A MEASURE OF ASYMMETRY FOR PLANE CONVEX SETS

by

BRANKO GRUNBAUM

The Hebrew University

Jerusalem, Israel

TECHNICAL (SCIENTIFIC) NOTE No. 35

CONTRACT No. AF 61(052)-107

"The research reported in this document has been sponsored in part by the AIR FORCE OFFICE OF SCIENTIFIC RESEARCH of the AIR RESEARCH AND DEVELOPMENT COMMAND UNITED STATES AIR FORCE through its European Office".
A measure of asymmetry for plane convex sets.

Branko Grünbaum

1. Introduction. For any plane convex body\(^{(1)}\) \(K\) we consider partitions of \(K\) by straight lines \(L_1, L_2, L_3\), subject to the condition\(^{(2)}\) (see Fig. 1.):

\[(*) \quad E_i \leq V_i \quad \text{for } i=1,2,3. \]

Let \(f(K; L_1, L_2, L_3) = \frac{T}{E_1+E_2+E_3} \). We are interested in the functional \(f(K) \) defined by

(1) A convex body is a compact convex set with non-empty interior.

(2) We shall denote a convex set and its area by the same letter.
\[f(K) = \sup \left\{ f(K; L_1, L_2, L_3) \mid L_1, L_2, L_3 \text{ satisfy } (*) \right\}, \]

and we shall prove the following

Theorem. For every plane convex body \(K \)

(i) \(0 < f(K) < \frac{1}{24} \);

(ii) \(f(K) = 0 \) if and only if \(K \) has a center of symmetry;

(iii) \(f(K) = \frac{1}{24} \) if and only if \(K \) is a triangle.

Thus \(f(K) \) is a measure of asymmetry \(^3\) for plane convex bodies; it is obviously an affine-invariant measure of asymmetry.

Our estimate \(f(K) \leq \frac{1}{24} \) generalizes the well-known result of Sholander \(^4\) that \(f(K; L_1, L_2, L_3) \) is at most \(\frac{1}{24} \) if, in addition to \((*)\), the relation \(E_1 = E_2 = E_3 \) is assumed.

In \(\S \, 2 \) we shall prove the assertion (i) of the theorem; as a by-product of the proof we obtain (iii). Assertion (ii) shall be proved in \(\S \, 3 \), while \(\S \, 4 \) contains some remarks and problems.

2. **Proof of assertion (i).** Since \(f(K) \) is obviously non-negative \(^5\), we shall prove only \(f(K) \leq \frac{1}{24} \). We begin by remarking that, by standard compactness arguments, for any given \(K \) the functional \(f(K; L_1, L_2, L_3) \) assumes a maximal value for certain lines \(L_1, L_2, L_3 \), and also that \(f(K) \) assumes its maximal value for a certain

\(^3\) See [5] for a summary of results on measures of asymmetry and references.

\(^4\) Conjectured by R.C. Buck and E.F. Buck [1]; proved also by H.G. Eggleston [1] (this proof is reproduced in Eggleston's books [3, 4]).

\(^5\) The existence of at least one set of lines \(L_1, L_2, L_3 \), satisfying \((*)\) is a consequence of the existence of sixpartite points (Buck and Buck [1]; sixpartite points correspond to the case \(T = 0, E_i = V_j \) for \(i, j = 1, 2, 3 \).
convex body K^*. Using simple geometric arguments we shall first determine K^* and some properties of the L_i's which maximize $f(K;L_1,L_2,L_3)$. The analytic determination of the L_i's and of $f(K^*)$ will complete the proof of (i) and (iii).

For any given K a necessary condition for the maximum of $f(K,L_1,L_2,L_3)$ is (see Fig. 2)

![Fig. 2.](image)

that the segment C_1A_2 have the same length as A_3B_1, and similarly $C_2A_3=A_1B_2$ and $C_3A_1=A_2B_3$. Indeed, if e.g. $C_1A_2>A_3B_1$, then for a suitable line L^* through the midpoint A^*_1 of A_2A_3 we would have $f(K;L^*_1,L_2,L_3)>f(K;L_1,L_2,L_3)$.

