-ALUMINUM-ISOPROPOXIDE POLYMER AND ITS HIGH-PRESSURE REACTION PRODUCT
FIGURE 26. THERMOGRAVIMETRIC CURVES FOR THE DIPHENYLSILOXY-ALUMINUM-ISOPROPOXIDE POLYMER AND ITS PRESSURIZED AND UNPRESSURIZED REACTION PRODUCTS
product, and the unpressurized products. The slightly greater stability found for the unpressurized material reflects the inhibition of reaction which pressure appears to effect in this case.

Arsenosiloxanes

The arsenosiloxane reportedly having the composition \(\text{As}\left[\text{OSi(C}_6\text{H}_5\right]_3\text{As} \) was unaffected by pressures up to 60,000 atmospheres at temperatures as high as 400 °C for periods of several hours. However, when pressurization was conducted at 500 °C for 3 hours definite structural changes occurred. As indicated by the infrared spectrum, these appeared to be breaking of the silicon-carbon bonds. Unpressurized samples held at 500 °C for a 3-hour period did not degrade quite as extensively. This case was the only one encountered in this study in which high pressure appears to have increased the rate of decomposition of a material. This decomposition was not measurably affected by increasing the pressure to 75,000 atmospheres.

A linear polymer formulated as \(\text{AsO(OH)}_2[\text{OSi(C}_6\text{H}_5\right]_2\text{OAsO(OH)}]_n\text{OH} \) underwent decomposition when subjected to 60,000 atmospheres at 100 °C. However, increasing the pressure on this material to 75,000 atmospheres markedly inhibited the decomposition. Pyrolysis occurred readily when the material was pressurized at 200 °C and 60,000 atmospheres.

These materials do not seem to offer any promise of forming new polymers or thermally stable products as a result of pressurization.

Phthalocyanines

Low polymers of copper phthalocyanine, containing 6 to 8 units of monomer, can be prepared by reacting pyromellitic dianhydride, urea, and copper (II) chloride at ordinary pressure. Several experiments were performed to investigate the possibility of obtaining higher polymers of this type by reaction under very high pressure.

Experiments with the mixture mentioned above have indicated that the product obtained under combined pressure and heat is a urethane rather than a phthalocyanine. At 75,000 atmospheres no reaction occurred below 200 °C. At 250 °C the reaction mixture darkened, became insoluble in ethanol, and its infrared spectrum indicated urethane formation. At 300 °C the mixture pyrolyzed.

When the pressure was raised to 90,000 atmospheres these changes were much less extensive than 75,000 atmospheres. Consequently, the pressure was dropped to 60,000 at 250 °C, and increased reactivity resulted. Urethane was still formed rather than phthalocyanine, however, similar reactions occurred at 45,000 and at 30,000 atmospheres at 250 °C.

With the introduction of a catalytic amount of ammonium molybdate into the reaction mixture, pressurization at 30,000 atmospheres and 250 °C resulted in a black mass which appeared to be pyrolyzed. By reducing the temperature to 200 °C, at both 30,000
and 60,000 atmospheres the catalyzed mixture reacted to form a greenish product which appeared to be polymeric. This product was insoluble in common organic solvents and was thermally stable to 300°C.

Time has not permitted complete investigation of this system. The results of the most recent experiments indicate that phthalocyanine polymers of high molecular weight may possibly be formed in a catalyzed mixture by reaction at moderate pressure and a temperature in the vicinity of 200°C.

Aluminoxanes

Aluminum phenoxide was prepared by the reaction of aluminum with phenol. For this reaction, phenol (62.7 grams) was heated to reflux and a catalytic amount of iodine added. Aluminum turnings (6 grams) were added slowly, over a period of 5 hours, to keep the reaction under control. The excess phenol was distilled from the mixture at reduced pressure (1 mm Hg) and the product was then distilled at 340°C (1 mm Hg). The resulting aluminum phenoxide preparation was a yellowish-white solid which had a melting range of 205 to 220°C as prepared. After being redistilled the product melted at 240 to 242°C and was light yellow.

When pressurized, the aluminum phenoxide did not undergo significant change at 60,000 atmospheres and 250°C. After pressurizing at 75,000 atmospheres and 300°C, reduction in the amount of Al-O-C bonding, as shown by infrared spectrum, was indicative of aluminoxane polymer formation. However, the same result occurred when the compound was heated at 300°C in an evacuated tube without pressurization.

It appears that pressure does not have any effect on aluminum phenoxide that cannot be achieved simply by heating.

V. EXPERIMENTAL SECTION – INORGANIC MATERIALS

Ultrahigh Pressure – High-Temperature Apparatus

The ultrahigh pressure, high-temperature device used in most of this experimental program is a modified Hall belt apparatus(11) which was described in detail in ASD-TDR-62-73 dated January, 1962.(12) The belt is an internally heated compressible gasket device. Subsequent modifications were made to improve the pressure-temperature capabilities of the belt apparatus. A set of more massive binding rings than those originally employed, equipped with a tungsten carbide die with the same angles and aperture (0.5 in.) but a smaller diameter (2 in. OD), was acquired for this purpose. The internal sample geometry and configuration were not changed (cf. Reference 12, Figure 23b). The modified apparatus with a 12-degree tungsten carbide die was calibrated by means of the electrical resistance discontinuities in bismuth at 25,000 atmospheres (bismuth I-II transition) and 87,000 atmospheres (bismuth V-VI transition) (Figure 27) as based on the revised absolute-pressure scale.(13,14) The efficiency of the
FIGURE 27. CALIBRATION OF THE MODIFIED BELT APPARATUS WITH A 12-DEGREE DIE BY MEANS OF THE Bi I-II AND Bi V-VI ELECTRICAL RESISTANCE TRANSITIONS
modified belt apparatus is essentially the same as the earlier version with the less massive binding rings. High-pressure high-temperature runs may be made routinely in the modified belt to 95,000 atmospheres and 1300 C for periods of days. Above 95,000 atmospheres the frequency of failure increases markedly, principally as a result of piston failure and subordinately as a result of die failure. Many of the pistons and dies appear to fail as a result of shock effects which are due to blowout of the gasket material. The maximum pressure achieved at high temperature in the modified belt was about 105,000 atmospheres based on linear extrapolation from the high bismuth transition at 87,000 atmospheres.

During the latter part of this program a Wilson girdle apparatus (15) was obtained for experimental work. The girdle is an internally heated high-pressure device which consists of a steel die with a conical aperture and matching tungsten carbide pistons. When it is modified by addition of a compressible sandwich gasket of pyrophyllite sheathed with polyethylene, the device is capable of achieving up to 130,000 atmospheres at sustained high temperatures above 1000 C. (16) Although the modified girdle is less efficient than the belt in the sense that it requires a greater ram force to obtain a given internal pressure, further modifications using a one-piece compressible pyrophyllite gasket with the same internal configuration show that the upper bismuth transition at 87,000 atmospheres is obtained at 150 tons. The girdle with these modifications and this internal geometry, therefore, is as efficient as the belt apparatus. Inasmuch as the girdle device with the one-piece gasket has been successfully subjected to loads of 250 tons several times without blowout whereas the belt device generally fails at loads greater than 180 tons (105,000 atmospheres), it may be possible, if the girdle device is linear above 87,000 atmospheres as it is at lower pressures, to achieve internal pressures on the sample as high as 145,000 atmospheres at sustained high temperature. The major difficulty with the girdle device at present is temperature measurement. To date it has not been possible to lead out thermocouples at high pressure, and temperatures must be estimated by wattage input to the heater tube. Further work on this problem is continuing in this laboratory.

Experimental Results

Effect of Pressure on Sulfides

Exploratory experimental work on the effect of high pressure and simultaneous high temperature on a group of sulfides, viz., Sb2S3 (stibnite), As2S3 (orpiment), Bi2S3 (bismuthinite), Ag3SbS3 (pyrargyrite), HgS (cinnabar), PbCuSbS3 (bournonite), FeS (troilite), and Fe1-xS (pyrrhotite), was carried out under the conditions given in Table 11. The high-pressure products were evaluated by X-ray powder-diffraction methods and incident-polarized-light microscopy. Because of the reactivity of Sb2S3 with respect to platinum above 500 C, it was run in gold heater tubes at the higher temperatures; the other sulfides were run in platinum heater tubes.

