NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
DEVELOPMENT OF A QUALITY MEASUREMENT FOR VARACTOR DIODES
AT MICROWAVE FREQUENCIES

Frank P. Senko

United States Army
Electronics Research and Development Laboratory
Fort Monmouth, N.J.

November 1962
U. S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY
FORT MONMOUTH, NEW JERSEY

November 1962

USAELRD Technical Report 2282 has been prepared under the supervision of the Electronic Components Department and is published for the information and guidance of all concerned. Suggestions or criticisms relative to the form, contents, purpose, or use of this publication should be referred to the Commanding Officer, U. S. Army Electronics Research and Development Laboratory, Attn: Chief, Microwave and Quantum Electronics Branch, Solid State and Frequency Control Division, Fort Monmouth, New Jersey.

J. M. KIMBROUGH, JR.
Colonel, Signal Corps
Commanding

OFFICIAL:
HOWARD W. KILLAM
Major, SigC
Adjutant

DISTRIBUTION:
Special

QUALIFIED REQUESTERS MAY OBTAIN COPIES OF THIS REPORT FROM ASTIA.

THIS REPORT HAS BEEN RELEASED TO THE OFFICE OF TECHNICAL SERVICES, U. S. DEPARTMENT OF COMMERCE, WASHINGTON 25, D. C., FOR SALE TO THE GENERAL PUBLIC.
DEVELOPMENT OF A QUALITY MEASUREMENT FOR VARACTOR DIODES AT MICROWAVE FREQUENCIES

Frank P. Senko

DA Task Nr. 3499-21-001-02

ABSTRACT

A technique is described for characterizing the microwave varactor diode at microwave frequencies. Basically, this is a reflectometer type of technique that permits reasonable accuracy and speed of measurement without the need for standard Smith Chart plots and/or auxiliary (substitute) devices. The varactor parameters of major importance are specified. Included also are the limitations of the method.

U. S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY

FORT MONMOUTH, NEW JERSEY
DEVELOPMENT OF A QUALITY MEASUREMENT FOR VARACTOR DIODES
AT MICROWAVE FREQUENCIES

INTRODUCTION

The development of the variable capacitance microwave diode (varactor) was accompanied almost simultaneously by the development of many circuit applications for this device such as low-noise amplifiers, modulators, switches, and frequency multipliers. Usually before such applications can be produced, the circuit parameters, especially of the controlling device, must be known and specified within certain limits. As various manufacturers began to develop and/or apply the varactor diode, each tended to develop its own method or technique for characterizing the diode. To date, there are several different techniques and many variations of similar characterization techniques with considerable disparity among some of them. Currently, the IRE Task Group on High-Frequency Diodes (28.4.13) is concerned with the establishment of varactor measurement standards which may result in alleviating this problem.

The Army Signal Corps pioneered in the development of the varactor diode. An immediate need arose to determine the technical requirements and characterization techniques for this device. This was accomplished under Signal Corps Contract DA-36-039-SC-78236 with Microwave Associates and applies a concept developed by N. Houlding.

This report describes the technique and analyses of the Signal Corps method of characterizing the varactor diode at microwave frequencies and contains appropriate supplementary information.

BACKGROUND

A varactor is defined as a two-terminal semiconductor device used as a voltage dependent capacitor. All nonlinear characteristics and most losses of typical varactors are localized in the small semiconductor element. Since the size of the element is a small fraction of the wavelength of the electromagnetic radiation with which it is to interact, the element may be considered as a two-terminal lumped nonlinear circuit element embedded in a linear network. This linear network may be represented by lumped and/or distributed parameters. The cartridge (or package) in which the element may be supplied often contributes significantly to the properties of the linear network.