Let now any K, L_1,L_2,L_3 be given and let K^* be the triangle with vertices D_1,D_2,D_3 determined by the straight lines B_1C_3, B_2C_1, and B_3C_1 (see Fig. 3.). Obviously the lines L_i satisfy condition (*) with respect to K^*, and $f(K^*;L_1,L_2,L_3)>f(K;L_1,L_2,L_3)$. Equality holds here if and only if the boundary of K coincides with that of K^* in $E_1 \cup E_2 \cup E_3$.
Fig. 3.

It follows that the maximum of $f(K)$ is assumed for K a triangle.

For a triangle K the maximum of $f(K; L_1, L_2, L_3)$ can be achieved only if $V_i = E_i$ for all i. Indeed, if e.g. $V_1 > E_1$ then for a suitable triangle K^* with vertices D_1^*, D_2^*, D_3^* (see Fig. 4.)

Fig. 4.
we would have \(f(K^*; L_1, L_2, L_3) > f(K; L_1, L_2, L_3) \).

According to the above, the assertion (i) of the theorem shall be proved if we show that for all lines \(L_1, L_2, L_3 \) such that (in the notation of Fig. 5.)

\[
E_1 = V_1 \quad \text{for} \quad i=1, 2, 3, \quad \text{and} \quad (**) \quad C_1 A_2 = A_3 B_1, \quad C_2 A_3 = A_1 B_2, \quad C_3 A_1 = A_2 B_3, \]

the inequality \(24T \leq E_1 + E_2 + E_3 \) holds. We find it convenient to prove the stronger statement, viz. \(8T \leq E_1 \) provided (**) holds and \(V_1 = E_1 \leq E_j, \quad j=2, 3, \) with no assumption on \(V_2 \) and \(V_3 \). For simplicity of computation we take \(T \) (and \(L_1, L_2, L_3 \)) fixed as indicated in Fig. 6, and proceed as follows (assuming, without loss of generality, that \(a \geq b \)).
First we find

\[x_0 = -\frac{1+c}{(1+c)^2 - (a-c)(b-c)} \]

\[y_0 = -\frac{1+c}{(1+c)^2 - (a-c)(b-c)} \]

From \(E_1 = V_1 \) it follows that

\[(***) \quad (a-b)^2 c^2 + 2[a(1+a)+b(1+b)]c - [ab(2+a+b)+(a+b+a^2)(ab-1)] = 0; \]
simply, $E_3 \geq E_1$ implies $b(1+c) + c \geq b + ab$ and therefore $c \geq a$.

Combining this inequality with (***), and simplifying, it follows that

$$a^3 + a^2 + a \leq b(2a^2 - 1);$$

together with $b \leq a$ this implies $a^3 - a^2 - 2a \geq 0$.

Since $a > 0$ we obtain $a \geq 2$.

Now, as easily checked,

$$\frac{a^3 + a^2 + a}{2a^2 - 1} \geq 2 \text{ for } a \geq 2,$$

and therefore (****) yields $a \geq b > 2$. But then $E_1 \geq 4 - 8T$, as claimed in (i). Equality holds if and only if $a - b - 2$, then $c - 2$, and $E_1 = V_1 = 4$, $T = \frac{1}{2}$. This establishes (iii).

3. Proof of assertion (ii). It is well known that a plane convex body K is centrally symmetric if and only if all the straight lines which bisect the area of K are concurrent (at the center of K). Therefore, if K is not centrally symmetric there exists three non-concurrent lines L_1, L_2, L_3, each of which bisects the area of K. Obviously $T > 0$, and since the L_i's are area-bisects of K we have (in the notation of Fig. 7.) $V_1 = T + E_1$
for \(i = 1, 2, 3 \); thus \(V_i \geq E_i \), condition (*) is fulfilled, and
\(f(K; L_1, L_2, L_3) > 0 \).

There remains to be shown that \(f(K) = 0 \) for centrally symmetric \(K \). Suppose that, on the contrary, this is not true, i.e., that there exists a centrally symmetric \(K \) and lines \(L_1, L_2, L_3 \) such that
\(f(K; L_1, L_2, L_3) > 0 \). Compactness arguments again establish the existence of extremal \(K \) and \(L_i \)'s.