No changes were detected in any of the sulfides with the exception of FeS and Fe1-xS. The former is paramagnetic stoichiometric FeS (troilite) from Del Norte County, California, and the latter is ferromagnetic nonstoichiometric iron-deficient Fe1-xS (pyrrhotite) with x = 0.13 from Riondell, B.C. Stoichiometric troilite is
<table>
<thead>
<tr>
<th>Sample</th>
<th>Pressure, atm</th>
<th>Temperature, C</th>
<th>Time, hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stibnite</td>
<td>1</td>
<td>500</td>
<td>18</td>
</tr>
<tr>
<td>(Sb_2S_3)</td>
<td>48,000</td>
<td>610</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>50,000</td>
<td>650</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>490</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>300</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>70,000</td>
<td>200</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>70,000</td>
<td>750</td>
<td>14-1/2</td>
</tr>
<tr>
<td>Orpiment</td>
<td>50,000</td>
<td>310</td>
<td>16</td>
</tr>
<tr>
<td>(As_2S_3)</td>
<td>60,000</td>
<td>240</td>
<td>22-1/2</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>300</td>
<td>16</td>
</tr>
<tr>
<td>Bismuthinite</td>
<td>60,000</td>
<td>400</td>
<td>16</td>
</tr>
<tr>
<td>(Bi_2S_3)</td>
<td>60,000</td>
<td>200</td>
<td>16</td>
</tr>
<tr>
<td>Pyrargyrite</td>
<td>60,000</td>
<td>350</td>
<td>14</td>
</tr>
<tr>
<td>(Ag_3SbS_3)</td>
<td>80,000</td>
<td>300</td>
<td>12</td>
</tr>
<tr>
<td>Cinnabar</td>
<td>60,000</td>
<td>400</td>
<td>16</td>
</tr>
<tr>
<td>(HgS)</td>
<td>70,000</td>
<td>500</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>350</td>
<td>18</td>
</tr>
<tr>
<td>Bournonite</td>
<td>70,000</td>
<td>400</td>
<td>20</td>
</tr>
<tr>
<td>($PbCuSbS_3$)</td>
<td>70,000</td>
<td>250</td>
<td>15</td>
</tr>
<tr>
<td>Troilite</td>
<td>60,000</td>
<td>600</td>
<td>44</td>
</tr>
<tr>
<td>(FeS)</td>
<td>60,000</td>
<td>1150</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>1000</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>65,000</td>
<td>900</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>65,000</td>
<td>500</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>1050</td>
<td>14</td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td>25,000</td>
<td>900</td>
<td>24</td>
</tr>
<tr>
<td>($Fe_{1-x}S$)</td>
<td>26,000</td>
<td>680</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>26,000</td>
<td>370</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>50,000</td>
<td>700</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>70,000</td>
<td>800</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>70,000</td>
<td>360</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>700</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>1000</td>
<td>16</td>
</tr>
<tr>
<td>FeS$_2$</td>
<td>80,000</td>
<td>700</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>900</td>
<td>16</td>
</tr>
</tbody>
</table>
hexagonal, but highly nonstoichiometric pyrrhotite is monoclinic.\(^{17-19}\) When Riondell pyrrhotite (Fe\(\text{46.7S53.3}\)) is subjected to pressures between 50,000 and 70,000 atmospheres at temperatures below 900°C, the product contains about 3 to 5 per cent of a second phase which is readily detectable in polished section by incident-light microscopy. This new phase occurs as minute (<15 microns), discrete, apparently single-crystal grains disseminated through a relatively coarsely crystalline, granular aggregate of the original pyrrhotite. It is distributed as intergranular chainlike networks and as inclusions in the pyrrhotite. The phase was tentatively identified as pyrite (FeS\(_2\)) by optical methods. This is supported by the presence of a faint pattern for FeS\(_2\) superimposed on the X-ray powder pattern of pyrrhotite and is confirmed quantitatively by a quantitative electron probe microanalysis of the new phase for iron. Once the identity of the phase was established as FeS\(_2\), it followed that the composition of the starting Fe\(_{1-x}\)S must have changed in the direction of greater stoichiometry as a result of the p-t conditions to which it was subjected. Further, FeS\(_2\) inclusions were not detected in the pyrrhotite subjected to 80,000 atmospheres at 1000°C. It is possible to determine the composition of iron monosulfide between 50 and 46 atomic per cent iron by means of the recent determinative curve of Arnold and Reichen\(^{20}\) which relates the magnitude of the (102) interplanar spacing to composition. On this basis, the pressurized pyrrhotite which contains FeS\(_2\) inclusions shows a compositional change in the direction of increasing stoichiometry (Fe\(\text{46.7S53.3} \rightarrow \text{Fe47.6S52.4}\)). When stoichiometric FeS is subjected to pressure it becomes slightly nonstoichiometric below 850°C (approaching 49 atomic per cent iron), but it becomes markedly nonstoichiometric above 850°C (approaching 47.6 atomic per cent iron). No microscopically detectable new phases accompany this compositional shift indicated by the determinative curve of Arnold and Reichen. As a working hypothesis it is proposed that this compositional shift involves the subsolidus exsolution of FeO from the troilite, and a few weak lines on the X-ray powder-diffraction patterns support this possibility. These experimental data strongly suggest that there is an equilibrium composition for iron monosulfide which is pressure and temperature dependent and that this composition can be approached from either stoichiometric or nonstoichiometric starting compositions.

The experimental data also indicate that the effect of pressure on the solvus curve between pyrrhotite solid solutions and the two-phase region (pyrite + pyrrhotite), determined by Arnold\(^{20,21}\) below 2000 atmospheres, is to shift the curve so as to increase the area of the two-phase region and decrease the area of the pyrrhotite solid solutions.

Effect of Pressure on Phosphates

Aluminum Phosphate

Anhydrous AlPO\(_4\) is a structural analogue of quartz (SiSiO\(_4\)) and consists of a three-dimensional framework of aluminum and phosphorus coordination tetrahedra.\(^{22-26}\) It is a phosphate corresponding to the structural class of silicates known as the tectosilicates. AlPO\(_4\) also has high-temperature forms corresponding to the tridymite and cristobalite forms of SiO\(_2\). Much work has been done on the synthesis and crystal growth of AlPO\(_4\) because of its piezoelectric properties and its possible use as a substitute for quartz in electronic applications.\(^{27}\)
When Fisher reagent-grade AlPO₄ containing 24 per cent water, which corresponds to AlPO₄·2H₂O, is subjected to pressures greater than 23,000 atmospheres (cf. Table 12), the product is a coarsely crystalline (10 µ to 300 µ) single phase which has a unique X-ray powder-diffraction pattern (Table 13) and unique optical properties. The same new high-pressure phase may be produced by pressurizing the anhydrous quartz form of AlPO₄ (obtained by dehydrating the Fisher reagent) with distilled water (cf. Table 12). The high-pressure phase is stable through a broad pressure-temperature region ranging from 20,000 atmospheres and 600 °C to at least 110,000 atmospheres and at least 1300 °C (Figure 28). It is interesting to note that the melting point of anhydrous AlPO₄ decreased from greater than 1600 °C at 1 atmosphere to about 950 °C at 20,000 atmospheres in the presence of water; it is well known that there is a decrease of the same magnitude in the melting point of SiO₂ with increasing pressure in the presence of water. The melting point of the high-pressure phase apparently increases with pressure >1300 °C at 80,000 atmospheres. The position of the liquidus line on the equilibrium diagram in the region of the minimum is controlled by two high-pressure symmetrically zoned products. Both of them had glass in the center of the heater tube, but one had the quartz form of AlPO₄ on either end, whereas the other had the high-pressure form on either end. This is a thermal-gradient effect at high pressure.

The high-pressure phase produced from either the Fisher hydrated reagent or the quartz form of AlPO₄ plus water was wet when the sample capsules were opened. A thermogravimetric analysis of a 20-mg sample of the high-pressure phase was made in vacuum using a Sartorius-Elektrona microbalance sensitive to 1 microgram. The results showed that this phase lost 5.95 per cent by weight between 500 and 850 °C and did not lose weight below 500 °C. Its infrared absorption spectrum shows the presence of structurally bound (OH). The liquid in contact with the high-pressure phase, therefore, represents the excess water in the initial reactants which is not incorporated in the structure of the solid. Samples of two high-pressure products (36,000 atmospheres and 1000 °C, and 50,000 atmospheres and 900 °C) were washed with distilled water. The pH of each leach liquor was strongly on the acid side and in each case a strong test for phosphorus was obtained with ammonium molybdate and benzidine, whereas only a weak reaction for aluminum was obtained with the very sensitive alizarin red S test. This suggests a pressure-induced change in the Al/P stoichiometry of the solid as follows:

\[
\text{Hydrated AlPO}_4 \text{ or AlPO}_4 + H_2O \rightarrow \text{New Phase + Phosphoric Acid.}
\]

A 90-mg coarsely crystalline single-phase sample of the high-pressure phase was prepared for quantitative chemical analysis by making three runs at 50,000 atmospheres and 900 °C. This sample is free from extraneous phases as shown by microscopic examination and by X-ray powder diffraction. The high-pressure phase assays 47.4 per cent Al₂O₃, 45.1 per cent P₂O₅, and 6.0 per cent LOI for a total of 98.5 per cent. Two P₂O₅ determinations checked very closely and the LOI is equivalent to that obtained by thermogravimetric analysis of a sample prepared at 80,000 atmospheres and 900 °C. The missing 1.5 per cent is almost certainly due to a small error in the alumina assay. The amount of structurally bound water in the high-pressure phase is evidently independent of the synthesis pressure in the range 50,000 to 80,000 atmospheres. By comparison, anhydrous AlPO₄ contains 41.8 per cent Al₂O₃ and 58.2 per cent P₂O₅ by weight. Thus, the qualitative indication of a change in the Al/P ratio of the solid has been confirmed quantitatively.
Table 12. Exploratory High-Pressure High-Temperature Experiments on Aluminum Phosphate

<table>
<thead>
<tr>
<th>Starting Material</th>
<th>Pressure, atm</th>
<th>Temperature, °C</th>
<th>Time, hr</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrated reagent-grade AlPO₄</td>
<td>1</td>
<td>300</td>
<td>3</td>
<td>Quartz form of AlPO₄</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>450</td>
<td>6</td>
<td>Cristobalite form of AlPO₄</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>930</td>
<td>15</td>
<td>Ditto</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1200</td>
<td>16</td>
<td>Quartz form of AlPO₄</td>
</tr>
<tr>
<td></td>
<td>15,000</td>
<td>650</td>
<td>20</td>
<td>Ditto</td>
</tr>
<tr>
<td></td>
<td>18,000</td>
<td>600</td>
<td>16</td>
<td>Quartz form of AlPO₄ + trace of new phase</td>
</tr>
<tr>
<td></td>
<td>20,000</td>
<td>1000</td>
<td>22</td>
<td>Glass + quartz form of AlPO₄</td>
</tr>
<tr>
<td></td>
<td>22,000</td>
<td>1000</td>
<td>40</td>
<td>Glass + new phase</td>
</tr>
<tr>
<td></td>
<td>23,000</td>
<td>600</td>
<td>20</td>
<td>New phase</td>
</tr>
<tr>
<td></td>
<td>25,000</td>
<td>350</td>
<td>54</td>
<td>Complex, multiphase</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>1000</td>
<td>48</td>
<td>Glass + new phase</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>600</td>
<td>20</td>
<td>New phase</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>1000</td>
<td>17</td>
<td>Ditto</td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>460</td>
<td>24</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>640</td>
<td>24</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>750</td>
<td>22</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>900</td>
<td>31</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>1000</td>
<td>41</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>1300+</td>
<td>31</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>90,000</td>
<td>1300</td>
<td>18</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>110,000</td>
<td>1300+</td>
<td>1</td>
<td>"</td>
</tr>
<tr>
<td>Anhydrous quartz form of AlPO₄ +</td>
<td>60,000</td>
<td>650</td>
<td>24</td>
<td>New phase</td>
</tr>
<tr>
<td>water</td>
<td>50,000</td>
<td>750</td>
<td>24</td>
<td>"</td>
</tr>
<tr>
<td>Anhydrous quartz form of AlPO₄</td>
<td>60,000</td>
<td>1000</td>
<td>14</td>
<td>Quartz form of AlPO₄</td>
</tr>
<tr>
<td></td>
<td>70,000</td>
<td>1150</td>
<td>24</td>
<td>Complex, multiphase</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>750</td>
<td>18</td>
<td>Ditto</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>1000</td>
<td>64</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>1300</td>
<td>24</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>90,000</td>
<td>1300</td>
<td>17</td>
<td>Complex, single phase</td>
</tr>
<tr>
<td>New phase</td>
<td>1</td>
<td>650</td>
<td>40</td>
<td>New phase + tr. quartz form + tr. cristobalite form</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>750</td>
<td>16</td>
<td>Cristobalite form</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1200</td>
<td>15</td>
<td>Cristobalite form + minor quartz form</td>
</tr>
</tbody>
</table>