A useful equivalent circuit for the active element of a varactor is shown in Figure 1. This circuit includes two voltage-dependent lumped parameters, C and G. At high frequencies the shunt conductance G is negligible compared to the capacitive reactance; therefore, for this report, the simplified equivalent circuit in Figure 2 is provided. There are other known effects such as frequency dependence of C, G, and R_s (equivalent series resistance), and current dependence of R_s. These effects are mentioned only for scientific interest; they are not active under the conditions of measurement discussed in this report. Since the package impedance that contributes to the linear network of the whole device may be strongly frequency dependent, the measurement method described below requires a constant frequency. In addition, R_s, in Figure 2, is considered to include losses in the package, leads, test holder, and filter through which dc bias is introduced. Package and test-holder reactances are purposely not included in the equivalent circuit so that a lower and more practical quality rating will result.
QUALITY MEASUREMENT (MICROWAVE)

General

A varactor applied as a pure variable capacitance has its performance limited by the magnitude of its equivalent series resistance R_s. A measure of this limitation is expressed by the varactor quality factor Q, which is equal to the ratio of reactance to resistance:

$$ Q = \frac{X_C}{R} = (2\pi f CR)^{-1}. $$

The quality of a varactor may be specified by stating its Q at a given frequency or by designating the frequency at which Q becomes unity.

For this method of measurement, the figure of merit for a varactor will be $f_c = (2\pi R_s C_{\text{min}})^{-1}$ where f_c is the cutoff frequency defined by $Q = 1$, and C_{min} is the capacitance at the reverse breakdown voltage V_b, as suggested by Uhlir. The cutoff frequency measurement and the (low-frequency) capacitance-voltage relationship curve are sufficient for most microwave applications. The simple equivalent circuit (Figure 2), defined above, implies that $f_c = Q_m f_m$, where Q_m is the Q at the measurement frequency f_m (assuming there are no frequency dependent losses).

The chief interest in varactor diodes has been in their use at microwave frequencies where the most influential factors are the capacitance value and the Q. At frequencies comparable to the cutoff frequency, the varactor leakage conductance may be neglected, as in the previous discussion, and the low-Q measurements can be made which are easier to execute and inherently more accurate. Thus, the measurement method described below (a reflectometer type of technique) permits the determination of f_c and R_s from microwave measurements of Q and low-frequency measurements of capacitance.

A block diagram of the varactor quality measurement circuit is shown in Figure 3, and the E-H tuner and varactor holder are given in Figure 4. The equivalent measurement network (Figure 5) is assumed to be as shown to the left of terminals T-T; that is, the lossless network, as viewed from left to right, includes a termination matched to a length of input transmission line of characteristic impedance $Z_o (=R_o)$, followed by a coupler directing rf power toward the load, a (shuttered) reference short, a lossless variable transformer (E-H tuner), a lumped reactance due to the varactor holder, package, and semiconductor capacitance (at basis $V_1 = V_b$) and a variable (lumped) reactance provided by the varactor holder movable short.

Procedure

The measurement procedure is as follows (Figure 3):

1. Loosely couple (about 25-db) signal port 1 down to signal port 3. Then if there is no reflection at port 3, there is negligible signal received at port 4. For a constant level of input, the signal level received at port 4 is proportional to the reflection coefficient of the termination at port 3, provided port 4 is matched.

2. For an appropriate bias point, in this case V_b (breakdown voltage defined at $I_T = -10\mu A$), adjust the tuning elements for a minimum reading on the detector; however, to reduce possible ambiguity, first set the movable short S_1 (Figure 4) to an optimum position with the E-H tuner giving negligible transformation. Then it is usually necessary to adjust only S_2 for a good match (minimum reading). If the directional coupler directivity is sufficiently high (> 40 db), this "minimum reading" will correspond to a very low reflection coefficient. The bias voltage is then changed to $-V_2$ and the detector amplifier gain set to give a suitable reading.
3. Replace the varactor with a total reflection by means of a waveguide shutter, and adjust the precision (calibrated) attenuator to give the same reading on the detector indicator. In this way the forward and reflected waves traverse identical line conditions so that most of the line attenuation is compensated. The attenuation change \(A \) (ratio of available powers) is related to \(\Delta Q \), the change in \(Q \) for the change from \(V_b \) \((C_{\text{min}})\) to \(-V_2\) \((C_2)\). If the varactor capacitance law is known, \(V_2 \) may be chosen with respect to \(V_b \) so that the value of \(Q \) at \(V_b \) can be deduced and the attenuator calibrated directly.

