Optimal Gambling Systems
For Favorable Games

by

L. Breiman

Series No. 60, Issue No. 467
Contract No. Nonr-222(53)
August 13, 1962
OPTIMAL GAMBLING SYSTEMS FOR FAVORABLE GAMES

by

L. Breiman

Institute of Engineering Research
Series No. 60, Issue No. 467

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Contract No. Nonr-222(53)
August 13, 1962
OPTIMAL GAMBLING SYSTEMS FOR FAVORABLE GAMES

L. BREIMAN
UNIVERSITY OF CALIFORNIA, LOS ANGELES

1. Introduction

Assume that we are hardened and unscrupulous types with an infinitely wealthy friend. We induce him to match any bet we wish to make on the event that a coin biased in our favor will turn up heads. That is, at every toss we have probability \(p > 1/2 \) of doubling the amount of our bet. If we are clever, as well as unscrupulous, we soon begin to worry about how much of our available fortune to bet at every toss. Betting everything we have on heads on every toss will lead to almost certain bankruptcy. On the other hand, if we bet a small, but fixed, fraction (we assume throughout that money is infinitely divisible) of our available fortune at every toss, then the law of large numbers informs us that our fortune converges almost surely to plus infinity. What to do?

More generally, let \(X \) be a random variable taking values in the set \(I = \{1, \ldots, s\} \) such that \(P(X = i) = p \), and let there be a class \(\mathcal{C} \) of subsets \(A_j \) of \(I \), where \(\mathcal{C} = \{A_1, \ldots, A_s\} \), with \(\bigcup_j A_j = I \), together with positive numbers \((\alpha_0, \ldots, \alpha_s) \). We play this game by betting amounts \(\beta_i \), on the events \(\{X \in A_j\} \) and if the event \(\{X = i\} \) is realized, we receive back the amount \(\sum_{i \in A_j} \beta_i \alpha_i \) where the sum is over all \(j \) such that \(i \in A_j \). We may assume that our entire fortune is distributed at every play over the betting sets \(\mathcal{C} \), because the possibility of holding part of our fortune in reserve is realized by taking \(A_1 \), say, such that \(A_1 = I \), and \(\alpha_1 = 1 \). Let \(S_n \) be the fortune after \(n \) plays; we say that the game is favorable if there is a gambling strategy such that almost surely \(S_n \to \infty \). We give in the next section a simple necessary and sufficient condition for a game to be favorable.

How much to bet on the various alternatives in a sequence of independent repetitions of a favorable game depends, of course, on what our goal utility is. There are two criterions, among the many possibilities, that seem pre-eminently reasonable. One is the minimal time requirement, that is, we fix an amount \(x \) we wish to win and inquire after that gambling strategy which will minimize the expected number of trials needed to win or exceed \(x \). The other is a magnitude condition; we fix at \(n \) the number of trials we are going to play and examine the size of our fortune after the \(n \) plays.

This research was supported in part by the Office of Naval Research under Contract Nonr-222(53).

65
In this work, we are especially interested in the asymptotic point of view. We show that in the long run, from either of the two above criterions, there is one strategy A^* which is optimal. This strategy is found as that system of betting (essentially unique) which maximizes $E(\log S_n)$. The reason for this result is heuristically clear. Under reasonable betting systems S_n increases exponentially and maximizing $E(\log S_n)$ maximizes the rate of growth.

In the second section we investigate the nature of A^*. It is a conservative policy which consists in betting fixed fractions of the available fortune on the various A_i. For example, in the coin-tossing game A^* is: bet a fraction $p - q$ of our fortune on heads at every game. It is also, in general, a policy of diversification involving the placing of bets on many of the A_i, rather than the single one with the largest expected return.

The minimal expected time property is covered in the third section. We show, by an examination of the excess in Wald's formula, that the desired fortune x becomes infinite, that the expected time under A^* to amass x becomes less than that under any other strategy.

Section four is involved with the magnitude problem. The content here is that A^* magnitudewise, does as well as any other strategy, and that if one picks a policy which in the long run does not become close to A^*, then we are asymptotically infinitely worse off.

Finally, in section five, we discuss the finite (nonasymptotic) case for the coin-tossing game. We have been unsuccessful in our efforts to find a strategy which minimizes the expected time for x fixed, but we state a conjecture which expresses a moderate faith in the simplicity of things. It is not difficult, however, to find a strategy which maximizes $P\{S_n \geq x\}$ for fixed n, x and we state the results with only a scant indication of proof, and then launch into a comparison with the strategy A^* for large n.

The conclusion of these investigations is that the strategy A^* seems by all reasonable standards to be asymptotically best, and that, in the finite case, it is suboptimal in the sense of providing a uniformly good approximation to the optimal results.

Since completing this work we have been allowed to examine the most significant manuscript of L. Dubins and L. J. Savage [1], which will soon be published. Although gambling has been associated with probability since its birth, only quite recently has the question of gambling systems optimal with respect to some goal utility been investigated carefully. To the beautiful and deep results of Dubins and Savage, upon which work was commenced in 1956, must be given priority as the first to formulate systematically and solve the problems of optimal gambling strategies. We strongly recommend their work to every student of probability theory.

Although our original impetus came from a different source, and although their manuscript is almost wholly concerned with unfavorable and fair games, there are a few small areas of overlap which I should like to point out and acknowledge priority. Dubins and Savage did, of course, formulate the concept
of a favorable game. For these games they considered the class of "fractionalizing strategies," which consist in betting a fixed fraction of one's fortune at every play, and noticed the interesting phenomenon that there was a critical fraction such that if one bets a fixed fraction less than this critical value, then \(S_n \to \infty \) a.s. and if one bets a fixed fraction greater than this critical value, then \(S_n \to 0 \) a.s. In addition, our proposition 3 is an almost exact duplication of one of their theorems. In their work, also, will be found the solution to maximizing \(P \{ S_n \geq x \} \) for an unfavorable game, and it is interesting to observe here the abrupt discontinuity in strategies as the game changes from unfavorable to favorable.

My original curiosity concerning favorable games dates from a paper of J. L. Kelly, Jr. [2] in which there is an intriguing interpretation of information theory from a gambling point of view. Finally, some of the last section, in problem and solution, is closely related to the theory of dynamic programming as originated by R. Bellman [3].