60
<table>
<thead>
<tr>
<th>Fisher Reagent-Grade AlPO₄ Containing 24 Per Cent of Water</th>
<th>Quartz Form of AlPO₄ Obtained From Fisher Reagent-Grade AlPO₄ at 400°C</th>
<th>Cristobalite Form of AlPO₄ Obtained From Fisher Reagent-Grade AlPO₄ at 1200°C</th>
<th>High-Pressure Form of Aluminum Phosphate</th>
</tr>
</thead>
<tbody>
<tr>
<td>d, A</td>
<td>I</td>
<td>d, A</td>
<td>I</td>
</tr>
<tr>
<td>6.38</td>
<td>40</td>
<td>4.28</td>
<td>30</td>
</tr>
<tr>
<td>4.85</td>
<td>10</td>
<td>3.99</td>
<td>5</td>
</tr>
<tr>
<td>4.66</td>
<td>40</td>
<td>3.37</td>
<td>100</td>
</tr>
<tr>
<td>4.23</td>
<td>100</td>
<td>2.47</td>
<td>10</td>
</tr>
<tr>
<td>3.51</td>
<td>30</td>
<td>2.31</td>
<td>10</td>
</tr>
<tr>
<td>3.37</td>
<td>3</td>
<td>2.25</td>
<td>5</td>
</tr>
<tr>
<td>3.08</td>
<td>5</td>
<td>2.14</td>
<td>7</td>
</tr>
<tr>
<td>2.95</td>
<td>40</td>
<td>1.99</td>
<td>5</td>
</tr>
<tr>
<td>2.70</td>
<td>75</td>
<td>1.83</td>
<td>15</td>
</tr>
<tr>
<td>2.68</td>
<td>3</td>
<td>1.68</td>
<td>6</td>
</tr>
<tr>
<td>2.485</td>
<td>15</td>
<td>1.55</td>
<td>12</td>
</tr>
<tr>
<td>2.397</td>
<td>7</td>
<td>1.47</td>
<td>2</td>
</tr>
<tr>
<td>2.284</td>
<td>7</td>
<td>1.392</td>
<td>15</td>
</tr>
<tr>
<td>2.199</td>
<td>15</td>
<td>1.380</td>
<td>6</td>
</tr>
<tr>
<td>2.153</td>
<td>3</td>
<td>1.303</td>
<td>5</td>
</tr>
<tr>
<td>2.060</td>
<td>10</td>
<td>1.265</td>
<td>4</td>
</tr>
<tr>
<td>1.950</td>
<td>15</td>
<td>1.235</td>
<td>2</td>
</tr>
<tr>
<td>1.859</td>
<td>2</td>
<td>1.210</td>
<td>5</td>
</tr>
<tr>
<td>1.757</td>
<td>3</td>
<td>1.196</td>
<td>5</td>
</tr>
<tr>
<td>1.706</td>
<td>4</td>
<td>1.187</td>
<td>5</td>
</tr>
<tr>
<td>1.662</td>
<td>10</td>
<td>1.161</td>
<td>4</td>
</tr>
<tr>
<td>1.613</td>
<td>5</td>
<td>1.123</td>
<td>1</td>
</tr>
<tr>
<td>1.578</td>
<td>4</td>
<td>1.090</td>
<td>10</td>
</tr>
<tr>
<td>1.515</td>
<td>5</td>
<td>1.070</td>
<td>1</td>
</tr>
<tr>
<td>1.484</td>
<td>7</td>
<td>1.051</td>
<td>5</td>
</tr>
<tr>
<td>1.403</td>
<td>5</td>
<td>1.045</td>
<td>6</td>
</tr>
<tr>
<td>1.347</td>
<td>7</td>
<td>1.024</td>
<td>6</td>
</tr>
<tr>
<td>1.331</td>
<td>4</td>
<td>1.003</td>
<td>5</td>
</tr>
<tr>
<td>1.291</td>
<td>5</td>
<td>0.9960</td>
<td>5</td>
</tr>
<tr>
<td>1.278</td>
<td>4</td>
<td>0.9880</td>
<td>1</td>
</tr>
<tr>
<td>0.9823</td>
<td>3</td>
<td>1.185</td>
<td>5</td>
</tr>
</tbody>
</table>
FIGURE 28. PHASE-EQUILIBRIUM DIAGRAM FOR THE SYSTEM AlPO$_4$-H$_2$O
The crystals of the high-pressure phase are colorless, range in size up to 300 microns, have dominantly bipyramidal morphology, and show both simple contact and multiple polysynthetic twinning with the composition plane parallel to a principal plane of the bipyramid. The X vibration direction is normal to the composition plane. The optical constants are: \(\gamma = 1.635, \beta = 1.631, \alpha = 1.614 \) (all \(\pm 0.002 \)), \(\gamma - \alpha = 0.021 \), \(-2V = 51 \) degrees calculated from the refractive indices. The optical crystallography of this phase indicates that its symmetry is at least as low as orthorhombic, probably monoclinic, and possibly triclinic. This is in accord with X-ray power-diffraction data for this phase (Table 13) which constitute a very complex pattern. X-ray studies show that the new phase is not stable at ambient pressure and that it inverts on heating to the quartz and cristobalite forms of AlPO\(_4\) (cf. Table 12).

The density of the new phase was determined empirically by float-sink methods using a centrifuge, methylene iodide - carbon tetrachloride mixtures, and acetylene tetrabromide. The experimentally measured density is 3.10 \(\pm .01 \). The new phase is 18 per cent denser than the quartz form of AlPO\(_4\) which has a density of 2.62.

Recent work on the effect of coordination on the principal infrared absorption band in reconstructively related pairs of polymorphs, such as GeO\(_2\) (quartz) versus GeO\(_2\) (rutile), SiO\(_2\) (quartz) versus SiO\(_2\) (rutile), AlAsO\(_4\) (quartz) versus AlAsO\(_4\) (rutile), has shown that a major change in cation coordination from 4 to 6 results in a 23 per cent shift in the main absorption band in the direction of increasing wavelength.\(^{(29,30,31,32)}\) Infrared absorption spectra of the hydrated aluminum phosphate starting reagent, the quartz form of AlPO\(_4\), and the high-pressure phase were obtained by means of the KBr window method using a Perkin-Elmer Infracord recording spectrophotometer (Figures 29, 30, and 31). They show that the principal absorption band is in essentially the same position (1050 to 1100 cm\(^{-1}\)) which is the characteristic group frequency of tetrahedrally coordinated (PO\(_4\))\(^{3-}\), (SiO\(_4\))\(^{4-}\), and (AlO\(_4\))\(^{5-}\) groups. The spectrum of the quartz form of AlPO\(_4\) is very simple, in accord with the X-ray structural evidence that the cations are coordinated identically. The spectrum of the new phase, however, is relatively complex and shows additional very strong absorption bands at 980 and 1190 cm\(^{-1}\). The band at 1190 cm\(^{-1}\) is typical of aluminum in octahedral coordination with oxygen (Figure 32). The infrared spectrum of the new phase, therefore, indicates that (1) there has been some change in cation coordination, (2) this change in cation coordination is not a major change for both cations as exemplified by a change from four- to sixfold coordination, and (3) phosphorus is still in fourfold coordination but aluminum may be in sixfold coordination.

The infrared absorption bands at 6.1, 3.2, and 2.95 microns in the starting material are probably due to weakly bound water of crystallization, in accord with the experimental results, whereas the absorption bands at 2.7 and 2.85 microns in the pressure-induced phase are indicative of structurally bound OH, in agreement with the results of thermogravimetric analysis. The quartz form of AlPO\(_4\) is evidently anhydrous.

Studies of the quartz and rutile polymorphs of GeO\(_2\), SiO\(_2\), and AlAsO\(_4\)\(^{(29,30,32,33)}\) have shown that the effect of a change in cation coordination from four to six is to decrease the molar refraction by 12 \(\pm 2 \) per cent. Polymorphs with the same cation coordination, i.e., quartz, tridymite, and cristobalite forms of SiO\(_2\), have differences in molar refraction relative to the quartz form of less than 3.5 per cent. The ambient-pressure forms all have positive differences; the high-pressure forms (BeF\(_2\) coesite and SiO\(_2\) coesite) have negative differences of about 1.8 per cent. Molar-refraction data for
FIGURE 29. INFRARED SPECTRUM OF FISHER REAGENT-GR ADE AlPO₄ CONTAINING 24 PER CENT OF WATER
FIGURE 30. INFRARED SPECTRUM OF QUARTZ FORM OF AlPO₄ OBTAINED FROM FISHER REAGENT-GRADE AlPO₄ AT 400 C
FIGURE 32. INFRARED SPECTRUM OF Al(OH)$_3$ (GIBBSITE) IN WHICH ALUMINUM IS OCTAHEDRALLY COORDINATED WITH OXYGEN
AlPO₄ (quartz) and the new high-pressure phase are given in Table 14. These data suggest that the cation coordination in the high-pressure phase has not been completely changed with respect to the quartz form but that partial coordination changes may have occurred. The specific refractivity values (Table 14) show that both forms have essentially the same constant based on the Gladstone-Dale rule. The quartz form obeys the latter relationship fairly well as shown by \(n_{\text{exp}} = 1.526 \) and \(n_{\text{calc}} = 1.501 \), but the high-pressure form obeys it very well as shown by \(n_{\text{exp}} = 1.627 \) and \(n_{\text{calc}} = 1.622 \). On the basis of the stoichiometry of the high-pressure phase as shown by the chemical analysis and the additive character of the atomic refractions, it is possible to calculate the density of this phase by means of the molar-refraction relationship.\(^{(34, 35)}\) The calculated density of the high-pressure phase is 3.07, in good agreement with the experimentally determined value of 3.10.

