UNCLASSIFIED

AD. 400 264

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
5 REACTANCE 3 TERMINAL PEAKING CIRCUIT

by

Leo E. Foley

Research Report No. PIBMRI-1119-63

for

The Air Force Office of Scientific Research
The U.S. Army Research Office
The Office of Naval Research
Contract No. AF-AFOSR-62-295

February 28, 1963
5 REACTANCE 3 TERMINAL PEAKING CIRCUIT

by

Leo E. Foley

Polytechnic Institute of Brooklyn
Microwave Research Institute
55 Johnson Street
Brooklyn 1, New York

Research Report PIBMRI-1119-63
Contract No. AF-AFOSR-62-295

February 28, 1963

Title Page
Acknowledgment
Abstract
Table of Contents
14 pages of text
6 pages of figures
2 pages of tabulations
2 pages of Conclusions
Bibliography
Distribution List

Leo E. Foley
Research Fellow, Jr.

Mischa Schwartz
Head, Electrical Engineering Dept.

for
The Air Force Office of Scientific Research
The U. S. Army Research Office
The Office of Naval Research
ACKNOWLEDGEMENT

The author wishes to express his appreciation to Dr. Sid Deutsch for his advice and guidance, and to Mr. Richard Mishelof of the Polytechnic Computer Laboratory for the programming of the computer.

The work reported herein was sponsored by the Air Force Office of Scientific Research of the Office of Aerospace Research; the department of the Army, Army Research Office; and the department of the Navy, Office of Naval Research under grant AF-AFOSR-62-295.
Abstract

The high frequency response of the inter-stage coupling network of any amplifier is limited by the total parasitic capacitance that exists between the output terminals of one stage and the following input terminals. By the addition of suitably chosen reactive elements the amplitude, phase, and time responses of the network will be improved. A five reactive network with three terminals is analyzed on a normalized basis and compared to the simple RC network which will be called the uncompensated reference. Two capacitive elements in the network represent the division of the distributed parasitic capacitance into lumped elements while the remaining three elements are physical entities. Values for the reactive elements will be selected for three different criteria: 1) critically damped transient response, 2) maximally flat amplitude response, and 3) linear phase response. After the parameters have been selected the normalized equations for amplitude, time delay, and step response will be derived and plotted for comparative purposes. Pole-zero plots are also drawn to give a more succinct picture of the networks analyzed. The calculations for this report were made with either an IBM 650 computer or a desk calculator. Six significant figures were maintained in the calculations. However, all figures in this report will be rounded off to four places.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Transfer Impedance of the Network</td>
<td>1</td>
</tr>
<tr>
<td>II. Critically Damped Transient Response</td>
<td>4</td>
</tr>
<tr>
<td>III. Maximally Flat Amplitude Response</td>
<td>7</td>
</tr>
<tr>
<td>IV. Linear Phase Response (Maximally Flat Time Delay)</td>
<td>10</td>
</tr>
<tr>
<td>V. RC Reference</td>
<td>14</td>
</tr>
<tr>
<td>VI. Figures</td>
<td>15</td>
</tr>
<tr>
<td>VII. Tabulations</td>
<td>21</td>
</tr>
<tr>
<td>VIII. Conclusions</td>
<td>23</td>
</tr>
<tr>
<td>IX. Bibliography</td>
<td>25</td>
</tr>
</tbody>
</table>
I. TRANSFER IMPEDANCE OF THE NETWORK

a. Introduction

The high frequency representation of the interstage coupling network to be analyzed is shown in figure 1. A constant-current drive is represented by the current I_1 while V_e is the voltage into the next stage. Therefore, the quantity of interest is the ratio of V_e to I_1. C_1 and C_2 represent lumped model representations for the parasitic capacitance and L_1, L_2, and C_3 are the peaking elements to be added. R is the load impedance seen at DC.