2. The nature of \(\Lambda^* \)

We introduce some notation. Let the outcome of the \(k \)th game be \(X_k \) and \(R_n^k = (X_n, \cdots, X_1) \). Take the initial fortune \(S_0 \) to be unity, and \(S_n \), the fortune after \(n \) games. To specify a strategy \(\Lambda \) we specify for every \(n \), the fractions \(\lambda^{(n)}_1, \cdots, \lambda^{(n)}_r \) of our available fortune after the \(n \)th game, \(S_n \), that we will bet on alternative \(A_1, \cdots, A_r \) in the \((n+1)\)st game. Hence

\[
\sum_{j=1}^r \lambda^{(n+1)}_j = 1.
\]

Note that \(\lambda^{(n+1)} \) may depend on \(R_n \). Denote \(\Lambda = (\bar{\lambda}_1, \bar{\lambda}_2, \cdots) \). Define the random variables \(V_n \) by

\[
V_n = \sum_{i \in A_i} \lambda^{(n)}_i o_i, \quad N_n = i,
\]

so that \(S_{n+1} = V_{n+1} S_n \). Let \(W_n = \log V_n \), so we have

\[
\log S_n = W_n + \cdots + W_1.
\]

To define \(\Lambda^* \), consider the set of vectors \(\bar{\lambda} = (\lambda_1, \cdots, \lambda_r) \) with \(r \) nonnegative components such that \(\lambda_1 + \cdots + \lambda_r = 1 \) and define a function \(W(\bar{\lambda}) \) on this space \(\mathcal{A} \) by

\[
W(\bar{\lambda}) = \sum p_i \log \left(\sum_{i \in A_i} \lambda_i o_i \right).
\]

The function \(W(\bar{\lambda}) \) achieves its maximum on \(\mathcal{A} \) and we denote \(W = \max_{\bar{\lambda} \in \mathcal{A}} W(\bar{\lambda}) \).

Proposition 1. Let \(\bar{\lambda}^{(1)}, \bar{\lambda}^{(2)} \) be in \(\mathcal{A} \) such that \(W = W(\bar{\lambda}^{(1)}) = W(\bar{\lambda}^{(2)}) \), then for all \(i \), we have \(\sum_{i \in A_i} \lambda^{(1)}_i o_i = \sum_{i \in A_i} \lambda^{(2)}_i o_i \).

Proof. Let \(\alpha, \beta \) be positive numbers such that \(\alpha + \beta = 1 \). Then if \(\bar{\lambda} = \alpha \bar{\lambda}^{(1)} + \beta \bar{\lambda}^{(2)} \), we have \(W(\bar{\lambda}) \leq W \). But by the concavity of \(\log \)

\[
W(\bar{\lambda}) \geq \alpha W(\bar{\lambda}^{(1)}) + \beta W(\bar{\lambda}^{(2)})
\]

with equality if and only if the conclusion of the proposition holds.
Now let X^* be such that $W = W(X^*)$ and define A^* as (X^*, X^*, \ldots). Although X^* may not be unique, the random variables W_1, W_2, \ldots arising from A^* are by proposition 1 uniquely defined, and form a sequence of independent, identically distributed random variables.

Questions of uniqueness and description of X^* are complicated in the general case. But some insight into the type of strategy we get using A^* is afforded by

Proposition 2. Let the sets A_1, \cdots, A_n be disjoint, then no matter what the odds o_i are, X^* is given by $X^i = P\{X \in A_i\}$.

The proof is a simple computation and is omitted.

From now on we restrict attention to favorable games and give the following criterion.

Proposition 3. A game is favorable if and only if $W > 0$.

Proof. We have

\[\log S^* = \sum_{t} W_t. \]

If $W = EW_t$ is positive, then the strong law of large numbers yields $S^* \to \infty$. Conversely, if there is a strategy Λ such that $S_n \to \infty$ a.s. we use the result of section 4, which says that for any strategy Λ, $\lim_{n} S_n/S^* \exists$ a.s. finite. Hence $S^* \to \infty$ a.s. and therefore $W \geq 0$. Suppose $W = 0$, then the law of the iterated logarithm comes to our rescue and provides a contradiction to $S^* \to \infty$.

3. The asymptotic time minimization problem

For any strategy Λ and any number $x > 1$, define the random variable $T(x)$ by

\[T(x) = \{ \text{smallest } n \text{ such that } S_n \geq x \}, \]

and $T^*(x)$ the corresponding random variable using the strategy A^*. That is, $T(x)$ is the number of plays needed under Λ to amass or exceed the fortune x. This section is concerned with the proof of the following theorem.

Theorem 1. If the random variables W_1, W_2, \cdots are nonlattice, then for any strategy

\[\lim_{x \to \infty} [ET(x) - ET^*(x)] = \frac{1}{W} \sum_{t} (W - EW_t) \]

and there is a constant α, independent of Λ and x such that

\[ET^*(x) - ET(x) \leq \alpha. \]

Notice that the right side of (3.2) is always nonnegative and is zero only if Λ is equivalent to Λ^* in the sense that for every n, we have $W_n = W^*_n$. The reason for the restriction that W^*_n be nonlattice is fairly apparent. But this restriction is on $\log V^*_n$ rather than on V^*_n itself, the common games with rational values of the odds o_i and probabilities p, usually will be nonlattice. For instance, a little number-theoretic juggling proves that in the coin-tossing case the countable set of values of p for which W^*_n is lattice consists only of irrationals.
The proof of the above theorem is long and will be carried out in a sequence of propositions. The heart is an asymptotic estimate of the excess in Wald's identity [4].