Table 14. Molar Refraction and Specific Refractivity of AlPO₄ (Quartz) and the New High-Pressure Form of Aluminum Phosphate

<table>
<thead>
<tr>
<th>Compound</th>
<th>Average Refractive Index</th>
<th>Density</th>
<th>Molar Refraction (\left(\frac{n^2 - 1}{n^2 + 2} \cdot \frac{M}{d} \right))</th>
<th>Specific Refractivity (\left(\frac{n - 1}{d} \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlPO₄ (quartz form)</td>
<td>1.526(^{(a)})</td>
<td>2.62</td>
<td>14.29</td>
<td>0.201</td>
</tr>
<tr>
<td>High-pressure form of aluminum phosphate</td>
<td>1.627(^{(b)})</td>
<td>3.10</td>
<td>13.95</td>
<td>0.202</td>
</tr>
<tr>
<td>Per cent difference relative to the quartz form</td>
<td>-2.4</td>
<td></td>
<td>+0.5</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(a)}\) \(\alpha^2 r \)^\(^{1/3} \).
\(^{(b)}\) \(a^3 b^2 y \)^\(^{1/3} \).

Samples of the high-pressure form of aluminum phosphate and of the quartz form of aluminum phosphate were mounted and polished for determination of their Knoop indentation hardness. The Knoop indentation hardness number of the quartz form based on 10 determinations with a 10-gram load ranged from 591 to 868 with an average of 732. The Knoop indentation hardness of the high-pressure form based on 10 determinations with a 10-gram load ranged from 1512 to 1788 with an average of 1588. The variation in hardness in each phase is due to orientation effects in anisotropic structures. As was anticipated, the high-pressure form is significantly harder than the ambient pressure analogue. The corresponding hardness on the Moh relative scratchability scale is about 8.5. The high-pressure hydroxyl-bearing aluminum phosphate is thus harder than spinel and topaz and is almost as hard as \(\alpha \)-Al₂O₃ (corundum).

The new phase was considered initially to be a hydroxyl-substituted AlPO₄ in which \((\text{OH})_4\) proxied for \((\text{PO}_4)\) tetrahedra in the structure. The ideal structural formula was represented as \([\text{H}_x\text{Al}([\text{PO}_4]_1-x[\text{OH}]_x)]\). Silicate analogues of this composition are known, viz. \([\text{A}([\text{SiO}_4])_1-x[\text{OH}]_x]\), where \(\text{A} \) may be \(\text{U}^{4+} \), \(\text{Th}^{4+} \), or \(\text{Zr}^{4+} \), and \(x \) may be as high as 0.33.\(^{(36)}\) In the case of the aluminum phosphate, it is necessary to assume the presence of hydrogen for valence compensation. All the hydroxyl-substituted silicates, however, constitute a continuous isostructural series with their respective anhydrous forms (where \(x = 0 \)), whereas the high-pressure aluminum phosphate is structurally unrelated to AlPO₄ (quartz form). Finally, the chemical stoichiometry of the new phase shows that the
atomic O/P ratio is greater than 4:1 which precludes the possibility of it being a framework-, ring-, chain-, or sheet-structure phosphate. It apparently belongs to the orthophosphate group which corresponds to the nesosilicates (orthosilicates) and which is characterized by the presence of discrete \([\text{X}O_4]\) tetrahedra in the structure. The oxygen atoms at the vertices of the tetrahedra are not shared by other tetrahedra but are linked together through other cations which in general occupy positions of higher coordination that does the phosphorus. Not enough data are available on phosphates of known structure to draw any generalizations relating structure with physical properties, but for silicates, the neosilicates are characterized by high refractive indices and high density. Tectosilicates (i.e., quartz) are characterized by low refractive indices and low density. One would expect, therefore, that the neosilicate structure and, by analogy, the orthophosphate structure would be favored by high pressure.

The high-pressure aluminum phosphate appears to have the ideal structural formula \([\text{Al}_2(\text{PO}_4)_2\cdot\text{Al(OH)}_3]\) as deduced from the chemical analysis and structural considerations. It may well be the aluminum analogue of the lazulite-scorzalite-borbosalite \([\text{MgAl}_2(\text{PO}_4)_2(\text{OH})_2] - [\text{Fe}^{+2}\text{Al}_2(\text{PO}_4)_2(\text{OH})_2] - [\text{Fe}^{+2}\text{Fe}^{+3}_2(\text{PO}_4)_2(\text{OH})_2]\) atomic substitution series (37, 38). The X-ray powder-diffraction pattern of the high-pressure aluminum phosphate strongly suggests that it is related to this isomorphous series. Further, the X-ray powder-diffraction data and the optical properties of the high-pressure phase suggest that it is closely related, if not equivalent, to an unnamed mineral from Westana, Sweden (U.S. National Museum Sample No. R5611), described by Gheith(39). The latter was erroneously labeled berlinite, the mineral name for the quartz form of \(\text{AlPO}_4\). It has not as yet been analyzed chemically but reportedly contains aluminum and probably contains iron as well, as indicated by its relatively high refractive indices.

The crystal structure of the lazulite-scorzalite-borbosalite series was recently determined by Lindberg and Christ.(40) The phosphorus atoms are tetrahedrally coordinated with oxygen and the other cations (\(\text{Fe}^{+2}, \text{Fe}^{+3}, \text{Mg}, \text{and Al}\)) are octahedrally coordinated with oxygen. This is compatible with the coordination scheme for the high-pressure aluminum phosphate phase as deduced from the infrared absorption and molar-refraction data. The experimentally demonstrated pressure dependence (Figure 28) of what appears to be the pure aluminum analogue of the lazulite series may be due to the very small ionic radius of aluminum (0.51 Å) as compared with the ionic radii of the cations in the ambient pressure compositional variants (\(\text{Mg} = 0.67 \text{ Å}, \text{Fe}^{+2} = 0.74 \text{ Å}, \text{Fe}^{+3} = 0.64 \text{ Å}, \text{Mn}^{+2} = 0.80 \text{ Å}\)). Although aluminum occurs in octahedral coordination with oxygen in many structures which are stable at ambient pressure, including the lazulite structure, it is apparently not possible to place aluminum in the octahedral sites normally occupied by magnesium in lazulite, ferrous iron in scorzalite, and ferrous iron in barbosalite without the application of high pressure. Analogous relationships between coordination and ionic radius exist for the \(\text{SiO}_2\) and \(\text{AlAsO}_4\) polymorphs(32, 33) and for high-pressure \(\text{FeVO}_4\) and \(\text{CrVO}_4\)(41) in which pressure favors the crystallization of compositional variants in structures of higher coordination than are normally obtained at ambient pressure.

The effect of high pressure and temperature on the anhydrous quartz form of \(\text{AlPO}_4\) was explored over a broad pressure-temperature range (cf. Table 12). Unlike the hydrated aluminum phosphate which transformed to a single phase over the same \(p-t\) range, the anhydrous \(\text{AlPO}_4\) yielded several multiphase products and one single-phase product. All of the products give complex X-ray diffraction patterns which are unique in that they are not equivalent to either the high-pressure phase obtained from the
hydrated starting material or to any of the known thermally dependent polymorphs of AIPO$_4$.

Iron Phosphate

After the synthesis of the high-pressure form of aluminum phosphate, an exploratory high-pressure high-temperature program was carried out on iron phosphate to determine whether an iron analogue of the high-pressure aluminum phosphate could be synthesized. Baker reagent-grade ferric phosphate containing 23.5 per cent water was used for the experimental work which is summarized in Table 15. This reagent appears to be amorphous to X-rays. When the hydrated ferric phosphate is heated at 750°C at ambient pressure it transforms to anhydrous FePO$_4$ which has the quartz structure.(42,43) The hydrated reagent is transformed under pressure and temperature to a deep blue, almost black phase (Phase I) which is isostructural, as shown by X-ray powder diffraction (Table 16), with the high-pressure hydroxyl-bearing aluminum phosphate. By analogy with the high-pressure hydroxyl-bearing aluminum phosphate, Phase I has the formula $[\text{Fe}_2(\text{PO}_4)_2\cdot\text{Fe(OH)}_3]$. Phase I is almost opaque in the polarizing microscope but it is transparent in very thin edges of fine particles. It is biaxial and shows very intense pleochroism in deep blue-green, olive green, and olive brown and very strong dispersion of the bisectrices and optic axes. Refractive indices could not be determined accurately because of the strong absorption. When Phase I is heated at ambient pressure at 600°C for 65 hours it remains unchanged except for a trace amount of the quartz form of FePO$_4$; when heated at 1000°C for 4 hours, it inverts to the quartz form of FePO$_4$ plus another phase of unknown identity.

When the hydrated ferric phosphate reagent was subjected to 45,000 atmospheres and 750°C, a small amount of a unique white phase (Phase II) was observed on the ends of the platinum sample capsule where the temperature is lower than the measured temperature of 750°C in the central part of the capsule. Much larger amounts of the white phase developed near the ends of the capsule in the 55,000- and 70,000-atmosphere runs, and the product of a run at 105,000 atmospheres and 800°C consisted solely of Phase II. When Phase II is heated at 600°C for 65 hours it transforms to the quartz form of FePO$_4$.

As expected from the relative magnitudes of the pressures required for their synthesis, the thermal experiments at ambient pressure show that Phase II is less stable than Phase I at ambient pressure. X-ray powder-diffraction data for Phase II is given in Table 16. Phase II is colorless under the microscope, biaxial with an optic angle about 90 degrees, one plane of cleavage with extinction against the trace of the cleavage planes of 45 degrees, high birefringence, and mean index of refraction >1.80.