b. Normalization

By dividing all resistance and inductance by the factor R and multiplying all capacitance by the same factor the network may be impedance scaled such that at zero frequency the load is one ohm. Frequency scaling may be accomplished by dividing all inductance and capacitance by $R(C_1 - C_2)$ such that in the uncompensated case the half-power frequency occurs at ω equal to one radian per second. These operations yield the network shown in figure 2. If $C_1 \neq C_2 = C$, the parasitic capacitance in the uncompensated case, the following normalization equations will be obtained:

\[
q = \frac{C_1}{C} \quad 1 - q = \frac{C_2}{C} \\
k_1 = \frac{L_1}{R^2 C} \quad k_2 = \frac{L_2}{R^2 C} \\
q_1 = \frac{C_3}{C} \quad \phi = \omega RC
\]
2

\[H_{tr} = \frac{Z_{tr}}{R} \quad p = sRC \]

\[\gamma = \frac{t}{RC} \]

By solving the above set, the following denormalizing equations are obtained:

\[C_1 = qC \]
\[C_2 = (1-q)C \]
\[L_1 = k_1 R^2 C \]
\[L_2 = k_2 R^2 C \]
\[t = RC \gamma \]
\[s = \frac{p}{RC} \]

\(c. \) Derivation

The ladder reduction method (1) can be used to obtain the normalized transfer impedance of the network shown in figure 3.

\[V_1 \]
\[p_q1 \neq 1 \]
\[p^2k_2q_1 \neq pk_2 \frac{1}{1} \]
\[p^3(1-q)k_2q_1 \neq p^2k_2(1-q) \neq p(1-q) \neq pq_1 \neq 1 \]
\[I_2 \]
\[p^5k_1k_2q_1(1-q) \neq p^4k_1k_2(1-q) \neq p^3[k_1q(1-q) \neq q, qk_2 \neq k_2k_2q_1] \]
\[\neq pq_1 \neq 1-q \neq q \]
\[I_3 \]
\[H_{tr} = \frac{p^2k_2q_1 \neq pk_2 \frac{1}{1}}{p^5k_1k_2q_1(1-q) \neq p^4k_1k_2(1-q) \neq p^3[k_1q(1-q) \neq q, qk_2 \neq k_2k_2q_1]} \]
The following substitutions can be made:

\[k_1 q = a \quad \quad l - q = b \]
\[k_2 = c \quad \quad q_1 = d \]

\[Htr = \frac{p^2 cd + pc}{1} \]

\[p^3abcd + p^3abc + p^3(ab + cd + ad) + p^2(ac) + p(1/d) + 1 \]
II. CRITICALLY DAMPED TRANSIENT RESPONSE

a. Selection of Parameters

This criterion requires that all the poles of Htr coalesce at one point on the negative real axis. The Laplace inverse of this pole configuration will be void of any sine or cosine terms and thereby of a critically damped nature. $D(p)$ must be of the form:

$$D(p) = \frac{1}{(1/p)} \frac{1}{(a/b/c)} \frac{1}{(ab/ad/cd)} \frac{1}{(abc/1)} \frac{1}{(abcd/\alpha^5)}$$

By equating the coefficients of equal powers of p the following system of equations are obtained:

1. $\frac{1}{d} = \frac{5}{\alpha}$
2. $\frac{10}{\alpha^2} = a/c$
3. $\frac{10}{\alpha^3} = ab$/ad/cd
4. $\frac{5}{\alpha^4} = abc$
5. $\frac{1}{\alpha^5} = abcd$

This set is solved directly to yield:

$$a = \frac{175}{576}, \quad b = 5, \quad c = 25, \quad d = \frac{1}{24}$$

Solved in terms of the network parameters the following values are obtained and indicated on the network in figure 4 in terms of the denormalizing quantities:

$$q_1 = \frac{1}{24}, \quad q = \frac{16}{21}, \quad 1-q = \frac{5}{21}, \quad kz = \frac{25}{192}, \quad k_1 = \frac{1225}{3072}$$
b. Step Response

\[H_{tr}(p) = \frac{p^2 - \frac{25}{24}}{4608} \cdot \frac{1}{192} \]
\[= \frac{(24)^5}{5} \cdot \frac{p^2 - \frac{75}{24}}{192} \cdot \frac{1}{(24)^5} \]
\[= \frac{1}{2} (24)^5 \cdot \frac{1}{(24)^5} \]
\[= \frac{1}{2} (24)^5 \cdot \frac{1}{(24)^5} \]