Proposition 4. Let X_1, X_2, \ldots be a sequence of identically distributed, independent nonlattice random variables with $0 < EX_1 < \infty$. Let $Y_n = X_1 + \cdots + X_n$. For any real numbers x, ξ, with $\xi > 0$, let $F_\xi(x) = P\{\text{first } Y_n \geq x \text{ is } < x + \xi\}$. Then there is a continuous distribution $G(\xi)$ such that for every value of ξ,

$$\lim_{x \to \infty} F_\xi(x) = G(\xi).$$

Proof. The above statement is contained in known results concerning the renewal theorem. If $X_1 > 0$ a.s. and has the distribution function F_1, it is known (see, for example, [5]) that $\lim_{x \to \infty} F_1(x) = \frac{1}{E X_1} \int_0^x [1 - F(t)] \, dt$. If X_1 is not positive, we use a device due to Blackwell [6]. Define the integer-valued random variables $n_1 < n_2 < \ldots$ by $n_i = \{\text{first } n \text{ such that } X_i + \ldots + X_n > 0\}$, $n_\infty = \{\text{first } n \text{ such that } X_{n+1} + \ldots + X_n > 0\}$, and so forth. Then the random variables $X'_1 = X_1 + \ldots + X_{n_1}$, $X'_2 = X_{n_1+1} + \ldots + X_{n_2}$, are independent, identically distributed, positive, and $EX'_1 < \infty$ (see [6]). Letting $Y'_n = X'_1 + \ldots + X'_n$, note that $P\{\text{first } Y'_n \geq x \text{ is } < x + \xi\} = P\{\text{first } Y_n \geq x \text{ is } < x + \xi\}$, which completes the proof.

We find it useful to transform this problem by defining for any strategy Λ, a random variable $N(y)$,

$$N(y) = \{\text{smallest } n \text{ such that } W_1 + \ldots + W_n \geq y\}$$

with $N*(y)$ the analogous thing for $\Lambda*$. To prove (3.2) we need to prove

$$\lim_{y \to \infty} \left[EN(y) - EN*(y) \right] = 0,$$

and we use a result very close to Wald's identity.

Proposition 5. For any strategy Λ such that $S_\lambda \to \infty$ a.s. and any y

$$EN(y) = \frac{1}{W} \sum_{k=1}^{N(y)} [W - E(W | R_{k-1})] + \frac{1}{W} E \left[\sum_{k=1}^{N(y)} W_k \right].$$

Proof. The above identity is derived in a very similar fashion to Doob's derivation [6] of Wald's identity. The difficult point is an integrability condition and we get around this by using, instead of the strategy Λ, a modification Λ_j which consists in using Λ for the first J plays and then switching to $\Lambda*$. The condition $S_\lambda \to \infty$ a.s. implies that none of the W_k may take on the value $-\infty$ and that $N(y)$ is well defined. Let $N_j(y)$ be the random variable analogous to $N(y)$ under Λ_j and $W_j^{(j)}$ to W_k. Define a sequence of random variables Z_\ast by

$$Z_\ast = \sum_{k=1}^n [W_{j}^{(j)} - E(W_{j}^{(j)} | R_{j-1})].$$

This sequence is a martingale with $EZ_\ast = 0$. By Wald's identity, $EN_j(y) < \infty$ and it is seen that the conditions of the optional sampling theorem ([7], theorem 2.2-C) are validated with the conclusion that $EZ_\ast = 0$. Therefore
The second term on the right satisfies

$$EN_j = \int_{|N| \leq J} N \, dP + \int_{|N| > J} N \, dP,$$

we need to show that the extreme right term converges to zero. Let

$$U_j = \sum_{k=1}^j W_k, U_j \leq y - U_j$$

so that

$$\int_{|N| > J} N \, dP \leq JP(N > J) + \int_{|N| > J} N(U_j) \, dP.$$

Since $EN < \infty$, we have $\lim JP(N > J) = 0$. We write the second term as $E[N(U_j)|U_j]P(N > J)$. By Wald's identity,

$$E[N(U_j)|U_j] \leq \frac{U_j - \alpha - J}{\alpha} \frac{U_j}{W}.$$

On the other hand, since the most we can win at any play is α, the inequality

$$N \geq \frac{y - U_j}{\alpha} + J$$

holds on the set $\{N > J\}$. Putting together the pieces,

$$\int_{|N| > J} N(U_j) \, dP \leq \frac{\alpha}{W} \int_{|N| > J} (N - J) \, dP + \frac{\alpha}{W} P(N > J).$$

The right side converges to zero and the proposition is proven.

If we subtract from (3.7) the analogous result for A^* we get

$$EN(y) - EN^*(y)$$

$$\leq \frac{1}{W} E \left(\sum_{k=1}^N [W - E(W_i|R_{k-1})] \right) + \frac{1}{W} E \left[\sum_{k=1}^N W_k - \sum_{k=1}^{N^*} W_k \right].$$
This last result establishes inequality (3.3) of the theorem. As we let \(y \to \infty \), then \(N(y) \to \infty \) a.s. and we see that

\[
\lim_{y \to \infty} E \left\{ \sum_{k=1}^{N} [W - E(W_k|R_{k-1})] \right\} = \sum_{k=1}^{N} (W - EW_k).
\]

By proposition 4, the distribution \(F^*_1 \) of \(\sum_{k=1}^{N} W_k - y \) converges, as \(y \to \infty \), to some continuous distribution \(F^* \) and we finish by proving that the distribution \(F_1 \) of \(\sum_{k=1}^{N} W_k - y \) also converges to \(F^* \).

Proposition 6. Let \(Y_n, \epsilon_n \) be two sequences of random variables such that \(Y_n \to \infty, Y_n + \epsilon_n \to \infty \) a.s. If \(Z \) is any random variable, if \(\epsilon = \sup_{n \geq 1} [\epsilon_n] \), and if we define

\[
H_v(t) = P\{ \text{first } Y_n \geq Z + y \text{ is } < Z + y + t, \epsilon < u \}
\]

(3.19)

\[
D_v(t) = P\{ \text{first } Y_n + \epsilon_n \geq Z + y \text{ is } < Z + y + t, \epsilon < u \}
\]

(3.20)

then for any \(u > 0 \),

(3.21)

\[
D^*_v(t - 2u) - P\{ \epsilon \geq u \} \leq D_v(t) \leq D_v(t) \leq H_{v-u}(t + 2u) + P\{ \epsilon \geq u \}.
\]

Proof.