Infrared absorption spectra of the hydrated ferric phosphate starting reagent, the quartz form of FePO$_4$, Phase I, and Phase II were obtained by means of the KBr window method using a Perkin-Elmer Infracord recording spectrophotometer (Figures 33-36). Although Phase I is isostructural with the hydroxyl-bearing high-pressure aluminum phosphate as shown by X-ray diffraction, their infrared patterns are evidently not similar. This discrepancy is tentatively ascribed to the practically opaque character of the iron phosphate. Dachille and Roy have published infrared absorption spectra of a group of compounds with the quartz structure.(29) Their spectrum for FePO$_4$ (quartz form) is different from their spectra for either the quartz form of AIPO$_4$ or GaPO$_4$ and indicates the presence of water by virtue of absorption bands at about 3 and 6 microns.
TABLE 15. EXPLORATORY HIGH-PRESSURE HIGH-TEMPERATURE EXPERIMENTS ON IRON PHOSPHATE

<table>
<thead>
<tr>
<th>Starting Material</th>
<th>Pressure, atm</th>
<th>Temperature, C</th>
<th>Time, hr</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker reagent-grade FePO₄ containing 23 per cent of water</td>
<td>1</td>
<td>300</td>
<td>4</td>
<td>Amorphous</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>750</td>
<td>16</td>
<td>Quartz form of FePO₄</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>700</td>
<td>16</td>
<td>Two-phase mixture plus trace of Phase I</td>
</tr>
<tr>
<td></td>
<td>15,000</td>
<td>600</td>
<td>20</td>
<td>1:1 two-phase mixture: Phase I</td>
</tr>
<tr>
<td></td>
<td>45,000</td>
<td>750</td>
<td>19</td>
<td>10:1 Phase I:Phase II</td>
</tr>
<tr>
<td></td>
<td>55,000</td>
<td>650</td>
<td>18</td>
<td>4:1 Phase I:Phase II</td>
</tr>
<tr>
<td></td>
<td>70,000</td>
<td>750</td>
<td>24</td>
<td>2:1 Phase I:Phase II</td>
</tr>
<tr>
<td></td>
<td>105,000</td>
<td>800</td>
<td>24</td>
<td>Phase II</td>
</tr>
<tr>
<td>Phase I (a)</td>
<td>1</td>
<td>600</td>
<td>65</td>
<td>Phase I plus trace of quartz form of FePO₄</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1000</td>
<td>4</td>
<td>Quartz form of FePO₄ plus trace of another unknown phase</td>
</tr>
<tr>
<td>Phase II (b)</td>
<td>1</td>
<td>600</td>
<td>65</td>
<td>Quartz form of FePO₄ plus trace of Phase II</td>
</tr>
</tbody>
</table>

(a) Phase I is a blue-black almost opaque material.
(b) Phase II is a white transparent material.
TABLE 16. X-RAY POWDER-DIFFRACTION DATA FOR IRON PHOSPHATE PHASES

(FeKα₁ radiation, λ = 1.93597Å, Mn filter, 57.3 mm camera)

<table>
<thead>
<tr>
<th>Quartz Form of FePO₄ Obtained From Baker Reagent-Grade FePO₄ at 750 C</th>
<th>High-Pressure Form of Iron Phosphate (Phase I)</th>
<th>High-Pressure Form of Iron Phosphate (Phase II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d,Å</td>
<td>I</td>
<td>d,Å</td>
</tr>
<tr>
<td>6.7</td>
<td>3</td>
<td>1.63</td>
</tr>
<tr>
<td>6.0</td>
<td>3</td>
<td>1.58</td>
</tr>
<tr>
<td>5.3</td>
<td>3</td>
<td>1.51</td>
</tr>
<tr>
<td>4.4</td>
<td>40</td>
<td>1.42</td>
</tr>
<tr>
<td>4.1</td>
<td>2</td>
<td>1.41</td>
</tr>
<tr>
<td>3.46</td>
<td>100</td>
<td>1.34</td>
</tr>
<tr>
<td>3.28</td>
<td>2</td>
<td>1.29</td>
</tr>
<tr>
<td>3.05</td>
<td>3</td>
<td>1.24</td>
</tr>
<tr>
<td>2.95</td>
<td>2</td>
<td>1.23</td>
</tr>
<tr>
<td>2.72</td>
<td>3</td>
<td>1.21</td>
</tr>
<tr>
<td>2.57</td>
<td>15</td>
<td>1.18</td>
</tr>
<tr>
<td>2.51</td>
<td>15</td>
<td>1.15</td>
</tr>
<tr>
<td>2.36</td>
<td>30</td>
<td>1.11</td>
</tr>
<tr>
<td>2.29</td>
<td>10</td>
<td>1.09</td>
</tr>
<tr>
<td>2.18</td>
<td>30</td>
<td>1.07</td>
</tr>
<tr>
<td>2.03</td>
<td>1</td>
<td>1.045</td>
</tr>
<tr>
<td>1.87</td>
<td>40</td>
<td>1.026</td>
</tr>
<tr>
<td>1.72</td>
<td>20</td>
<td>1.016</td>
</tr>
<tr>
<td>1.67</td>
<td>2</td>
<td>0.985</td>
</tr>
<tr>
<td>1.299</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1.804</td>
<td>1</td>
<td>1.069</td>
</tr>
<tr>
<td>1.782</td>
<td>1</td>
<td>1.063</td>
</tr>
<tr>
<td>1.738</td>
<td>7</td>
<td>1.054</td>
</tr>
<tr>
<td>1.709</td>
<td>10</td>
<td>1.048</td>
</tr>
<tr>
<td>1.667</td>
<td>2</td>
<td>1.042</td>
</tr>
<tr>
<td>1.653</td>
<td>30</td>
<td>1.027</td>
</tr>
<tr>
<td>1.610</td>
<td>5</td>
<td>1.011</td>
</tr>
<tr>
<td>1.579</td>
<td>10</td>
<td>1.006</td>
</tr>
<tr>
<td>1.569</td>
<td>10</td>
<td>1.004</td>
</tr>
<tr>
<td>1.552</td>
<td>15</td>
<td>1.002</td>
</tr>
<tr>
<td>1.527</td>
<td>1</td>
<td>0.9981</td>
</tr>
<tr>
<td>1.511</td>
<td>1</td>
<td>0.9913</td>
</tr>
<tr>
<td>1.475</td>
<td>5</td>
<td>0.9835</td>
</tr>
<tr>
<td>1.465</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

72
FIGURE 34. INFRARED SPECTRUM OF QUARTZ FORM OF FePO₄ OBTAINED FROM BAKER REAGENT-GRADE FePO₄ AT 750 °C
FIGURE 35. INFRARED SPECTRUM OF HIGH-PRESSURE FORM OF IRON PHOSPHATE (PHASE I) OBTAINED AT 45,000 ATMOSPHERES AND 750 C
This spectrum closely resembles the infrared spectrum of Battelle's Phase II (Figure 36). Inasmuch as Dachille and Roy were doing high-pressure work on silica-structure phases including FePO$_4$, it is possible that they mistook Phase II for the quartz form. Correspondingly, Battelle's spectrum of the quartz form of FePO$_4$ (Figure 34) is in agreement with the spectra of the quartz forms of AlPO$_4$ and GaPO$_4$ published by Dachille and Roy(29) and with Battelle's infrared spectrum of the quartz form of AlPO$_4$ (Figure 30).

Zirconium Pyrophosphate

Zirconium pyrophosphate was selected for high-pressure high-temperature experimentation because its crystal structure is well established\(^{(44)}\), it is a representative compound of the pyrophosphate group, it is one compositional variant of a large isomorphous series \((X^+\cdot P_2O_7\) where \(X\) may be zirconium, silicon, titanium, hafnium, or uranium), it is cubic which permits structural changes to be evaluated readily, and because zirconium is monovalent. The experimental conditions employed in this study are summarized in Table 17. Reagent-grade ZrP$_2$O$_7$ containing about 12 per cent water was obtained from Bios Laboratories, Inc. for this study. All pressure experiments were carried out on anhydrous cubic ZrP$_2$O$_7$ prepared by preheating the Bios material in air to 700 C.

TABLE 17. EXPLORATORY HIGH-PRESSURE HIGH-TEMPERATURE EXPERIMENTS ON ZIRCONIUM PYROPHOSPHATE

<table>
<thead>
<tr>
<th>Starting Material</th>
<th>Pressure, atm</th>
<th>Temperature, C</th>
<th>Time, hr</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bios reagent-grade ZrP$_2$O$_7$</td>
<td>1</td>
<td>700</td>
<td>4</td>
<td>Cubic form of ZrP$_2$O$_7$</td>
</tr>
<tr>
<td>Bios reagent-grade ZrP$_2$O$_7$ heated to 700 C</td>
<td>25,000</td>
<td>1000</td>
<td>18</td>
<td>Cubic form of ZrP$_2$O$_7$</td>
</tr>
<tr>
<td></td>
<td>55,000</td>
<td>750</td>
<td>20</td>
<td>High-pressure form of ZrP$_2$O$_7$</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>1000</td>
<td>3</td>
<td>Ditto</td>
</tr>
<tr>
<td>High-pressure form of ZrP$_2$O$_7$</td>
<td>1</td>
<td>600</td>
<td>65</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1000</td>
<td>3</td>
<td>Cubic form of ZrP$_2$O$_7$</td>
</tr>
</tbody>
</table>

A new high-pressure polymorph of zirconium pyrophosphate was prepared at 55,000 atmospheres and 750 C and 100,000 atmospheres and 1000 C. X-ray powder-diffraction data for the cubic polymorph and the high-pressure polymorph are given in Table 18. The new phase is white in powdered form and colorless under the microscope. It is uniaxial positive with \(\varepsilon = 1.773 \pm .003, \omega = 1.755 \pm .003,\) and \(\varepsilon - \omega = 0.018.\) The crystals have an average size of about 20 microns, but a few crystals as large as 40 microns were observed. None of the crystals show external morphology so that there is no direct indication whether this phase is tetragonal or hexagonal. The density of the
TABLE 18. X-RAY POWDER-DIFFRACTION DATA FOR ZIRCONIUM PYROPHOSPHATE

(FeKα₁ radiation, λ = 1.93597Å, Mn filter, 57.3 mm camera)

<table>
<thead>
<tr>
<th>Cubic Form of ZrP₂O₇</th>
<th></th>
<th>New High-Pressure Form of ZrP₂O₇</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d,Å</td>
<td>I</td>
</tr>
<tr>
<td>4.7</td>
<td>20</td>
<td>1.503</td>
</tr>
<tr>
<td>4.1</td>
<td>100</td>
<td>1.455</td>
</tr>
<tr>
<td>3.66</td>
<td>20</td>
<td>1.436</td>
</tr>
<tr>
<td>3.36</td>
<td>20</td>
<td>1.393</td>
</tr>
<tr>
<td>2.91</td>
<td>20</td>
<td>1.374</td>
</tr>
<tr>
<td>2.485</td>
<td>40</td>
<td>1.335</td>
</tr>
<tr>
<td>2.385</td>
<td>5</td>
<td>1.303</td>
</tr>
<tr>
<td>2.285</td>
<td>5</td>
<td>1.257</td>
</tr>
<tr>
<td>2.065</td>
<td>3</td>
<td>1.242</td>
</tr>
<tr>
<td>1.990</td>
<td>2</td>
<td>1.225</td>
</tr>
<tr>
<td>1.943</td>
<td>3</td>
<td>1.165</td>
</tr>
<tr>
<td>1.893</td>
<td>15</td>
<td>1.153</td>
</tr>
<tr>
<td>1.845</td>
<td>25</td>
<td>1.143</td>
</tr>
<tr>
<td>1.795</td>
<td>2</td>
<td>1.130</td>
</tr>
<tr>
<td>1.745</td>
<td>1</td>
<td>1.120B</td>
</tr>
<tr>
<td>1.684</td>
<td>20</td>
<td>1.100</td>
</tr>
<tr>
<td>1.586</td>
<td>30</td>
<td>1.073</td>
</tr>
<tr>
<td>1.530</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: a₀ = 8.26 Å in agreement with Reference (35).
new phase is 3.62 ± 0.02 as determined by float-sink methods using Clerici's solution (equal parts of thallous formate-thallous malonate in water). The high-pressure phase, therefore, is 15.7 per cent denser than the cubic form of ZrP_2O_7 which has a calculated density of 3.13 as based on its lattice parameter of 8.258 Å. (45)

The high-pressure phase does not change when heated in air at 600 °C at ambient pressure for 65 hours. When it is heated in air at 1000 °C at ambient pressure for 3 hours, however, it does invert to the cubic form. This indicates that the high-pressure phase is a polymorph of ZrP_2O_7 which is metastable at ambient pressure.