The inverse Laplace of the above yields the impulse response:

\[h(\gamma) = \frac{1}{2} (24)^5 \cdot \gamma^4 \exp(-24 \gamma) \cdot \frac{1}{(24)^5} \cdot \gamma^3 \exp(-24 \gamma) \cdot \frac{1}{(24)^5} \cdot \gamma^2 \exp(-24 \gamma) \cdot \frac{1}{(24)^5} \cdot \gamma \exp(-24 \gamma) \cdot \frac{1}{(24)^5} \]

The step response can be obtained from the above:

\[a(\gamma) = \int_0^{\gamma} h(x) \, dx \]

\[a(\gamma) = 1 - \exp(-4.8 \gamma) - 4.8 \gamma \exp(-4.8 \gamma) - 11.52 \gamma^2 \exp(-4.8 \gamma) \]
\[- 16.13 \gamma^3 \exp(-4.8 \gamma) - 11.06 \gamma^4 \exp(-4.8 \gamma) \]

The above equation is shown in figure 7 where it is the curve labeled T.

c. Amplitude Response

\[H_{tr}(j\phi) = 1 - \frac{25 \phi^2}{4608} \cdot \frac{1}{192} \cdot \frac{1}{(1 - \frac{\phi^2}{24})^5} \]
\[|H_{tr}|^2 = \left(1 - \frac{25}{46000} \phi^2 \right) \left(\frac{25}{192} \phi^2 \right)^5 \left(1 + \left(\frac{\phi}{24} \right)^5 \right)^5 \]

\[= \frac{1 - 0.006104 \phi^2 - 2.94 \times 10^{-4} \phi^4}{1 + 0.2170 \phi^2 + 0.0184 \phi^4 + 5.17 \times 10^{-3} \phi^6} + 17.74 \times 10^{-6} \phi^8 + 1.54 \times 10^{-6} \phi^{10} \]

The \(|H_{tr}| \) is shown in figure 8 as the T curve.

d. Normalized Time Delay

\[D = \theta (\phi) \]

\[\theta (\phi) \bigg|_{\phi = 0} \]

\[-\theta (\phi) = \tan^{-1} \frac{N_r D_1 - N_i D_i}{N_r D_r - N_i D_i} \]

where \(N_r, D_r, N_i, \) and \(D_i \) are the real and imaginary parts of the numerator and the denominator of \(H_{tr}(j\phi) \).

\[H_{tr}(j\phi) = \frac{1 - 0.005425 \phi^2 + 0.13021 \phi^4}{1 - 0.4340 \phi^2 + 0.009419 \phi^4 + j(1.042 \phi \left(1 - 0.3925 \times 10^{-3} \phi^5 - 0.9042 \phi^3) \right)} \]

\[-\theta (\phi) = \tan^{-1} \frac{0.9115 \phi - 0.03956 \phi^3 - 3.43 \times 10^{-3} \phi^5 - 2.12 \times 10^{-6} \phi^7}{1 - 0.3038 \phi^2} \]

\[D = -\theta (\phi) \]

\[0.9115 \phi \]

The above equation is shown in figure 9 as the T curve.
III. MAXIMALLY FLAT AMPLITUDE RESPONSE

a. Selection of Parameters

This criterion requires the maximum number of derivatives of the $|Htr|$ versus ϕ vanish in sequence at ϕ equal to zero. An equivalent condition, which will be used below, requires that the maximum number of derivatives of $|Htr|^{2}$ versus ϕ^{2} vanish in sequence at ϕ equal to zero. This condition may be derived as follows:

$$Htr(p) = \frac{1}{a} p + a_{1} p^{2} + a_{12} p^{3} + \ldots$$
$$1 / b_{1} p + b_{12} p^{2} + b_{13} p^{3} + \ldots$$