(3.22)

\[
D_v(t) \leq P\{ \text{first } Y_n + \epsilon_n \geq Z + y \text{ is } < Z + y + t, \epsilon < u \} + P\{ \epsilon \geq u \}
\]

\[
\leq P\{ \text{first } Y_n > Z + y - u \text{ is } < Z + y + t, \epsilon < u \} + P\{ \epsilon \geq u \}
\]

\[
\leq H_{v-u}(t + 2u) + P\{ \epsilon \geq u \}.
\]

(3.23)

\[
D_v(t) \geq P\{ \text{first } Y_n + \epsilon_n \geq Z + y \text{ is } < Z + y + t, \epsilon < u \}
\]

\[
\geq P\{ \text{first } Y_n \geq Z + y + u \text{ is } < Z + y + t - u, \epsilon < u \}
\]

\[
\geq H_{v+u}(t - 2u) - P\{ \epsilon \geq u \}.
\]

Proposition 7. Let \(X_1, X_2, \ldots \) be a sequence of independent identically distributed nonlattice random variables, \(0 \leq EX_1 < \infty \), with \(Y_n = X_1 + \cdots + X_n \). If \(Z \) is any random variable independent of \(X_1, X_2, \ldots \), \(G \) the limiting distribution of proposition 4, and

(3.24)

\[
F_{v,z}(\xi) = P\{ \text{first } Y_n \geq Z + y \text{ is } < Z + y + \xi \},
\]

then \(\lim_{v} F_{v,z}(\xi) = G(\xi) \).

Proof.

(3.25)

\[
F_{v,z}(\xi) = E[P\{ \text{first } Y_n \geq Z + y \text{ is } < Z + y + \xi | Z \}]
\]

\[
= E[F_{v+Z}(\xi)],
\]

where \(F_v(\xi) = P\{ \text{first } Y_n \geq y \text{ is } < y + \xi \}. \) But \(\lim_{v} F_{v+Z}(\xi) = G(\xi) \) a.s. which, together with the boundedness of \(F_{v+Z}(\xi) \), establishes the result.

We start putting things together with
PROPOSITION 8. Let \(\sum_{t} W_{k} - \sum_{t} W_{t} \) converge a.s. to an everywhere finite limit. If the \(W_{t} \) are nonlattice, if \(F_{v}(\xi) \) is the distribution function for \(\sum_{t} W_{k} - y \), then \(\lim_{v} F_{v}(\xi) = F^{*}(\xi) \).

PROOF. Fix \(m \), let

\[
Z_{m} = -\sum_{t=1}^{m-1} W_{t}, \quad \epsilon_{m,n} = \sum_{t=m}^{n} W_{t} - \sum_{t=m}^{n} W_{t}, \quad \epsilon_{m} = \sup_{n} |\epsilon_{m,n}|,
\]

and by assumption \(\epsilon_{m} \to 0 \) a.s. Now

\[
F_{v}(\xi) = P\{ \text{first } \sum_{t} W_{t} \geq y \text{ is } < y + \xi \}
= P\{ \text{first } \left(\sum_{m} W_{t} + \epsilon_{m,n} \right) \geq Z_{m} + y \text{ is } < Z_{m} + y + \xi \}.
\]

If

\[
H_{v}(\xi) = P\{ \text{first } \sum_{m} W_{t} \geq Z_{m} + y \text{ is } < Z_{m} + y + \xi \},
\]

then by proposition 6, for any \(u > 0 \),

\[
H_{v,\infty}(\xi - 2u) - P\{ \epsilon_{m} \geq u \} \leq F_{v}(\xi) \leq H_{v,\infty}(\xi + 2u) + P\{ \epsilon_{m} \geq u \}.
\]

Letting \(y \to \infty \) and applying proposition 7,

\[
F^{*}(\xi - 2u) - P\{ \epsilon_{m} \geq u \} \leq \lim_{v} F_{v}(\xi) \leq \lim_{v} F_{v}(\xi) \leq F^{*}(\xi + 2u) + P\{ \epsilon_{m} \geq u \}.
\]

Taking first \(m \to \infty \) and then \(u \to 0 \) we get

\[
\lim_{v} F_{v}(\xi) = \lim_{v} F_{v}(\xi) = F^{*}(\xi).
\]

To finish the proof, we invoke theorems 2 and 3 of section 4. The content we use is that if \(\sum_{t} W_{k} - \sum_{t} W_{t} \) does not converge a.s. to an everywhere finite limit, then \(\sum_{t} \left[W - E(W_{k}) \right] \) is \(+\infty \) on a set of positive probability. Therefore, if the conditions of propositions 5 and 8 are not validated, then by (3.17) both sides of (3.2) are infinite. Thus the theorem is proved.

3. Asymptotic magnitude problem

The main results of this section can be stated roughly as: asymptotically, \(S_{n}^{x} \) is as large as the \(S_{n} \) provided by any strategy \(\Lambda \), and if \(\Lambda \) is not asymptotically close to \(\Lambda^{*} \), then \(S_{n}^{x} \) is infinitely larger than \(S_{n} \). The results are valid whether or not the games are favorable.

THEOREM 2. Let \(\Lambda \) be any strategy leading to the fortune \(S_{n} \) after \(n \) plays. Then \(\lim_{n} S_{n}/S_{n}^{x} \) exists a.s. and \(E(\lim_{n} S_{n}/S_{n}^{x}) \leq 1 \).

For the statement of theorem 3 we need

DEFINITION. \(\Lambda \) is a nonterminating strategy if there are no values of \(\lambda_{n} \) such that \(\sum_{n \in \Lambda} \lambda_{n}^{\omega_{n}} = 0 \), for any \(n \).
THEOREM 3. If \(\Lambda \) is a nonterminating strategy, then almost surely
\[
\sum_{1}^{\infty} [W - E(W_{n}|R_{n-1})] = \infty \iff \lim_{n} \frac{S_n^*}{S_n} = \infty.
\]