As discussed in greater detail in the section on aluminum phosphate, studies of polymorphic pairs related by reconstructive transformation have shown that the effect of an increase in cation coordination from 4 to 6 is to decrease the molar refraction by 12 ± 2 per cent. (29, 32, 33) Polymorphs with the same cation coordination have essentially the same molar-refraction values. Molar-refraction data for the cubic form and the high-pressure form of ZrP_2O_7 are given in Table 19. It is evident that the molar-refraction values are the same for the two polymorphs. On this basis it is concluded that there is no difference in the primary cation coordination of these polymorphs and that the increase in density is due to closer packing of the coordination polyhedra. As indicated by the structure of the cubic form, zirconium is in octahedral coordination and phosphorus is in tetrahedral coordination in these polymorphs. (46) The specific refractivity values in Table 19 show that this pair of polymorphic forms obeys the Gladstone-Dale rule very well.

<table>
<thead>
<tr>
<th>Form of ZrP_2O_7</th>
<th>Average Refractive Index</th>
<th>Density</th>
<th>Molar Refraction (\frac{n^2 - 1}{n^2 + 2})</th>
<th>Specific Refractivity (\frac{n - 1}{d})</th>
<th>Sources of Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic</td>
<td>1.657</td>
<td>3.13</td>
<td>31.16</td>
<td>0.210</td>
<td>Reference (35) and this report</td>
</tr>
<tr>
<td>High pressure</td>
<td>1.761 (a)</td>
<td>3.62</td>
<td>30.17</td>
<td>0.210</td>
<td>This report</td>
</tr>
</tbody>
</table>

(a) \((\omega^2 - c)^{1/3} \).

Infrared absorption spectra of the cubic form and the high-pressure form of ZrP_2O_7 were obtained by means of the KBr window method using a Perkin-Elmer Infracord recording spectrophotometer. The spectra are shown in Figures 37 and 38. The spectrum of the cubic form is in agreement with that given by Steger and Leukroth (47). It is evident that there is a change in the general transmission characteristics of the two forms, with the high-pressure form transmitting broadly through the 8 to 13-micron range. The main absorption bands are essentially the same, although they are displaced about 0.2 microns toward the higher wavelengths in the high-pressure form. Recent studies of the effect of coordination on the main absorption bands in reconstructively related polymorphs has shown that a change in cation coordination from 4 to 6 results in a 23 per cent shift in the main absorption band in the direction of increasing wavelength. (29-32) Conversely, the absence of any significant shift in the main absorption band is indicative of the same coordination in a pair of
FIGURE 37. INFRARED SPECTRUM OF CUBIC FORM OF ZIRCONIUM PYROPHOSPHATE OBTAINED FROM BIOS REAGENT-GRADE ZrP_2O_7 AT 700 C
FIGURE 38. INFRARED SPECTRUM OF HIGH-PRESSURE FORM OF ZrP$_2$O$_7$ OBTAINED AT 55,000 ATMOSPHERES AND 750 C
polymorphs. Figures 37 and 38 show that the basic coordination scheme of the cubic and the high-pressure forms is the same, in agreement with the deductions from the molar-refraction data.

Other Phosphates

High-pressure high-temperature experiments were carried out on BPO$_4$, and $[\text{Ca}_5(\text{PO}_4)_3\text{OH}] \cdot \text{BPO}_4$ was converted to the quartz modification at 80,000 atmospheres and 750 C and at 90,000 atmospheres and 400 C. $[\text{Ca}_5(\text{PO}_4)_3\text{OH}]$ with the apatite structure remained unchanged at 90,000 atmospheres and 1000 C.

VI. CONCLUSIONS AND RECOMMENDATIONS

Organic Polymers

As a result of the experimental program just concluded on the effect of super-pressure treatment on the properties and structure of organic polymers, polymerization of monomers, and nonmonomers, the following conclusions and recommendations are made.

1. The extreme compression conditions employed appeared to promote crosslinking and graft reactions in some monomer-polymer systems.

2. Chemical reactivity can be induced in normally nonreactive, non-monomer materials by superpressure treatment.

3. The superpressures used in the polymerization studies appeared to retard the reactivity of the system.

4. The effect of superpressure treatment on polymeric materials is in general small and varies with the polymer and compression conditions.

5. It is recommended that superpressure polymerization studies cover a sufficient range of pressures to provide positive correlation with results established at lower compressions.

6. It is recommended that temperature be incorporated as a parameter to raise the monomer solidification temperature.

7. It is recommended that polymerizations be studied with permanent radicals under suitable conditions of temperature and pressure such that the monomer is still in a liquid phase.

8. It is recommended that further study be made of the reactivity of quinone under superpressures and elevated temperatures to establish the reaction mechanism to determine whether this or a similar reaction could be used to produce organic materials having unique and desirable physical or electrical characteristics.
Semiorganic Polymers

As a result of this investigation, the following conclusions were made: (1) addition reactions at double and triple bonds appear to be promoted by pressure, (2) such combinations as carbon-nitrogen, phosphorus-nitrogen, phosphorus-oxygen, carbon-sulfur, and phosphorus-sulfur should undergo reaction under pressure.

Further study of systems having multiple bonds is recommended.

Investigation of phthalocyanine-forming reaction mixtures at intermediate pressure also is recommended, because this approach seems to offer promise of forming higher polymers than can be obtained by heating.

Inorganic Polymers

The oxygen chemistry of pentavalent phosphorus is based on PO_4 tetrahedra which, like SiO_4 tetrahedra, may be linked together in various ways to form P_2O_7 ions, ring and chain ions of composition ($\text{PO}_3)_n$, layered structures, and infinite three-dimensional complexes. As a result, the phosphates and analogous vanadates and arsenates represent a wide range of structures and compositional variants on which to study the effects of ultrahigh pressure and high temperature. The synthesis of new high-pressure orthophosphates of aluminum and iron and of a new high-pressure pyrophosphate of zirconium as reported above is suggestive of the potential of the phosphate structures with respect to the study of pressure-dependent phase transformations and the properties of the resultant high-pressure phases.

It is suggested that a systematic study be undertaken on the effects of pressure and temperature on representative phosphates, vanadates, and arsenates of different structural types.

RIL:dnm
VII. REFERENCES

(23) Gruner, J. W., "Isostructural Relationship of AlPO$_4$ and SiSiO$_4$" (abstract), Amer. Mineral., 31, 196 (1946).

(41) Young, A. P., and Schwartz, C. M., "High-Pressure Forms of CrVO_4 and FeVO_4", Acta Cryst., in press.

VIII. BIBLIOGRAPHY ON HIGH-PRESSURE RESEARCH*

Apparatus and Equipment

General Studies

*(Collected since publication of "Literature Survey and Bibliography on Ultrahigh-Pressure Effects on Organic, Inorganic, and Semiorganic Materials, prepared under Contract No. AF 33(615)-7471, ASD- TDR-62-72,.)

"Hypothetical Standard States and the Thermodynamics of High-Pressure Phase Equilibriums", John M. Prausnitz, American Institute of Chemical Engineers Journal, 6, 78-82 (1960).

"High-Pressure Chemistry", Robert H. Wentorf, Jr., Chemical Engineering, 68 (22), 105-110 (1961).

"Study of the Dependence of Viscosity of Liquids on Pressure at 5000 Kg/Cm²", E. V. Zolotykh, Trudy Institut Komiteta Standartov, Mer i Ismeritel'nyi Priborov pri Sovetskom Ministerstvoe USSR, 46, 81-95 (1960).

Organic Compounds

"Preliminary Experiments on the Polymerization of Isopropenyl Acetate at High Pressures", S. Bywater and E. Whalley, American Chemical Society, Division of Polymer Chemistry, Preprints, 1 (1), 143-144 (1960).

"Changes in the Lattice Parameters of Pentaerythrite Under Pressures of up to 10,000 Kg/Cm2", A. P. Frolov, L. F. Vereshchagin, and K. P. Rodionov, Fizika tverdogo tela, 4 (6), 1608-1612 (1962).

"X-Ray Study of n-C34H70 at Pressures up to 16,000 Kg/Cm2", S. S. Kabalkina and Z. V. Troitskaya, Zhurnal Strukturnoi Khimii, 2, 27-32 (1961).

Semiorganic Compounds

Inorganic Compounds

"Variation With Pressure of the Curie Points of Gd and Mn₅Ge₃, and of the Compensation Point of 5Fe₂O₃·3Gd₂O₃", Daniel Block and Rene Pauthenet, Comptes rendus hebdomadaires des seances de l'academie des sciences, 254, 1222-1224 (1962).

"Relations Between the Phases Anorthite (I), Zoisite (II), and Lawsonite at High Temperatures and Pressures", Carl W. F. T. Pistorius, George C. Kennedy, and S. Sourirajan, American Journal of Science, 260, 44-46 (1962).

"The Electric Resistance of Graphite Polycrystals at Pressures up to 250,000 Kg/Cm², as Dependent on the Temperature", A. A. Semerchan, N. N. Kuzin, L. F. Vereshchagin, Doklady Akademii Nauk SSSR, 146 (4), 803-804 (1962).

"Thermal Properties of Water and Steam Under Pressures up to 1000 Kg/Cm² at 300-1000°", M. P. Vukalovich, B. V. Dzampov, and D. S. Rasskazov, Teploenergetika, 8 (7), 48-49 (1961).