$$Htr(\phi) = \frac{1}{a} \phi + a_{1} \phi^{2} + a_{12} \phi^{3} + \ldots$$
$$1 / b_{1} \phi + b_{12} \phi^{2} + b_{13} \phi^{3} + \ldots$$

$$|Htr|^{2} = \left(1 - a_{1} \phi^{2} + \ldots \right)^{2} / \left(1 - b_{1} \phi^{2} + \ldots \right)^{2}$$

$$= \frac{1}{m} \phi^{2} + m_{1} \phi^{4} + \ldots$$
$$\frac{1}{n} \phi^{2} + n_{1} \phi^{4} + \ldots$$

$$= N(\phi^{2})$$
$$D(\phi^{2})$$

If $D(\phi^{2})$ is divided into $N(\phi^{2})$ the following ascending series in ϕ^{2} is obtained:

$$|Htr|^{2} = D(\phi^{2}) \left[(m_{1} - n_{1}) \phi^{2} \right] \left[(m_{1} - n_{1}) - n_{1} (m_{1} - n_{1}) \right] \phi^{4} + \ldots$$

From the above expression it can be seen that if the corresponding coefficients of the $|Htr|^{2}$ are set equal to each other ($m_{1} = n_{1}$, $m_{2} = n_{2}$, etc.) the conditions for maximally flat amplitude will be satisfied.

For the network considered:
\[|H_{tr}|^2 = \frac{1}{\phi} \phi^2 (c^2 - 2cd) \phi^3 c^2 d^2 \]

\[= \frac{1}{\phi} \phi^2 \left[\left(\frac{1}{\phi} \right)^2 - 2(\phi) \right] \phi \left(\frac{a}{\phi} \right) \phi^2 \left(\frac{2ab - 2(ab + cd)}{\phi} \right) \left(\frac{1}{\phi} \right) \]

\[= \frac{1}{\phi} \phi^2 \left[\left(\frac{ab + cd}{\phi} \right)^2 - 2abcd \left(\frac{1}{\phi} \right) - 2abc \left(\frac{a}{\phi} \right) \right] \phi \left(\frac{a^2 b^2 c^2}{\phi} \right) \phi^2 \left(\frac{-2abcd}{\phi} \right) \phi \left(\frac{a^2 b^2 c^2}{\phi} \right)

Equating corresponding terms gives the following system of equations:

\[c^2 - 2cd = \left(\frac{1}{\phi} \right)^2 - 2(\phi) \]

\[c^2 d^2 = \left(\frac{a}{\phi} \right)^2 - 2abcd \left(\frac{1}{\phi} \right) - 2abc \left(\frac{a}{\phi} \right) \]

\[0 = \left(\frac{ab + cd}{\phi} \right)^2 - 2abcd \left(\frac{1}{\phi} \right) - 2abc \left(\frac{a}{\phi} \right) \]

\[0 = a^2 b^2 c^2 - 2abcd \left(\frac{ab + cd}{\phi} \right) \]

Using the Newton-Raphson method on the above system yielded the following results from an IBM 650 computer:

\[a = .3002 \]

\[b = .4504 \]

\[c = .2931 \]

\[d = .1014 \]

Solved in terms of the network parameters the following values are obtained and indicated on the circuit shown in figure 5 in terms of the denormalizing quantities:

\[q = .5496 \]

\[k_2 = .2931 \]

\[k_1 = .5462 \]

\[q_1 = .1014 \]

\[1-q = .4504 \]

b. Amplitude Response

\[H_{tr}(\phi) = \frac{1}{\phi} j\phi \cdot 2932 - \phi^2 \cdot 02973 \]

\[= \frac{1}{\phi} j\phi \cdot 1.101 - \phi^2 \cdot 5933 - j\phi \cdot 1954 \phi \cdot 0.3963 \phi \cdot 0.04018 \]

\[|H_{tr}|^2 = \frac{1}{\phi^2} \phi \cdot 02647 \phi^2 \cdot 0000001954 \phi^2 \cdot 16.17 \times 10^{-6} \phi^2 \]
The \(|Htr| \) is shown on figure 8 as the A curve.