Proofs. We present the theorems together as their proofs are similar and hinge on the martingale theorems. For every \(n \)
\[
E \left(\frac{S_n^*}{S_n^*} \bigg| R_{n-1} \right) = E \left(\frac{V_n}{V_n^*} \bigg| R_{n-1} \right) \frac{S_{n-1}}{S_{n-1}^*}.
\]
If we prove that \(E(V_n/V_n^*|R_{n-1}) \leq 1 \) a.s., then \(S_n/S_n^* \) is a decreasing semi-martingale with \(\lim_n S_n/S_n^* \) existing a.s. and
\[
E \lim_n \frac{S_n}{S_n^*} \leq E \frac{S_n}{S_n^*} = 1.
\]
By the definition of \(\Lambda^* \), for every \(\epsilon > 0 \),
\[
E \left[\log \left(\frac{(1 - \epsilon)V_n^* + \epsilon V_n}{(1 - \epsilon)V_n^* + \epsilon V_n} \right) \bigg| R_{n-1} \right] \leq 0.
\]
Manipulating gives
\[
\frac{1}{\epsilon} E \left[\log \left(1 + \frac{\epsilon}{1 - \epsilon} \frac{V_n}{V_n^*} \right) \bigg| R_{n-1} \right] \leq \frac{1}{\epsilon} \log \frac{1}{1 - \epsilon}.
\]
By Fatou's lemma, as \(\epsilon \to 0 \)
\[
E \left(\frac{V_n}{V_n^*} \bigg| R_{n-1} \right) = E \left[\lim_{\epsilon \to 0} \frac{1}{\epsilon} \log 1 + \frac{\epsilon}{1 - \epsilon} \frac{V_n}{V_n^*} \bigg| R_{n-1} \right] \leq \lim_{\epsilon \to 0} \frac{1}{\epsilon} \log \frac{1}{1 - \epsilon} = 1.
\]

Theorem 3 resembles a martingale theorem given by Doob ([6], pp. 323–324), but integrability conditions get in our way and force some deviousness. Fix a number \(M > 0 \) and take \(A \) to be the event \(\{ W - E(W_{n}|R_{n-1}) \geq M \text{ i.o.} \} \). If \(p = \min_i p_i \), then \(E(W_n^* - W_n|R_{n-1}) \geq M \) implies \(P \{ W_n^* - W_n \geq M(R_{n-1}) \} \geq p \).

By the conditional version of the Borel-Cantelli lemma ([7], p. 324), the set on which
\[
\sum_{1}^{\infty} P \{ W_n^* - W_n \geq M(R_{n-1}) \} = \infty
\]
and the set \(\{ W_n^* - W_n \geq M \text{ i.o.} \} \) are a.s. the same. Therefore, a.s. on \(A \), we have \(W_n^* - W_n \geq M \) i.o. and \(\log (S_n/S_n^*) = \sum_{1}^{\infty} (W^*_n - W_n) \) cannot converge. We conclude that both sides of (4.1) diverge a.s. on \(A \).

Starting with a strategy \(\Lambda \), define an amended strategy \(\Lambda_M \) by: if \(W - E(W_n|R_{n-1}) < M \), use \(\Lambda \) on the \(n \)th play, otherwise use \(\Lambda^* \) on the \(n \)th play. The random variables
\[
U_n = \log \frac{S_n^*}{S_n^{|M}} - \sum_{1}^{n} [W - E(W_{n}^{\text{MO}}|R_{n-1})]
\]
form a martingale sequence with
\[
U_n - U_{n-1} = W_n^* - W_{n}^{\text{MO}} - [W - E(W_{n}^{\text{MO}}|R_{n-1})].
\]
For Λ_M, we have $E(W_{n}^{*} - W_{n}^{(M)} | R_{n-1}) < M$, leading to the inequalities,

$$\sup (W_{n}^{*} - W_{n}^{(M)}) \leq \frac{M}{p}, \quad U_{n} - U_{n-1} \leq \frac{M}{p}. \tag{4.9}$$

On the other side, if

$$\alpha = \min \sum_{i \in \mathcal{A}} \lambda_i o_i, \quad \beta = \max \sum_{i \in \mathcal{A}} o_i,$$

then $U_{n} - U_{n-1} \geq \alpha - \beta - M$. These bounds allow the use of a known martingale theorem ([7], pp. 319-320) to conclude that $\lim U_{n}$ exists a.s. whenever one of $\lim U_{n} < \infty$, $\lim U_{n} > -\infty$ is satisfied. This implies the statement

$$\lim S_{n}/S_{n}^{*} < \infty \iff \sum_{i} [W - E(W_{i}^{(M)} | R_{i-1})] < \infty. \tag{4.11}$$

However, on the complement of the set A the convergence or divergence of the above expressions involves the convergence or divergence of the corresponding quantities in (4.1) which proves the theorem.

Corollary 1. If for some strategy Λ, we have $\sum [W - E(W_{i} | R_{i-1})] = \infty$ with probability $\gamma > 0$, then for every $\varepsilon > 0$, there is a strategy $\hat{\Lambda}$ such that with probability at least $\gamma - \varepsilon$, $\lim S_{n}/S_{n}^{*} = 0$ and except for a set of probability at most ε, $\lim S_{n}/S_{n}^{*} = 1$.

Proof. Let E be the set on which $\lim S_{n}/S_{n}^{*} = 0$, with $P\{E\} = \gamma$. For any $\varepsilon > 0$, for N sufficiently large, there is a set E_{N}, measurable with respect to the field generated by R_{N} such that $P\{E_{N} \Delta E\} < \varepsilon$, where Δ denotes the symmetric set difference. Define $\hat{\Lambda}$ as follows: if $n < N$, use Λ, if R_{n}, with $n \geq N$, is such that the first N outcomes (X_{1}, \cdots, X_{N}) is not in E_{N}, use Λ, otherwise use Λ^{*}. On E_{N}, we have $\sum [W - E(W_{i} | R_{i-1})] < \infty$, hence $\lim S_{n}/S_{n}^{*} > 0$ so that $\lim S_{n}/S_{n}^{*} = 0$ on $E_{N} \cap E$. Further, $P\{E_{N} \cap E\} \geq P\{E\} - \varepsilon = \gamma - \varepsilon$. On the complement of E_{N}, we have $S_{n} = \hat{S}_{n}$, leading to $\lim S_{n}/S_{n}^{*} \leq 1$, except for a set with probability at most ε.