"An Experimental Determination of Specific Volumes of Water Vapor at Temperatures of 400-650° and Under Pressures up to 1200 Kg/Cm²", M. P. Vukalovich, V. N. Zubarev, and A. A. Aleksandrov, Teploenergetika, 8 (10), 79-86 (1961).

"High Pressure and Synthetic Diamonds", R. H. Wentorf, Jr., Chemische Technik (Berlin), 12, 531-533 (1960).

DISTRIBUTION LIST

Headquarters
Aeronautical Services Division
Wright-Patterson Air Force Base
Ohio

ATTN: ASAPRL
ASAP (2)
ASEH
ASNE
ASNY
ASNG
ASNL
ASNR
ASND
ASNN
ASNP
ASNC
ASN
ASNX
ASO
ASRC
ASRCE
ASRCMF
ASRCN
ASRCNC
ASRCNL
ASRCNP
ASRE
ASRM
ASRMP
ASRN
ASRENE
ASRO
ASROO
ASRS
AST
AZ
MRO
FTD (TD-E2C)
ASRCN (Polymer Branch) (25)

AFSC (SCR-2, Mr. Kniffin)
Andrews AFB
Washington 25, D. C.

AFSWC (Capt. J. F. O’Brien)
Kirtland AFB, New Mexico

APGC (PGAPI)
Eglin AFB, Florida

ASTIA (TIPDR) (30)
Arlington Hall Station
Arlington 12, Virginia

Ballistic Research Laboratory
Aberdeen Proving Ground
Maryland

Buships (Mr. Edward Wagman, Code 634AO)
Washington 25, D. C.

Buweps (Code AE 44)
Washington 25, D. C.

Burships (Mr. L. E. Sieffert, Code 346)
Washington 25, D. C.

ESD (Capt. W. Schlotterbeck)
L. G. Hanscom Fld,
Bedford, Massachusetts

RADC (RCS, Mr. O. Tallman)
Griffiss AFB, New York

SCEL (Sigle-SMB)
Fort Monmouth, New Jersey

SSD (SSRTH, Lt. Col. J. F. Clyde)
AF Unit Post Office
Los Angeles 45, California

USAFA
Quarters 64551 (Capt. W. Massengale)
USAFA Academy, Colorado

Battelle Memorial Institute
ATTN: Dr. P. B. Stickney
505 King Avenue
Columbus, Ohio

Frankford Arsenal
Pitman-Dunn Laboratory
ATTN: Dr. Jack Radell
Philadelphia 37, Pennsylvania

6593 Test Gp
ATTN: Lt. R. A. Suehrstedt
Edwards AFB, California

AEDC (Dr. H. K. Doetch)
Arnold AFB, Tennessee

AFCCDD (CCR)
L. G. Hanscom Fld,
Bedford, Massachusetts
DISTRIBUTION LIST
(Continued)

Frankford Arsenal
ATTN: Dr. H. Glaser
Pitman-Dunn Laboratories
Philadelphia 37, Pennsylvania

Massachusetts Institute of Technology
Department of Chemistry
ATTN: Dr. W. C. Schumb
Cambridge, Massachusetts

Massachusetts Institute of Technology
ATTN: Dr. Dietmar Seyferth
Cambridge, Massachusetts

NAMC (Mr. J. Bowen)
Air Materials Laboratory
Philadelphia 12, Pennsylvania

National Academy of Sciences
National Research Council
ATTN: Dr. Clem C. Miller
2101 Constitution Avenue
Washington 25, D. C.

National Science Foundation
Rubber Research Group
ATTN: Mr. P. S. Greer
Washington 25, D. C.

NRL (Dr. W. A. Zisman)
Washington 25, D. C.

NOL (Dr. A. Lightbody)
Silver Spring 19, Maryland

NOL (Dr. C. P. Haber)
Corona, California

NOTS (Code 4526)
China Lake, California

ONR Branch Office (Dr. S. H. Herzfeld)
The John Crerar Library Building
10th Floor 86 East Randolph Street
Chicago 1, Illinois

United States Air Force Academy
Department of Chemistry
ATTN: Capt. C. H. Schmid
Denver, Colorado

U. S. Atomic Energy Commission
Reference Branch
Technical Information Center
ATTN: Document Control Section
P. O. Box 62
Oak Ridge, Tennessee

U. S. Department of Agriculture
Forest Service
Forest Products Laboratory
ATTN: Dr. Don Brouse
Madison 5, Wisconsin

U. S. Department of Agriculture
Agriculture Research Service
Southern Regional Research Laboratory
ATTN: Mr. W. A. Reeves
New Orleans 10, Louisiana

U. S. Department of Commerce
National Bureau of Standards
ATTN: Dr. G. M. Kline
Dr. Maxhellman
Dr. Dibeler
Washington 25, D. C.

Hqs. OX R & E Command
QM R & E Center, U. S. Army
ATTN: Tech. Library (AM X RE STL)
Natick, Massachusetts

A. O. Smith Corporation
Government Research & Development Division
ATTN: Lowel R. Newton
Milwaukee 1, Wisconsin

Adhesives Engineering Company
Division of Heller Helicopter Corporation
ATTN: Dr. D. W. Elam
1411 Industrial Road
San Carlos, California

Aerospace Corporation Library
ATTN: Technical Reports Section
2400 East El Segundo Boulevard
El Segundo, California

Aerospace Industries Association
ATTN: Mr. J. P. Reese
610 Shoreham Building
Washington 4, D. C.
Allied Chemical and Dye Company
General Chemical Division
ATTN: Mr. Paul Jones
P. O. Box 405
Morristown, New Jersey

Allied Chemical Corporation
Central Research Laboratory
ATTN: Dr. Herbert Reimachusel
Morristown, New Jersey

American Cyanamid Company
ATTN: Dr. L. A. Pelkerael
1927 West Main Street
Stamford, Connecticut

American Potash and Chemical Corporation
ATTN: Dr. K. Elia
201 West Washington Street
Whittier, California

B. F. Goodrich Company
Research Center
ATTN: Dr. C. F. Gibbs
Brecksville, Ohio

Allied Chemical Corporation
National Aniline Division
ATTN: Dr. Twilley
P. O. Box 831
Hopewell, Virginia

Bell Telephone Laboratories, Inc.
Technical Information Library
Whippany Laboratory
Whippany, New Jersey

Bendix System Division
ATTN: Mr. J. McNabb
327 South Fourth Street
Ann Arbor, Michigan

Bloomingdale Rubber Company
ATTN: Dr. H. C. Engel
Box 191
Aberdeen, Maryland

The Boeing Company
Wichita Division
ATTN: Joseph R. Galli
Dept. 7100, Engineering Plant 1
Wichita, Kansas

The Boeing Company
Wichita Division
ATTN: H. I. Paxhia
Chief Process Staff
Wichita, Kansas

Borden Company
Chemical Division
ATTN: Dr. B. D. Halpern
P. O. Box 9524
Philadelphia, Pennsylvania

The Borden Chemical Company
ATTN: L. J. Jaworski
8-10 22nd Street
Fair Lawn, New Jersey

California Institute of Technology
Jet Propulsion Laboratory
ATTN: I. E. Newlan
Technical Reports Section
Pasadena, California

California Research Corporation
ATTN: Dr. Robert O. Bolt
P. O. Box 1627
Richmond 1, California

Carbide & Carbon Chemicals Company
ATTN: Dr. W. J. Toussaint
Research and Development Department
South Charleston, West Virginia

Case Institute of Technology
ATTN: Director Armed Services
Plastic Project
Cleveland 8, Ohio

Celanese Polymer Company
ATTN: Dr. R. N. Clarke
744 Broad Street
Newark, New Jersey

Chemstrand Research Center, Inc.
Research Triangle Park
ATTN: C. J. Stehman
P. O. Box 731
Durham, North Carolina

Chicago Rawhide Manufacturing Company
Technical Information Center
ATTN: Kenneth D. Carroll, Librarian
1301 Elston Avenue
Chicago 22, Illinois
Coast Pro-Seal and Manufacturing Company
ATTN: Mr. L. C. Bolter
P. O. Box 57428
Flint Station
Los Angeles 57, California

Convair Division
General Dynamics Corporation
ATTN: R. I. Lemmon
Project Office 125
Ft. Worth, Texas

Cornell University
Department of Chemistry
ATTN: Dr. W. T. Miller
Ithaca, New York

Deccy Products Company
ATTN: C. H. Taft
120 Potter Street
Cambridge, Massachusetts

Denver Research Institute
ATTN: Dr. J. J. Schmidt
University of Denver
Denver 16, Colorado

Dow Chemical Company
Polymer Research Laboratory
ATTN: Dr. R. W. Lenz
Midland, Michigan

Dow Corning Corporation
Silastic Research Group
ATTN: Miss Anna L. Coleman
Midland, Michigan

Drexel University
Department of Chemistry
ATTN: Dr. Robert S. Hanson
Philadelphia, Pennsylvania

Duke University
Department of Chemistry
ATTN: Dr. J. H. Saylor
Durham, North Carolina

E. I. du Pont de Nemours & Company
Pioneering Research Division
ATTN: Dr. A. H. Frazer
Wilmington 98, Delaware

E. I. du Pont de Nemours & Company
Chemical Department
ATTN: Dr. H. S. Rothrock
Experimental Station
Wilmington, Delaware

E. I. du Pont de Nemours & Company
Explosives Department
ATTN: Mr. Wiley Brannon
Gibbstown, New Jersey

E. I. du Pont de Nemours & Company
Polychemicals Division
ATTN: Dr. F. C. McGrew
P. O. Box 98
Wilmington, Delaware

Esso Research & Engineering Company
Products Research Division
ATTN: Mr. A. B. Crampton
P. O. Box 51
Linden, New Jersey

Ethyl Corporation
ATTN: Dr. Walter Foster
Baton Rouge, Louisiana

Ethyl Corporation
ATTN: Mr. Phillip Savage
1000 West Eight Mile Road
Ferndale, Detroit, Michigan

Federal Telecommunication Labs.
ATTN: Dr. F. A. Muller
500 Washington Avenue
Nutley 10, New Jersey

Firestone Tire & Rubber Company
ATTN: Dr. L. J. Kitchen
1200 Firestone Parkway
Akron 17, Ohio

Food Machinery & Chemical Corporation
Central Research Department
ATTN: Dr. B. F. Landrum
161 East 42nd Street
New York 17, New York

Ford Motor Company
Scientific Laboratory
ATTN: Technical Information Section
Dearborn, Michigan
Franklin Institute
Benjamin Franklin Parkway at 20th Street
Philadelphia 3, Pennsylvania

Federal Aviation Agency
Information Retrieval Section MS 112
Library Branch
Washington 25, D. C.