c. Normalized Time Delay

\[
\begin{align*}
\phi(\phi) &= \frac{0.083\phi - 0.0542\phi^3 - 0.001790\phi^5 - 0.0001195\phi^7}{1 - 0.3002\phi^7} \\
D &= -\frac{\phi(\phi)}{0.083\phi}
\end{align*}
\]

The above equation is shown on figure 9 as the A curve.

d. Step Response

\[
A(p) = \frac{Htr(p)}{p} = \frac{K_{\ast}}{p} - \frac{K}{p^2} - \frac{K_1}{p^3} - \frac{K_2}{p^4} - \frac{K_3}{p^5}
\]

\[
A(p) = \frac{Htr(p)}{p} = \frac{K_{\ast}}{p} - \frac{K}{p^2} - \frac{K_1}{p^3} - \frac{K_2}{p^4} - \frac{K_3}{p^5}
\]

\[
K_0 = 1, \quad K_1 = -0.3261/0.6071, \quad K_2 = 0.2503/0.2643, \quad K_3 = -0.8483
\]

The inverse transform is obtained by using:

\[
\begin{bmatrix}
-\frac{K}{p^2} & \frac{K^*}{p^2} \\
\frac{K}{p} & \frac{K^*}{p}
\end{bmatrix} = 2\text{Re}(K)\exp(-\alpha t)\cos\beta t
\]

\[
-2\text{Im}(K)\exp(-\alpha t)\sin\beta t
\]

\[
a(T) = 1 - 0.8483\exp(-2.963T) - 0.5287\exp(-1.007T)\cos2.910T
\]

\[-0.5287\exp(-1.007T)\sin2.910T - 0.6523\exp(-2.443T)\cos1.7T
\]

\[-1.214\exp(-2.443T)\sin1.7T
\]

The above equation is shown in figure 7 as the A curve.
IV. LINEAR PHASE RESPONSE (MAXIMALLY FLAT TIME DELAY)

a. Selection of Parameters

The parameters for this criterion are derived by forcing the phase to be linear over as large a range of frequencies as possible. If the phase is initially set equal to some constant times frequency it will possess a Maclaurin series. The corresponding coefficients of this series can be set equal to the phase function of the network. If this procedure is followed in sequence until all degrees of freedom are exhausted it will provide a system of equations that can be solved for the desired parameters as follows:

\[- \Theta = \tan^{-1} f(\Theta)\]
\[\tan(-\Theta) = f(\Theta)\]

Let \(-\Theta = \delta \Theta\), then:

\[\tan \delta \Theta = \delta \Theta + \delta^3 \Theta + 2 \delta^5 \Theta + 17 \delta^7 \Theta + 62 \delta^9 \Theta + \ldots\]

\[
\begin{array}{cccc}
3 & 15 & 315 & 2835 \\
\end{array}
\]

If \(f(\Theta) = \delta \Theta + \delta^3 \Theta + \delta^5 \Theta + \delta^7 \Theta + \delta^9 \Theta + \ldots\) the criterion is satisfied for four network parameters, since \(\delta\) is an added variable, when:

\[\delta = \delta_1\]
\[\delta^3 = \delta_3\]
\[2 \delta^5 = \delta_5\]
\[17 \delta^7 = \delta_7\]
\[62 \delta^9 = \delta_9\]