5. Problems with finite goals in coin tossing

In this section we consider first the problem: fix an integer $n > 0$, and two numbers $y > x > 0$, find a strategy which maximizes $P\{S_{n} \geq y | S_{0} = x\}$. In this situation, then, only n plays of the game are allowed and we wish to maximize the probability of exceeding a certain return. We will also be interested in what happens as n, y become large. By changing the unit of money, note that

$$\sup P\{S_{n} \geq y | S_{0} = x\} = \sup P\{S_{n} \geq 1 | S_{0} = \frac{x}{y}\}, \tag{5.1}$$

where the supremum is over all strategies. Thus, the problem reduces to the unit interval, and we may evidently translate back to the general case if we find an optimum strategy in the reduced case. Define, for $\xi \geq 0$, $n \geq 1$,

...
OPTIMAL GAMBLING SYSTEMS

(5.2) \(\phi_n(\xi) = \begin{cases} \sup P\{S_n \geq 1|S_0 = \xi\}, & \xi < 1, \\ 1, & \xi \geq 1, \end{cases} \)

and

(5.3) \(\phi_0(\xi) = \begin{cases} 0, & \xi < 1, \\ 1, & \xi \geq 1. \end{cases} \)

In addition \(\phi_n(\xi) \) satisfies

(5.4) \(\phi_n(\xi) = \sup E[P\{S_n \geq 1|S_1, S_0\}|S_0 = \xi] \)

\(\leq \sup E[\phi_{n-1}(S_0)|S_0 = \xi] \)

\(\leq \sup_{0 \leq z \leq \xi} [p\phi_{n-1}(\xi + z) + q\phi_{n-1}(\xi - z)]. \)

To find \(\phi_n(\xi) \) and an optimal strategy, we define functions \(\phi_n(\xi) \) by

(5.5) \(\phi_0(\xi) = \phi_0(\xi), \quad \phi_n(\xi) = \sup_{0 \leq z \leq \xi} [p\phi_{n-1}(\xi + z) + q\phi_{n-1}(\xi - z)] \)

having the property \(\phi_n(\xi) \leq \phi_0(\xi) \), for all \(n, \xi \). If we can find a strategy \(\Lambda \) such that under \(\Lambda \) we have \(\phi_n(\xi) = P\{S_n \geq 1|S_0 = \xi\} \), then, evidently, \(\Lambda \) is optimum, and \(\phi_n = \phi_n \). But, if for every \(n \geq 1 \), and \(\xi \) there is a \(z_n(\xi) \), with \(0 \leq z_n(\xi) \leq \xi \), such that

(5.6) \(\phi_n(\xi) = p\phi_{n-1}[\xi + z_n(\xi)] + q\phi_{n-1}[\xi - z_n(\xi)], \)

then we assert that the optimum strategy is \(\Lambda \) defined as: if there are \(m \) plays left and we have fortune \(\xi \), bet the amount \(z_n(\xi) \). Because, suppose that under \(\Lambda \), for \(n = 0, 1, \cdots, m \) we have \(\phi_n(\xi) = P\{S_n \geq 1|S_0 = \xi\} \), then

(5.7) \(P\{S_{n+1} \geq 1|S_0 = \xi\} = E[P\{S_{n+1} \geq 1|S_1, S_0\}|S_0 = \xi] \)

\(= E[\phi_{n}(S_0)|S_0 = \xi] = \phi_{n+1}(\xi). \)

Hence, we need only solve recursively the functional equation (5.5) and then look for solutions of (5.6) in order to find an optimal strategy. We will not go through the complicated but straightforward computation of \(\phi_n(\xi) \). It can be described by dividing the unit interval into \(2^n \) equal intervals \(I_1, \cdots, I_m \) such that \(I_k = [k/2^n, (k + 1)/2^n] \). In tossing a coin with \(P\{H\} = p \), rank the probabilities of the \(2^n \) outcomes of \(n \) tosses in descending order \(P_1 \geq P_2 \geq \cdots \geq P_{2^n} \), that is, \(P_1 = p^n, P_2 = p^{n-1}, \cdots, P_{2^n} = q^n \). Then, as shown in figure 1,

(5.8) \(\phi_n(\xi) = \sum_{j \leq k} P_j, \quad \xi \in I_k, \)

Note that if \(p > 1/2 \), then \(\lim_\xi \phi_n(\xi) = 1 \), with \(\xi > 0 \); and in the limiting case \(p = 1/2 \), then \(\lim_\xi \phi_n(\xi) = \xi \), with \(\xi \leq 1 \), in agreement with the Dubins-Savage result [2].

There are many different optimum strategies, and we describe the one which seems simplest. Divide the unit interval into \(n + 1 \) subintervals \(I_0, \cdots, I_m \), such that the length of \(I_0 \) is \(2^{-n}\binom{n}{k} \) where the \(\binom{n}{k} \) are binominal coefficients. On
each \(I_i^0 \) as base, erect a \(45^\circ-45^\circ \) isosceles triangle. Then the graph of \(z_{n+1}(\xi) \) is formed by the sides of these triangles, as shown in figure 2. Roughly, this strategy calls for a preliminary "jockeying for position," with the preferred positions with \(m \) plays remaining being the midpoints of the intervals \(I_i^m \). Notice that the endpoints of the intervals \(\{I_i^m\} \) form the midpoints of the intervals \(\{I_i^{m-1}\} \). So that if with \(n \) plays remaining we are at a midpoint of \(\{I_i^m\} \), then at all remaining plays we will be at midpoints of the appropriate system of intervals. Very interestingly, this strategy is independent of the values of \(p \) so

\[\phi_n(\xi) \]

\[z_n(\xi) \]

Figure 1
Graph of \(\phi_n(\xi) \) for the case \(n = 3 \).

Figure 2
Graph of \(z_{n+1}(\xi) \) for the case \(n = 3 \).
OPTIMAL GAMBLING SYSTEMS 77

long as \(p > 1/2 \). The strategy \(\Lambda^* \) in this case is: bet a fraction \(p - q \) of our fortune at every play. Let \(\phi^*(\xi) = P\{S^n_\geq 1 | S_0 = \xi \} \). In light of the above remark, the following result is not without gratification.