Analysis

In the equivalent circuit shown in Figure 5, \(Z_L = R_s + j(X_o + \Delta X + X) \) where (1)

\[
Z_L = \text{load impedance} \\
R_s = \text{varactor series resistance, including package and holder resistance (losses)} \\
X_o = \text{varactor capacitive reactance at } V_b, \text{ including package and holder parasitic capacitance} \\
X = \text{variable reactance of holder movable short} \\
\Delta X = \text{change of capacitive reactance of varactor element dependent on } \Delta V.
\]

If, as stated above, it is assumed that the package and holder losses are equivalent to a lumped resistance in series with the varactor, and stray shunt conductance and series conductance are insignificant, additional lossless transformation may be introduced (E-H tuner), thus transforming what is essentially a lumped constant resistance and a variable capacitance element.

The holder shorting stub and E-H tuner adjustments obtain a perfect match with the bias at \(V_b \) and effectively transform to the \((1 + j\theta) \) point on the Smith Chart (Figure 6). The \((1 + j\Delta x) \) circle on the Smith Chart then becomes the locus of the load impedance graph for changing bias conditions and constant rf matching conditions. Thus, a predetermined change in bias, selected so as to cause a small change in varactor capacitance, will produce a point \((1 + j\Delta x) \) on the Smith Chart.

Assuming \(\Delta X \) is affected by the same transforming conditions as \(R_s \), the transformed reactance change will be related to the actual change in capacitance in the varactor; i.e., if \(Z_o = \frac{n^2 R_s}{Z_0} \), \(\Delta X' = n^2 \Delta X \), and the normalized impedance of the load at the input side of the transformer becomes

\[
z_1 = \frac{Z_L}{Z_o} = \frac{n^2 R_s + n^2 \Delta X}{n^2 R_s} = 1 + j\Delta X
\]

where \(\Delta X = \frac{\Delta X'}{Z_o} \) is the transformed normalized reactance (of the varactor element) at \(-V_2\) and \(n \) is the transformed normalized impedance of the load at condition \(V_b \) matched
condition), but \(\frac{\Delta X'}{Z_o} = \frac{n^2 \Delta X}{n^2 R_s} \) is indicated in the reflection coefficient measurement on the line of characteristic impedance \(Z_o \) and can be taken as \(\frac{\Delta X}{R_s} \) directly, which is obviously \(\Delta Q \) of the varactor.

From transmission line theory, the relationship between impedance and reflection coefficient is

\[
\Gamma = \frac{(Z_L - Z_o)}{(Z_L + Z_o)}
\]

and by using \(z_1 \) and \(z_o \) from above, one obtains

\[
\Gamma = \frac{(1 + j\Delta x - 1)}{(1 + j\Delta x + 1)}.
\]

Equation (3) is rearranged so that one obtains

\[
\Delta x = \frac{2}{1} \left(\frac{1}{|\Gamma|^2 - 1} \right)^{1/2}
\]

But

\[
|\Gamma| = \left(\frac{P_f}{P_r} \right)^{1/2} = \left(\frac{1}{A} \right)^{1/2}
\]

where \(P_f \) is the local oscillator forward power which is reflected by the waveguide shutter (refer to Section under Quality Measurement, General); \(P_r \) is that part of the forward power reflected by the mismatch \(\Delta x \), due to voltage change \(-V_2 - V_b \), and \(A = \frac{P_f}{P_r} \) is the precision attenuator change ratio.

Equation (4) can then be rewritten as

\[
\Delta Q = \Delta x = \frac{2}{(A - 1)^{1/2}}
\]

To obtain \(f_c \) and \(R_s \), the equation for deriving \(f_c \) from Q by Uhler's definition is:

\[
Q = \frac{1}{2\pi f_c R_s C_{min}} = 1 = \frac{X_{max}}{R_s}.
\]
By measurement

\[\frac{\Delta Q}{R_s} = \Delta \frac{X_1}{X_2} = \frac{X_1 - X_2}{R_s} = \frac{1}{W_m R_s} \left(\frac{1}{C_{\text{min}}} - \frac{1}{C_2} \right) \]

(6)

where

\[W_m = \text{angular frequency of measurement} \]

\[X_1 = \text{reactance due to } C_{\text{min}}. \]

By taking the ratio of (6) over (5), one obtains

\[\frac{\Delta Q}{\Delta Q} = \frac{\frac{1}{W_m R_s} \left(\frac{1}{C_{\text{min}}} - \frac{1}{C_2} \right)}{\frac{1}{W_0 R_s C_{\text{min}}}} = \frac{f_c}{f_m} \left(1 - \frac{C_{\text{min}}}{C_2} \right) \]