For the network considered:

\[-\Theta = \tan^{-1} \delta(1/cd-c)\delta^3(ac-c^2-2cd-cd-ab-ad)\delta^5(2abdc-fc^2d^2\]
\[-abc)\delta^7abc'd^2]
\[1 - a\delta^3\]
f(\emptyset) can be divided out to give the following ascending power series:

\[f(\emptyset) = (1/d-c)\emptyset + (a/c^2-2cd-cd-ab)\emptyset^3 + (a^2/ac^2-2acd-a^2b/2abcd + c^2d^2-abc^2)\emptyset^5 + (a^3/a^3c^2-2a^3cd-a^3b/2a^3bcd/ac^2d^3-a^2bc^2 - abc^2d^3)\emptyset^7 + a(a^3/a^3c^2-2a^3cd-a^3b/2a^3bcd/ac^2d^3-a^2bc^2 - abc^2d^3)\emptyset^9 + \ldots \]

The system of equations to be solved is therefore:

\[\frac{b}{d} = 1/d-c \]
\[\frac{c}{d} = a/c^2-2cd-cd-ab \]
\[\frac{2a}{d} = a^2/ac^2-2acd-a^2b/2abcd/c^2d^2-abc^2 \]
\[\frac{17a}{d} = a^3/a^3c^2-2a^3cd-a^3b/2a^3bcd/ac^2d^3-a^2bc^2-abc^2d^2 \]
\[\frac{62a}{d} = a^4/a^4c^2-2a^4cd-a^4b/2a^4bcd/ac^2d^3-a^3bc^2-a^3bc^2d^3 \]

The above system solved by the Newton-Raphson method on an IBM 650 computer yielded:

\[a = .2987 \quad d = .07581 \]
\[b = .3406 \quad \emptyset = .8565 \]
\[c = .2193 \]

Solving for the network values gives the following which are also indicated in figure 6 in terms of the denormalizing quantities:

\[q = .6594 \quad k_l = .2193 \]
\[k_r = .4530 \quad q_r = .07581 \]
\[1-q = .3406 \]

b. Normalized Time Delay
The above equation is shown on figure 9 as the D curve.

c. Step Response

\[H_{tr}(p) = \frac{9.830}{p^7 / 13.19 + p^6 / 60.15} \]

\[A(p) = \frac{H_{tr}(p)}{p} \]

\[= \frac{K_0}{p} \frac{K_1}{p/2.870 - 1.601i} \frac{K_2}{p/2.870 + 1.601i} \frac{K_3}{p/2.016 - 3.457i} \]

\[K_e = 1 \quad K_a = .3612 - .08289i \]

\[K_b = .1039 + 1.598i \quad K_c = -1.930 \]

The inverse transform yields the following:

\[a(t) = 1 - 1.930 \exp(-3.418t) - .2078 \exp(-2.870t) \cos 1.601t \]

\[-3.196 \exp(-2.870t) \sin 1.601t - .7224 \exp(-2.016t) \cos 3.457t \]

\[- .1658 \exp(-2.016t) \sin 3.457t \]

The above equation is shown on figure 7 where it is the curve labeled D.

d. Amplitude Response

\[H_{tr}(j\omega) = \frac{1/j\omega - 0.2193 - \omega^2 0.01663}{j\omega^2 0.001691 + \omega^2 0.02231 - \omega^2 1.410 - \omega^2 5.180 + \omega 0.0764} \]
$$|H_{tr}|^2 = \frac{14.0148 \phi^2 / 0.000276 \phi}{14.1214 \phi^2 / 0.009553 \phi / 0.000408 \phi / 0.00002079 \phi / 2.861 \times 10^{-4} \phi^0}$$

The $|H_{tr}|$ is shown on figure 8 as the D curve.
V. RC REFERENCE

The RC reference is obtained by removing all peaking elements. This forces L_1, L_2, and C_3 of figure 1 to zero.

a. Step Response

$$H_{tr}(p) = \frac{1}{1 + \frac{1}{p}}$$

$$A(p) = \frac{1}{p} \frac{1}{1 + \frac{1}{p}} = \frac{K_1}{p} \frac{1}{p} = \frac{K_2}{p} \frac{1}{p}$$

$k_1 = 1$, $k_2 = -1$

$$a(T) = 1 - \exp(-\tau)$$

b. Amplitude Response

$$|H_{tr}| = \frac{1}{1 + \frac{1}{\phi}}$$

c. Normalized Time Delay

$$D = \tan^{-1} \phi$$

$a(T)$, $|H_{tr}|$, and D are shown as the U curve on figures 7, 8, and 9, respectively.
FIG. 1. 5 REACTANCE 3 TERMINAL PEAKING CIRCUIT