Theorem 4. \(\lim_n \sup_t [\phi^*_n(\xi) - \phi^*(\xi)] = 0. \)

Proof. The proof is somewhat tedious, using the central limit theorem and tail estimates. However, some interesting properties of \(\phi_*(\xi) \) will be discovered along the way. Let \(P\{k|1/2\} \) be the probability of \(k \) or fewer tails in tossing a fair coin \(n \) times, \(P\{k|p\} \) the probability of \(k \) or fewer tails in \(n \) tosses of a coin with \(P\{H\} = p \). If \(\xi = P\{k|1/2\} + 2^-n \), note that \(\phi_*(\xi-) = P\{k|p\} \). Let \(\sigma = \sqrt{pq} \), by the central limit theorem, if \(\xi_{i*} = P\{qn + t\sigma \sqrt{n}|1/2\} + 2^-n \), then

\[
\lim_{n} \phi_n(\xi_{i*}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-x^2/2} dx,
\]

uniformly in \(t \). Thus, if we establish that

\[
\lim_{n} \phi^*_n(\xi_{i,n}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-x^2/2} dx
\]

uniformly for \(t \) in any bounded interval, then by the monotonicity of \(\phi_*(\xi), \phi^*_*(\xi) \), the theorem will follow.

By definition,

\[
\phi^*_n(\xi) = P\{W_1^* + \cdots + W_n^* \geq 0 \}
\]

\[
= log \xi = P\{W_1^* + \cdots + W_n^* \geq -log \xi\},
\]

where the \(W_i^* \) are independent, and identically distributed with probabilities \(P\{W_i^* = log 2p\} = p \) and \(P\{W_i^* = log 2q\} = q \). Again using the central limit theorem, the problem reduces to showing that

\[
\lim_{n} \frac{log \xi_{i,n} + nEW^*_n}{\sqrt{n} \sigma(W^*_1)} = t
\]

uniformly in any bounded interval. By a theorem on tail estimates \([8]\), if \(X_1, X_2, \cdots \) are independent random variables with \(P\{X_1 = 1\} = 1/2 \) and \(P\{X_1 = 0\} = 1/2 \), then

\[
log P\{X_1 + \cdots + X_n \geq na\} = n\theta(a) + \mu(n, a) \log n,
\]

where \(\mu(n, a) \) is bounded for all \(n \), with \(1/2 + \delta \leq a \leq 1 - \delta \), and \(\theta(a) = -a \log (2a) - (1 - a) \log [2(1 - a)] \). Now

\[
log \xi_{i,t} = log [P\{X_1 + \cdots + X_n \geq np - t\sigma \sqrt{n}\} + 2^-n]
\]

so that the appropriate \(a = p - t\sigma/\sqrt{n} \) with

\[
\theta(a) = \theta(p) - \frac{t\sigma}{\sqrt{n}} \log \frac{q}{p} + O\left(\frac{1}{n}\right).
\]

Since \(\theta(p) > -\log 2 \), we may ignore the \(2^-n \) term and estimate
\[(5.16) \quad \log \xi_n = n \theta(p) - t \sigma \sqrt{n} \log \frac{q}{p} + O(\log n). \]

But \(\theta(p) = -EW\gamma \), and the left-hand expression in (5.12) becomes

\[(5.17) \quad \frac{t \sigma \log \frac{q}{p}}{\sigma(W\gamma)} + O\left(\frac{\log n}{\sqrt{n}}\right). \]

Now the short computation resulting, \(\sigma(W\gamma) = \sigma \log (p/q) \), completes the proof of the theorem.

There is one final problem we wish to discuss. Fix \(\xi \), with \(0 < \xi < 1 \), and let

\[(5.18) \quad T(\xi) = E(\text{first } n \text{ with } S_n \geq 1 | S_0 = \xi), \]

find the strategy which provides a minimum value of \(T(\xi) \). We have not been able to solve this problem, but we hopefully conjecture that an optimal strategy is: there is a number \(\xi_0 \), with \(0 < \xi_0 < 1 \), such that if our fortune is less than \(\xi_0 \), we use A*, and if our fortune is greater than or equal to \(\xi_0 \), we bet to 1, that is, we bet an amount such that, upon winning, our fortune would be unity.

REFERENCES

ALCATED LIST

CONTRACT NO. NCC-8756

ORGANIZATION

NO. COPIES

Assistant Secretary of Defense for Research and Engineering
Information Office Library Branch
Pentagon Building
Washington, D. C. 20301

ATTN: Dr. Robert Wood

Office of Naval Research
Department of the Navy
Washington, D. C.
ATTN: Mr. G. H. Peterson

Chief of Naval Operations
OP-747

Navy Department
Washington, D. C.

ATTN: Dr. W. K. Stephens

Director, Naval Research Laboratory
Technical Information Office/Code 3900

Washington, D. C.

ATTN: Mr. A. B. Thompson

Commanding Officer, ONR Branch Office
455 Summer Street
Boston, Massachusetts

ATTN: Mr. W. H. F. Johnson

Bureau of Ships
Defender - the Navy
Washington, D. C.

ATTN: Code 4775 NTOS

Bureau of Naval Weapons
Department of the Navy
Washington, D. C.

ATTN: Navy Aeronautics Division

National Science Foundation
Program Director for Document Retrieval
Washington, D. C.

ATTN: Mr. A. L. Brown

Wayne State University
Detroit, Michigan

ATTN: Dr. J. M. Page

Naval Ordinance Laboratory
White Oak
Silver Spring, Maryland

ATTN: Technical Library

David Taylor Model Basin
Washington, D. C.

ATTN: Technical Library

Naval Electronics Laboratory
Sea Series, California

ATTN: Technical Library

University of Illinois
Center for System Development
Urbana, Illinois

ATTN: D. J. Albert

Air Force Cambridge Research Laboratories
Laurence G. Hansman Field
Bedford, Massachusetts

ATTN: Research Library, CRBL-2

Technical Information Office
U. S. Army Signal Research & Development Lab
Fort Monmouth, New Jersey

ATTN: Data Equipment Branch

National Security Agency
Fort George G. Meade, Maryland

ATTN: R-49, Howard Campbell

U. S. Naval Weapons Laboratory
Davidson, Virginia

ATTN: Head, Computer Division

National Bureau of Standards
Data Processing Systems Division
Room 319, Building 15

ATTN: J. E. Joubert

Aberdeen Proving Ground, U. S. Army
Aberdeen Proving Ground, Maryland

ATTN: J. H. Green, Chief Computer Lab

Office of Naval Research
Resident Representatives
University of California
Room 63, Building 7-5
Berkeley, California

ATTN: Commanding Officer

Chief of Naval Operations
Code 657

Navy Department
Washington, D. C.