George Washington University
Department of Chemistry
ATTN: Dr. D. C. White
Washington 6, D. C.

General Aniline and Film Corporation
ATTN: Dr. J. W. Wilkinson, Jr.
Central Research Laboratory
Easton, Pennsylvania

General Chemical Research Laboratory
ATTN: Dr. Hans Neumark
P.O. Box 405
Morristown, New Jersey

General Electric Company
General Engineering Laboratory
ATTN: Dr. G. P. Brown
Dr. Charles Doyle
Schenectady, New York

General Electric Company
Silicone Products Department
ATTN: Dr. F. M. Lewis
Waterford, New York

General Tire and Rubber Company
ATTN: Lois Brock, Librarian
1708 Englewood Avenue
Akron 9, Ohio

General Motors Corporation
Research Laboratories
ATTN: E. P. Jackson
12 Mile Round Road
Warren, Michigan

General Precision Corporation
ATTN: Dr. Dan Grafstein
Kearfott Division
Little Falls, New Jersey

Glidden Company
ATTN: R. E. Demarco
Research Department
3901 Hawkins Point Road
Baltimore 26, Maryland

Harvard University
Mallinckrodt Laboratory
ATTN: Dr. E. C. Rochow
Cambridge 38, Massachusetts

Hercules Powder Company
Hercules Research Center
ATTN: Dr. Herman Skolnik
Technical Information Division
Wilmington 99, Delaware

Hooker Chemical Corporation
ATTN: Mr. W. F. Zimmer
Dr. C. F. Baranauches
Dr. C. T. Bean
Niagara Falls, New York

Indiana University
Department of Chemistry
ATTN: Dr. Riley Schaeffer
Bloomington, Indiana

Industrial Research Institute
University of Chattanooga
ATTN: Dr. J. H. Cowillette
Chattanooga, Tennessee

Iowa State College
Chemistry Department
ATTN: Dr. H. Gilman
Ames, Iowa

J. T. Baker Chemical Company
ATTN: Frederic W. Hamnesbar
Director of Commercial Development
Phillipsburg, New Jersey

J. T. Baker Chemical Company
ATTN: Dr. C. H. Schramm
Phillipsburg, New Jersey

Koppers Company, Inc.,
Research Department
ATTN: Dr. C. E. Donath
Pittsburgh 19, Pennsylvania
Laurence Radiation Laboratory
Process and Materials Development
P. O. Box 808
Livermore, California

Lockheed Aircraft Corporation
Missiles and Space Division
ATTN: Technical Information Center
3251 Hanover Street
Palo Alto, California

Lubrizol Corporation
ATTN: Dr. L. E. Coleman
P. O. Box 3057
Cleveland 17, Ohio

Mellon Institute
Department of Chemistry
ATTN: Dr. Thomas Fox
Pittsburgh, Pennsylvania

Melpar, Inc.
ATTN: Dr. Paul E. Ritt
3000 Arlington Boulevard
Falls Church, Virginia

Metal and Thermit Corporation
ATTN: Miss M. K. Moran
Box 471
Rahway, New Jersey

Merck-Sharpe and Dohme Research Labs.
ATTN: Dr. Carl Pfister
Rahway, New Jersey

Metcut Research Associates, Inc.
ATTN: John F. Kahles
3980 Roslyn Drive
Cincinnati 9, Ohio

Michigan State University
Department of Chemistry
ATTN: Dr. Kinsinger
Dr. Hammer
East Lansing, Michigan

Midwest Research Institute
ATTN: Librarian 3675
425 Volker Boulevard
Kansas City, Missouri

Minnesota Mining and Manufacturing Company
ATTN: Dr. John Copenhagen
900 Bush Avenue
St. Paul, Minnesota

Minnesota Mining and Manufacturing Company
Central Research Department
ATTN: Dr. George Crawford
2301 Hudson Road
St. Paul 19, Minnesota

Monsanto Chemical Company
Inorganic Division
800 North Lindberg Boulevard
St. Louis 66, Missouri

Monsanto Chemical Company
ATTN: Dr. E. S. Blake
Central Research Laboratories
Dayton 7, Ohio

Monsanto Chemical Company
Special Projects Department
ATTN: Mr. K. W. Easley
Everett, Massachusetts

Monsanto Chemical Company
ATTN: Miss H. A. Diekman
Director of Research
Springfield 4, Massachusetts

Narmco Industries, Inc.
Research and Development Division
ATTN: Dr. Harold H. Levine
3540 Aero Court
San Diego 23, California

National Lead Company
ATTN: W. H. Hoback
111 Broadway
New York, New York

National Lead Company
Hights Town Laboratory
ATTN: Dr. L. F. Cuthbert,
Technical Director
Box 420
Hights Town, New Jersey

Naugatuck Chemical Division
U. S. Rubber Company
ATTN: Dr. R. C. Nelb
Naugatuck, Connecticut

New York State University
Department of Chemistry
ATTN: Dr. M. Szwarc
Syracuse, New York
Dr. Charles J. Marsel
New York University
233 Fordham Landing Road & Cedar Avenue
University Heights 68, New York

North American Aviation Corporation
ATTN: J. W. Mahoney
Inglewood, California

Ohio State University
Department of Chemistry
ATTN: Dr. Albert Henne
Columbus 10, Ohio

Olin-Mathieson Chemical Corporation
ATTN: Technical Library
New Haven, Connecticut

Olin-Mathieson Chemical Corporation
ATTN: Dr. T. L. Heying
275 Winchester Avenue
New Haven, Connecticut

PennsULAR Chemical Research, Inc.
ATTN: Dr. Paul Tarrant
1103-5 West Fifth Avenue
Gainesville, Florida

Pennsalt Manufacturing Company
ATTN: Dr. John Gall
P. O. Box 4388
Philadelphia 18, Pennsylvania

Pennsylvania State University
Department of Chemistry
ATTN: Prof. L. H. Sommer
Prof. W. C. Fernellus
University Park, Pennsylvania

Pennsylvania State University
Petroleum Refining Laboratory
ATTN: E. R. Klaus
University Park, Pennsylvania

Phillips Petroleum Company
ATTN: Dr. W. Reynolds
Bartlesville, Oklahoma

Plastics Technical Evaluation Center
ATTN: ORDDB-VP-3
Picatinny Arsenal
Dover, New Jersey

Polytechnic Institute of Brooklyn
ATTN: Dr. C. G. Overberger
333 Jay Street
Brooklyn 1, New York

Princeton University
Plastics Laboratory
ATTN: Prof. Rahm
Princeton, New Jersey

Purdue University
Department of Chemistry
ATTN: A. F. Clifford
Lafayette, Indiana

Reaction Motors Division
Thiokol Chemical Corporation
ATTN: Dr. David Mann
Denville, New Jersey

Research Triangle Institute
ATTN: Howard G. Clark, III
P. O. Box 490
Durham, North Carolina

Rohm and Haas Company
Special Products Department
ATTN: Dr. B. P. Dahlstrom
Washington Square
Philadelphia 6, Pennsylvania

Rohm and Haas Company
ATTN: Dr. Ellington M. Beavers
Box 219
Bristol, Pennsylvania

Royal Lubricants Company
ATTN: Mr. W. Craessle
River Road, P. O. Box 95
Hanover, New Jersey

Shell Chemical Company
ATTN: Librarian
1120 Commerce Avenue
Union, New Jersey

Shell Development Company
ATTN: G. Wagner
4860 Norton Street
Emeryville, California

Southern Research Institute
Applied Chemistry Division
ATTN: Dr. P. E. Feazel
Birmingham, Alabama
Southwest Research Institute
ATTN: Chemistry and Chemical Engineer
8500 Culebra Road
San Antonio, Texas

Standard Oil Company of Indiana
Whiting Research Laboratories
ATTN: Dr. C. E. Johnson
P. O. Box 431
Whiting, Indiana

Stanford Research Institute
ATTN: C. L. Himel
Menlo Park, California

Thiokol Corporation
ATTN: Mr. A. D. Yazujian
780 North Clinton Street
Trenton 7, New Jersey

Union Carbide and Carbon Corporation
Bakelite Division
ATTN: Mr. J. K. Honish
30 East 42nd Street
New York 17, New York

Union Carbide Corporation
Silicones Division
ATTN: Mr. T. H. Welch
East Park Drive & Woodward Avenue
Tonawanda, New York

University of Cincinnati
Department of Chemistry
ATTN: Dr. H. H. Jaffe
Cincinnati 21, Ohio

University of Colorado
Department of Chemistry
ATTN: Dr. R. I. Park
Boulder, Colorado

University of Florida
College of Engineering
ATTN: Dr. H. C. Brown
Gainesville, Florida

University of Illinois
Department of Chemistry
ATTN: Dr. J. C. Bailar, Jr.
Dr. T. Moeller
Urbana, Illinois

University of North Carolina
Department of Chemistry
ATTN: S. Young Tyree, Jr.
Chapel Hill, North Carolina

University of Pennsylvania
Department of Chemistry
ATTN: E. Charles Evers
Philadelphia, Pennsylvania

University of Southern California
Department of Chemistry
ATTN: Dr. A. B. Burg
University Park
Los Angeles 7, California

University of Texas
Department of Chemistry
ATTN: Dr. G. W. Watt
Auston, Texas

University of Wisconsin
Department of Chemistry
ATTN: Professor John D. Ferry
Madison 6, Wisconsin
University of Western Ontario
ATTN: Dr. D. C. Bradley
London, Ontario
Canada

U. S. Borax Research Corporation
ATTN: Dr. C. L. Randolph
412 Crescent Way
Anaheim, California

U. S. Industrial Chemicals Company
ATTN: Charles E. Frank
1275 Section Road
Cincinnati 37, Ohio

Westinghouse Electric Corporation
Materials Engineering Department
ATTN: Dr. C. C. Gainer
East Pittsburgh, Pennsylvania

Westinghouse Research Laboratory
ATTN: Mr. J. M. Ferteg
Mr. Robert E. Lacroix
Beulah Road Churchill Borough
Pittsburgh 35, Pennsylvania

Wyandotte Chemical Corporation
ATTN: Dr. Carl Lenk
Research and Engineering Division
Wyandotte, Michigan