FIG. 2. RESULT OF NORMALIZATION

FIG. 3. NORMALIZED NETWORK
FIG. 4. CRITICALLY DAMPED NETWORK

FIG. 5. MAXIMALLY FLAT AMPLITUDE NETWORK

FIG. 6. MAXIMALLY FLAT TIME DELAY NETWORK
FIG. 8. AMPLITUDE RESPONSE

\[\phi = \omega RC \]
FIG. 10. POLE-ZERO PLOTS
VII. **TABELATIONS** (2), (3), (4), and (5)

a. Step Response

<table>
<thead>
<tr>
<th>τ</th>
<th>T curve</th>
<th>A curve</th>
<th>D curve</th>
<th>U curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>.0026</td>
<td>.001267</td>
<td>.001651</td>
<td>.0952</td>
</tr>
<tr>
<td>.2</td>
<td>.01692</td>
<td>.03115</td>
<td>.04000</td>
<td>.1813</td>
</tr>
<tr>
<td>.3</td>
<td>.05186</td>
<td>.1289</td>
<td>.1572</td>
<td>.2592</td>
</tr>
<tr>
<td>.4</td>
<td>.1089</td>
<td>.2734</td>
<td>.3297</td>
<td>.3935</td>
</tr>
<tr>
<td>.5</td>
<td>.1847</td>
<td>.3011</td>
<td>.3443</td>
<td>.4512</td>
</tr>
<tr>
<td>.6</td>
<td>.2734</td>
<td>.3443</td>
<td>.5034</td>
<td>.5507</td>
</tr>
<tr>
<td>.7</td>
<td>.3681</td>
<td>.5216</td>
<td>.5934</td>
<td>.6321</td>
</tr>
<tr>
<td>.8</td>
<td>.4627</td>
<td>.6564</td>
<td>.6671</td>
<td>.7275</td>
</tr>
<tr>
<td>.9</td>
<td>.5523</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>1.0</td>
<td>.6337</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>1.1</td>
<td>.7053</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>1.2</td>
<td>.7663</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>1.3</td>
<td>.8172</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>1.4</td>
<td>.8688</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>1.5</td>
<td>.9192</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>1.6</td>
<td>.9694</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>1.7</td>
<td>.9996</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>1.8</td>
<td>1.0094</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>1.9</td>
<td>1.118</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>2.0</td>
<td>1.118</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>2.1</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>2.2</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>2.3</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>2.4</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>2.5</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>2.6</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>2.7</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>2.8</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>2.9</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>3.0</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>3.1</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>3.2</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>3.3</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>3.4</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>3.5</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>3.6</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>3.7</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>3.8</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>3.9</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>4.0</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>4.1</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>4.2</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>4.3</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>4.4</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>4.5</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>4.6</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>4.7</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>4.8</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>4.9</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
<tr>
<td>5.0</td>
<td>1.005</td>
<td>.6564</td>
<td>.7275</td>
<td>.7534</td>
</tr>
</tbody>
</table>