(7)

By deriving \(R_s \) from \(\Delta Q \), Equation (6) can be rewritten as

\[\Delta Q = \frac{1}{W_m R_s C_{\text{min}}} \left(1 - \frac{C_{\text{min}}}{C_2} \right) \]

\[R_s = \frac{0.159}{\Delta Q f_m C_{\text{min}}} \left(1 - \frac{C_{\text{min}}}{C_2} \right) \frac{(A - 1)^{1/2}}{2 W_m C_{\text{min}}} \left(1 - \frac{C_{\text{min}}}{C_2} \right) \text{ ohms.} \]

Example

It is known that the relation between the capacitance and reverse-bias voltage of the varactor element is very closely given by \(\left(\frac{1}{C} \right)^n = K(V + \phi) \) where \(C \) is the capacitance, \(V \) the bias voltage, \(n = 3 \) for a graded diffused junction, or \(n = 2 \) for a step junction, and \(\phi \) is a (contact potential) constant. Using this relation, \(V_2 \) can always be determined relative to \(V_b \) to provide a constant ratio for \(\frac{C_{\text{min}}}{C_2} \). Consider, for example, a varactor with \(\phi = 0.4 \) volt, \(n = 3 \), and let \(\frac{C_{\text{min}}}{C_2} = \frac{4}{5} \). Then \(V_2 = 0.512 V_b - 0.2 \) volts.
Equations (7) and (8) now become respectively:

\[f_c = 10 f_m (A - 1)^{-1/2} \quad (7a) \]

\[R_s = \frac{(A - 1)^{1/2}}{10 W_m C_{min}} \quad (8a) \]

The precision attenuator may be calibrated to read \(f_c \) directly. By biasing at some other negative voltage \(V_1 \), instead of at \(V_b \), \(R_s \) may be measured at some suitable point other than at \(C_{min} \). In fact this method may be used to measure the Q at any bias point. If the varactor \(f_c \) is beyond 100 kmc, the increment \(C_2 \) should be smaller, for instance \(C_2 = \frac{10}{9} C_{min} \) and \(f_c = 20 f_m (A - 1)^{-1/2} \); or the frequency of measurement should be made higher.

Some typical varactor values are:

\[f_m = 10 \text{ kmc} \]
\[P_{rf} \text{ (at load)} = 2 \mu \text{w} \]
\[C_2 = \frac{5}{4} C_{min} \]
\[f_c = 50 \text{ to } 100 \text{ kmc} \]
\[C_{min} \approx 0.2 \text{ to } 1 \text{ pf} \]
\[R_s \approx 1 \text{ to } 3 \text{ ohms}. \]

The rf voltage should not be greater than about 5 percent of the bias swing \((V_1 - V_2)\) or roughly 50 mv. A 25-db bidirectional coupler with a directivity greater than 42 db at x-band is used in the measurement.

Limitations, Advantages, Disadvantages

One obvious limitation to the above technique of quality measurement is the design of the holder in which the varactor is mounted. If the holder is lossy, a lower (than true) quality measurement will result. On the other hand, no special care is required to insure that the test holder and flange fittings present a good match to the transmission line (waveguide), as any such discontinuities will be matched out by the transformation network (E-H tuner and variable short).

As may be seen, this method is accurate, rapid, and straightforward enough to be satisfactory for both laboratory and production measurements. The method is applicable at any microwave, limited only by the design of a lossless transformer-holder combination.

Other limitations follow:

1. Both power and frequency stability are essential.
2. Certain combinations of varactor-holder impedance vs. transformer location may be such that transformation of \(R_s \) to \(Z_o \) cannot be effected. The best arrangement would have to be determined experimentally.
3. The method does not characterize (separately) the parasitic reactance (especially inductive) effects of the package, but does include the package losses.

4. The method assumes a constant (frequency and power independent) series resistance.

CAPACITANCE MEASUREMENT (Low Frequency)

It was stated above that only the capacitive reactance of the semiconductor element would be considered in characterizing the varactor diode and that package and holder parasitic reactances would be excluded. Information on the variation of the element junction capacitance with bias is a necessary part of the specification of varactor parameters. The junction capacitance should be measured at low frequency (about 100 kc) where package inductance effects are negligible. For this purpose a simple capacitance bridge, such as the Boonton Electronics Corporation 74CS4 (with built-in bias supply) can be used. The signal voltage across the varactor should be small (about 30 mv).