ATTN: Mr. H. A. Peterson

Commanding Officer, ONR Branch Office
John Heap Library Building
1500 Thirty Seventh Street
Chicago, Illinois

ATTN: C. C. Kaeber

Cornell University
Carnegie Mellon Research Program
Hollister Hall
Ithaca, New York

ATTN: Dr. Frank E. Petersen

Communications Sciences Lab
University of Michigan
339 Physics Building

ATTN: Dr. C. E. Peterson

Carnegie Institute
Washington, D. C.

ATTN: Office of Ass't. Director for National Services, Mr. J. L. McPherson

Stevens Institute of Technology
Hoboken, New Jersey

ATTN: Paul G. Greiff

Phone: 202-254-4500

National Bureau of Standards
Washington, D. C.

ATTN: Dr. Harold Wender

New York University
New York, New York

ATTN: Professor J. Pickering

Texas Technological College
Lubbock, Texas

ATTN: Prof. G. L. Miller

Phone: 202-450-4500

National Bureau of Standards
Washington, D. C.

L. G. Moore

Communications Research Center
Bedford, Massachusetts

ATTN: Mr. H. Z. Wender

National Bureau of Standards
Washington, D. C.

ATTN: Mr. J. H. Miller

Chemical Abstracts
Ohio State University
Columbus, Ohio

ATTN: Mr. A. S. Miller

Royal Aircraft Establishment, Mathematics Dept.
Farnborough, Hampshire, England

ATTN: Mr. R. A. Miller

University of Pennsylvania
Institute of Electrical and Engineering
200 South Fiftieth Street
Philadelphia 4, Pennsylvania

ATTN: Mr. L. A. Miller

Department of the Army
Office of the Ass't. CTOF for Intelligence
Room 1245, Pentagon
Washington, D. C.

ATTN: Mr. F. Miller

Division of Astronautics Data Processing/AOP/ Department of State
Washington, D. C.

ATTN: P. F. Miller

Division of University of Pennsylvania
Meson Beams Project Laboratory
Philadelphia 4, Pennsylvania

ATTN: Dr. P. F. Miller

Mr. Bernard M. Fy, Deputy Head
Office of Science Information Service
National Science Foundation
195 Constitution Avenue, N.W.
Washington, D. C.

ATTN: Mr. C. J. Miller

NASA Headquarters
Chief, Office of Information Systems
Washington, D. C.

ATTN: W. R. Miller

American Systems Incorporated
3113 Century Building
Irvine, California

ATTN: Mr. D. M. Miller

Phone: 202-450-4500
<table>
<thead>
<tr>
<th>ORGANIZATION</th>
<th>NO. COPIES</th>
<th>ORGANIZATION</th>
<th>NO. COPIES</th>
<th>ORGANIZATION</th>
<th>NO. COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanding Officer GNS Branch Office 1039 E. Green Street Pascagoula, Mississippi</td>
<td>1</td>
<td>The Rand Corporation 1700 Main Street Santa Monica, California ATTN: Numerical Analysis Dept. Willy H. W exchange</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commanding Officer GNS Branch Office 1039 E. Green Street Pascagoula, Mississippi</td>
<td>1</td>
<td>Massachusetts Institute of Technology Cambridge, Massachusetts ATTN: Prof. John McCarthy, N-2078</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Bureau of Standards Washington, D.C. ATTN: Dr. E. D. Holmes</td>
<td>1</td>
<td>Bynum Electric Systems 3050 Main Drive Huntsville, Alabama ATTN: R. L. See Sec</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syracuse University Electrical Engineering Department Syracuse, New York ATTN: Dr. Head Goldman</td>
<td>1</td>
<td>Carnegie Institute of Technology Pittsburgh, Pennsylvania ATTN: Director, Computational Center, Alan J. Perlis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. W. Peck Lincoln Laboratory, MIT Lexington, Massachusetts</td>
<td>1</td>
<td>Chief, Bureau of Naval Weapons Navy Department Washington, D.C. ATTN: REEN</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institute for Defense Analyses Communications Research Division Alexandria, Virginia ATTN: Director, Strategic Systems Division, W. Allason Manager Lockheed Aircraft Corporation Electra & Space Division 300 North Street Palo Alto, California</td>
<td>1</td>
<td>Electronic Systems Development Corp. 1861 E. Main Street Ventura, California ATTN: Director, Strategic Systems Division, W. Allason Manager Lockheed Aircraft Corporation Electra & Space Division 300 North Street Palo Alto, California</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Force Office of Scientific Research Information Technology Division Alexandria, Virginia ATTN: Director, Strategic Systems Division, W. Allason Manager Lockheed Aircraft Corporation Electra & Space Division 300 North Street Palo Alto, California</td>
<td>1</td>
<td>Electronics Research Laboratory University of California Berkeley, California ATTN: Director</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. A. Ramsbush, Manager Lockheed Aircraft Corporation Electra & Space Division 300 North Street Palo Alto, California</td>
<td>1</td>
<td>S. Turner Applied Research Laboratory Syracuse Electric Systems 40 Sylvan Road Wellesley, Massachusetts</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lincoln Laboratory Massachusetts Institute of Technology Lexington, Massachusetts ATTN: Library</td>
<td>1</td>
<td>Maj. Gen. Casemore Honaman File, Director Center for Aeronautical Systems/CTA San Jose Air Force Base San Carlos, Brazil</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor C. L. Fohrlie, Head Department of Applied Mathematics Westman Institute of Science Raleigh, North Carolina</td>
<td>1</td>
<td>Mr. Julian H. Bigelow Institute for Advanced Study Princeton, New Jersey</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Micro Corporation P. O. Box 228 Redwood, Massachusetts ATTN: Library</td>
<td>1</td>
<td>E. C. M. T. Apparel Computer Products P. O. Box 109 Calver City, California</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>