With regard to the possible positions of the center \(0 \) of \(K \) relative to \(L_1, L_2, L_3 \), it is immediate that \(0 \) cannot belong to \(T \) or to \(E_1 \cup E_2 \cup E_3 \). Indeed, in the first case (see Fig. 8) each of the lines \(M_1 \) through \(0 \) parallel to \(L_1 \) bisects the area.
of \(K \), and therefore

\[
E_1 + V_2 + V_3 \leq V_1 + E_2 + E_3 \\
V_1 + E_2 + V_3 \leq E_1 + V_2 + E_3 \\
V_1 + V_2 + E_3 \leq E_1 + E_2 + V_3.
\]

with strict inequality at least in one of the relations; adding the three
inequalities we obtain \(V_1 + V_2 + V_3 < E_1 + E_2 + E_3 \), in contradiction to (\(*\)).

The possibility that 0 belongs, e.g., to \(E_1 \) is at once contradicted
by the condition \(V_1 > E_1 \) (see Fig. 9.).

In order to dispose of the remaining possibility let us assume that 0
belongs to \(V_1 \) (see Fig. 10.). Let \(B_1^*, C_1^* \), be the points symmetric
to \(B_1, C_1 \), with respect to the center 0. Denote by \(P \) the parallelo-
gram with vertices \(P_0, P_1, P_2, P_3 \) whose sides are determined by the lines
\(C_2 B_3, B_2^* C_3, B_3^* C_2, B_2 C_3 \). Then \(f(K; L_1, L_2, L_3) \leq f(P; L_1, L_2, L_3) \)
and therefore we may restrict our attention to parallelograms.

Assuming the configuration to yield maximal $f(P, L_1, L_2, L_3)$ we have (as shown in Fig. 10) $B_1A_3 = A_2C_1$ (see Fig. 11.)
Substituting for \(L_1 \) the line \(L_1^* \) determined by the midpoint \(A_1^* \) of \(A_2 A_3 \) and by \(P_0 \) (or \(P_1 \)), it follows that \(f(P, L_1, L_2, L_3) \leq f(P, L_1^*, L_2, L_3) \). (Note that if \(L_1, L_2, L_3 \) satisfy \((*)\), so do \(L_1^*, L_2, L_3 \).) But if \(C_1 = P_0 \) (or \(B_1 = P_1 \)), then \(C_3 A_1 = A_2 B_3 \) obviously contradicts \((*)\). The contradiction reached completes the proof of (ii).

4. Remarks. (a) Using the notations of §1, let \(g(K; L_1, L_2, L_3) = \max \left\{ \frac{T}{E_1}, \frac{T}{E_2}, \frac{T}{E_3} \right\} \), the lines \(L_i \) satisfying condition \((*)\). As in §3 it follows that \(g(K) \) is a measure of asymmetry; obviously \(3 f(K) \leq g(K) \). Probably \(g(K) \leq 1/6 \), but our arguments do not establish this.

(b) Similarly, if \(h(K; L_1, L_2, L_3) = \frac{T}{E_1} \) for \(L_1 \) satisfying \(E_1 = E_2 = E_3 \leq V_1 = V_2 = V_3 \), it follows from part (i) of our theorem that \(h(K) \leq 1/6 \) with equality only if \(K \) is a triangle. Also, \(h(K) = 0 \) if \(K \) is centrally symmetric. One may conjecture that \(h(K) = 0 \) only for centrally symmetric \(K \), although no proof of this seems to be known.

(c) It would be interesting to investigate the analogs of \(f(K) \) in higher dimensions. It seems that one reasonable generalization to \(\mathbb{E}^3 \) would consist in asking for the maximum of the volume of the central tetrahedron if its bounding planes are supposed to satisfy conditions of the type "all vertex regions have the same volume, and so do all edge regions and vertex regions", and possibly some inequalities of the type \((*)\).
(d) Our theorem obviously implies the following statement:

For any convex body K in the plane, and any lines $L_1, L_2, L_3,$ satisfying (*) we have $0 \leq \gamma_K \leq \frac{1}{49}$. Equality on the left holds if and only if K is centrally symmetric, and on the right if and only if K is a triangle. Thus γ_K is another measure of asymmetry. It is interesting to note that the direct proof of $\gamma_K \leq \frac{1}{49}$ seems to be more complicated than that of our theorem.

References

ABSTRACT: A functional related to the notion of sixpartite points is defined for convex bodies in the plane. Its extreme values are determined and it is proved that the functional is a measure of asymmetry.