One method for isolating the junction capacitance is as follows: Assuming that both the capacitance-bias law constant ϕ and n for the varactor are known and the parasitic reactance remains constant, observe the change in total capacitance as a function of bias. The junction capacitance can be obtained from the expression (see Appendix):

$$C_j = \frac{(C_t' - C_t)}{\left(\frac{V + \phi}{V' + \phi}\right)^{1/n} - 1}$$

(9)

where

- $C_j =$ the varactor element junction capacitance at reverse bias V
- $C_t =$ the varactor device capacitance measured at reverse bias V
- $C_t' =$ the varactor device capacitance measured at reverse bias V'
- $\phi =$ the contact potential, a positive (temperature dependent) constant
- $n =$ a positive constant, dependent on junction type.

CONCLUSIONS

Varactor quality can be determined in a number of ways depending upon relative requirements such as accuracy, rapidity, simplicity, intended application, and available instrumentation. This report has shown that a varactor quality measurement which includes package and holder losses can be performed with ease and accuracy at microwave frequencies comparable to the cutoff frequency of the varactor. Assuming the varactor to be equivalent to a variable capacitance in series with a constant resistance, the method determines absolute values of cutoff frequency.
The important parameters to be specified have been defined herein and shown to be as follows:

a. cutoff frequency
b. dynamic (microwave) series resistance
c. breakdown voltage
d. capacitance at zero and breakdown voltage bias
e. exact variation of capacitance with bias voltage.

A limitation lies in the method of transforming the line to the varactor junction and this bears further experimentation.

For maximum accuracy, the method developed should be applied at the highest possible microwave frequencies within the capability of the available Laboratory equipment.

REFERENCE

APPENDIX

JUNCTION CAPACITANCE ISOLATION

The following is a derivation of expression for isolation of junction capacitance versus reverse bias for a varactor semiconductor element. The relation between capacitance and reverse-bias voltage is shown (by W. Shockley) to be very closely given by:

\[C_j = \frac{K}{(V + \phi)^{1/n}} \]

taking \(C_t = C_p + C_j \), where \(C_p \) = parasitic capacitance and \(V' \) respectively becomes:

\[C_t = C_p + \frac{K}{(V + \phi)^{1/n}} \quad \text{and} \quad C_t' = C_p + \frac{K}{(V' + \phi)^{1/n}} \]

or

\[C_t = C_p + Kf(v) \quad \text{and} \quad C_t' = C_p + Kf(V') \]

\(K, \phi \) and \(n \) are constants.

Solving for \(K \):

\[K = \frac{1_{C_t}}{1_{C_t'}} = \frac{C_t' - C_t}{f(v') - f(v)} \frac{f(v)}{f(v')} \]

Then

\[C_j = Kf(v) = \frac{(C_t' - C_t)}{f(v') - f(v)} [f(v)] = \frac{C_t' - C_t}{(V + \phi)^{1/n}} = 1 \]
EQUIVALENT VARACTOR CIRCUIT
(LOW FREQUENCY)
FIGURE 1
SIMPLIFIED EQUIVALENT VARACTOR CIRCUIT
(HIGH FREQUENCY)

FIGURE 2
VARACTOR QUALITY MEASUREMENT
(BLOCK DIAGRAM)
FIGURE 3
EQUIVALENT MEASUREMENT CIRCUIT

FIGURE 5
NOTE THAT SINCE THE PHYSICAL LOCATION OF THE E-H TUNER IS FIXED WITH RESPECT TO THE DIODE POSITION, THERE ARE COMBINATIONS OF DIODE IMPEDANCE AND TUNER LOCATION SO THAT TRANSFORMATION COULD NOT BE EFFECTED.

TRANSFORMATION OF VARACTOR TO THE \((1 + j \Delta X)\) CIRCLE

FIGURE 6

15
DISTRIBUTION

Office of the Assistant Secretary of Defense
(Research and Engineering)
ATTN: Technical Library
Room 3E1065, The Pentagon
Washington 25, D.C. 1

Commanding General
U. S. Army Electronics Command
ATTN: AMS-AD
Fort Monmouth, New Jersey 3

Chief of Research and Development
Department of the Army
Washington 25, D.C. 2

Chief, United States Army Security Agency
ATTN: ACoS, G4 (Technical Library)
Arlington Hall Station
Arlington 12, Virginia 1

Commanding Officer
U. S. Army Electronics Research & Development Activity
ATTN: Technical Library
Fort Huachuca, Arizona 1

Commanding Officer
U. S. Army Electronics Research & Development Activity
ATTN: SELWS-AJ
White Sands, New Mexico 1

Commanding Officer
U. S. Army Electronics Research Unit
P.O. Box 205
Mountain View, California 1

Commanding Officer
U. S. Army Electronics Materiel Support Agency
ATTN: SELMS-ADJ
Fort Monmouth, New Jersey 1

Headquarters, United States Air Force
ATTN: AFCIN
Washington 25, D.C. 2
DISTRIBUTION (Cont)

<table>
<thead>
<tr>
<th>Distribution Address</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rome Air Development Center</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: RAALD</td>
<td></td>
</tr>
<tr>
<td>Griffiss Air Force Base, New York</td>
<td></td>
</tr>
<tr>
<td>Ground Electronics Engineering Installation Agency</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: ROZMEL</td>
<td></td>
</tr>
<tr>
<td>Griffiss Air Force Base, New York</td>
<td></td>
</tr>
<tr>
<td>Aeronautical Systems Division</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: ASAPRL</td>
<td></td>
</tr>
<tr>
<td>Wright-Patterson Air Force Base, Ohio</td>
<td></td>
</tr>
<tr>
<td>U. S. Air Force Security Service</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: ESD</td>
<td></td>
</tr>
<tr>
<td>San Antonio, Texas</td>
<td></td>
</tr>
<tr>
<td>Strategic Air Command</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DOCE</td>
<td></td>
</tr>
<tr>
<td>Offutt Air Force Base, Nebraska</td>
<td></td>
</tr>
<tr>
<td>Air Proving Ground Center</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: PGAPI</td>
<td></td>
</tr>
<tr>
<td>Eglin Air Force Base, Florida</td>
<td></td>
</tr>
<tr>
<td>Air Force Cambridge Research Laboratories</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: CRXL-R</td>
<td></td>
</tr>
<tr>
<td>Laurence G. Hanscom Field</td>
<td></td>
</tr>
<tr>
<td>Bedford, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>AFSC Scientific/Technical Liaison Office</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Naval Air Development Center</td>
<td></td>
</tr>
<tr>
<td>Johnsville, Pa.</td>
<td></td>
</tr>
<tr>
<td>Chief of Naval Research</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Code 427</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Bureau of Ships Technical Library</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Code 312</td>
<td></td>
</tr>
<tr>
<td>Main Navy Building, Room 1528</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Ships</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Code 45½</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION (Cont)

HQ, Electronic Systems Division
ATTN: ESAT
Laurence G. Hanscom Field
Bedford, Massachusetts

Chief, Bureau of Ships
ATTN: Code 686B
Department of the Navy
Washington 25, D.C.

Director
U. S. Naval Research Laboratory
ATTN: Code 2027
Washington 25, D.C.

Commanding Officer & Director
U. S. Navy Electronics Laboratory
ATTN: Library
San Diego 52, California

Commander
U. S. Naval Ordnance Laboratory
White Oak
Silver Spring 19, Maryland

Director
U. S. Army Engineer Research & Development Laboratories
ATTN: Technical Documents Center
Fort Belvoir, Virginia

Commanding Officer
U. S. Army Chemical Warfare Laboratories
ATTN: Technical Library, Building 330
Army Chemical Center, Maryland

Commander
Armed Services Technical Information Agency
ATTN: TISIA
Arlington Hall Station
Arlington 12, Virginia

USAEIRDL Liaison Officer
Ordnance Tank Automotive Command
U. S. Army Ordnance Arsenal
Detroit, Center Line, Michigan

2

1

1

1

1

10
<table>
<thead>
<tr>
<th>DISTRIBUTION (Cont)</th>
<th>COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanding Officer</td>
<td>1</td>
</tr>
<tr>
<td>Harry Diamond Laboratories</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library, Bldg. 92, Room 211 Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>USAEIRDL Liaison Officer</td>
<td>1</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 1071 Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>USAEIRDL Liaison Officer</td>
<td>1</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Building 26, Room 131</td>
<td></td>
</tr>
<tr>
<td>77 Massachusetts Avenue</td>
<td></td>
</tr>
<tr>
<td>Cambridge 39, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>USAEIRDL Liaison Office</td>
<td>1</td>
</tr>
<tr>
<td>Aeronautical Systems Division</td>
<td></td>
</tr>
<tr>
<td>ATTN: ASDL-9</td>
<td></td>
</tr>
<tr>
<td>Wright-Patterson Air Force Base Ohio</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Research Liaison Office</td>
<td>1</td>
</tr>
<tr>
<td>Lincoln Laboratory</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 73</td>
<td></td>
</tr>
<tr>
<td>Lexington, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>USAEIRDL Liaison Officer</td>
<td>1</td>
</tr>
<tr>
<td>Rome Air Development Center</td>
<td></td>
</tr>
<tr>
<td>ATTN: RAOL</td>
<td></td>
</tr>
<tr>
<td>Griffiss Air Force Base New York</td>
<td></td>
</tr>
<tr>
<td>Chief, West Coast Office</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Army Electronics Research & Development Laboratory</td>
<td></td>
</tr>
<tr>
<td>75 South Grand Avenue, Building 13</td>
<td></td>
</tr>
<tr>
<td>Pasadena, California</td>
<td></td>
</tr>
<tr>
<td>USAEMSA Liaison Engineer</td>
<td>1</td>
</tr>
<tr>
<td>USAEMSA</td>
<td></td>
</tr>
<tr>
<td>A.P.O. 343</td>
<td></td>
</tr>
<tr>
<td>San Francisco, California</td>
<td></td>
</tr>
<tr>
<td>Chief Scientist, SELRA/CS, Headquarters, USAEIRDL</td>
<td>1</td>
</tr>
<tr>
<td>USAEIRD A -White Sands Liaison Officer, SELRA/INW, USAEIRDL</td>
<td>1</td>
</tr>
<tr>
<td>Corps of Engineers Liaison Officer, SELRA/LNE, USAEIRDL</td>
<td>1</td>
</tr>
<tr>
<td>Marine Corps Liaison Officer, SELRA/LNW, USAEIRDL</td>
<td>1</td>
</tr>
<tr>
<td>DISTRIBUTION (cont)</td>
<td>COPIES</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Commanding General, U. S. Army Satellite Communications Agency, Attn: Technical Documents Center, Fort Monmouth, N. J.</td>
<td>1</td>
</tr>
<tr>
<td>Headquarters, Research and Technology Division, Attn: RTH, Bolling Air Force Base, Washington 25, D. C.</td>
<td>1</td>
</tr>
<tr>
<td>USACDC Liaison Office, SEIRA/INF, USAEIRDL</td>
<td>3</td>
</tr>
<tr>
<td>AFSC Scientific/Technical Liaison Office, SEIRA/LNA, USAEIRDL</td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer, U. S. Army Electronics Research Activity, Evans Area</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Technical Information Division, Hq, USAEIRDL</td>
<td>6</td>
</tr>
<tr>
<td>Director, Electronic Components Dept., USAEIRDL</td>
<td>1</td>
</tr>
<tr>
<td>Director, Solid State & Frequency Control Div., EC Dept.</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Microwave & Quantum Electronics Branch, Solid State & Frequency Control Division, EC Dept.</td>
<td>40</td>
</tr>
<tr>
<td>File Unit Nr. 1, Rm 3D-116, Hexagon</td>
<td>1</td>
</tr>
</tbody>
</table>
A technique is described for characterizing the microwave varactor diode at microwave frequencies. Basically, this is a reflectometer type of technique that permits reasonable accuracy and speed of measurement without the need for standard Smith Chart plots or auxiliary (substitute) devices. The varactor parameters of major importance are specified. Included also are the limitations of the method.

UNCLASSIFIED

1. Semiconductor Junction Characterization at Microwave Frequencies
2. Varactor Measurement at Microwave Frequencies
3. Microwave Characterization of a Nonlinear Reactance Diode

I. Senko, Frank P.
II. Army Electronics Research & Development Laboratory, Fort Monmouth, N. J.
III. DA Task 3A99-21-001-02