b. Amplitude Response

<table>
<thead>
<tr>
<th>ϕ</th>
<th>T curve</th>
<th>A curve</th>
<th>D curve</th>
<th>U curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.9958</td>
<td>1.000</td>
<td>.9979</td>
<td>.9755</td>
</tr>
<tr>
<td>.5</td>
<td>.9742</td>
<td>1.000</td>
<td>.9867</td>
<td>.8907</td>
</tr>
<tr>
<td>.8</td>
<td>.9356</td>
<td>1.000</td>
<td>.9667</td>
<td>.7809</td>
</tr>
<tr>
<td>1.0</td>
<td>.9020</td>
<td>.9999</td>
<td>.9472</td>
<td>.7071</td>
</tr>
<tr>
<td>1.5</td>
<td>.7977</td>
<td>.9995</td>
<td>.8832</td>
<td>.5547</td>
</tr>
<tr>
<td>2.0</td>
<td>.6765</td>
<td>.9927</td>
<td>.8094</td>
<td>.4472</td>
</tr>
<tr>
<td>2.5</td>
<td>.5595</td>
<td>.9413</td>
<td>.6942</td>
<td>.3713</td>
</tr>
<tr>
<td>3.0</td>
<td>.4509</td>
<td>.7605</td>
<td>.5773</td>
<td>.3777</td>
</tr>
<tr>
<td>3.2</td>
<td>.6545</td>
<td>.5773</td>
<td>.3777</td>
<td>.2983</td>
</tr>
<tr>
<td>3.5</td>
<td>.4962</td>
<td>.5773</td>
<td>.3777</td>
<td>.2747</td>
</tr>
<tr>
<td>4.0</td>
<td>.2813</td>
<td>.2978</td>
<td>.3383</td>
<td>.2425</td>
</tr>
<tr>
<td>5.0</td>
<td>.1724</td>
<td>.1176</td>
<td>.1716</td>
<td>.1961</td>
</tr>
<tr>
<td>8.0</td>
<td>.04432</td>
<td>.01907</td>
<td>.02921</td>
<td>.1240</td>
</tr>
<tr>
<td>10.0</td>
<td>.02094</td>
<td>.008789</td>
<td>.01296</td>
<td>.09950</td>
</tr>
</tbody>
</table>
c. Normalized Time Delay

<table>
<thead>
<tr>
<th>ϕ</th>
<th>T curve</th>
<th>A curve</th>
<th>D curve</th>
<th>U curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>.5</td>
<td>.9962</td>
<td>1.005</td>
<td>1.000</td>
<td>.9273</td>
</tr>
<tr>
<td>1.0</td>
<td>.9840</td>
<td>1.016</td>
<td>1.000</td>
<td>.7853</td>
</tr>
<tr>
<td>1.5</td>
<td>.9649</td>
<td>1.040</td>
<td>1.000</td>
<td>.6552</td>
</tr>
<tr>
<td>2.0</td>
<td>.9401</td>
<td>1.082</td>
<td>1.000</td>
<td>.5536</td>
</tr>
<tr>
<td>2.5</td>
<td>1.152</td>
<td>1.000</td>
<td>.4761</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>.8789</td>
<td>1.232</td>
<td>1.000</td>
<td>.4164</td>
</tr>
<tr>
<td>4.0</td>
<td>1.224</td>
<td>.9788</td>
<td>.3314</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>.7423</td>
<td>1.079</td>
<td>.9131</td>
<td>.2747</td>
</tr>
<tr>
<td>7.0</td>
<td>.6200</td>
<td>.8158</td>
<td>.7390</td>
<td>.2041</td>
</tr>
<tr>
<td>10.0</td>
<td>.4828</td>
<td>.5805</td>
<td>.5419</td>
<td>.1471</td>
</tr>
</tbody>
</table>
VIII. CONCLUSIONS

From a close scrutiny of the plots many conclusions can be derived. Most analytic figures of merit however are more difficult to evaluate. In most cases they can be obtained by only a cut and try procedure. Therefore, unless a more accurate solution was desired or easily evaluated, the following numerical values will be obtained by graphical interpretation.

Two common figures of merit for a step response are rise time which is the time required to go from the ten percent to the ninety percent point and the amount of overshoot. These quantities are tabulated below:

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Time</td>
<td>.51</td>
<td>.87</td>
<td>1.14</td>
</tr>
<tr>
<td>% Overshoot</td>
<td>12</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

If a slight overshoot can be tolerated, case D (the linear phase criterion) actually will give the best step response.

The three db. or half-power frequency for the various networks are tabulated below:

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>3.103(calculated)</td>
<td>2.45</td>
<td>1.86</td>
</tr>
</tbody>
</table>

The maximally flat amplitude network will allow an increase in the gain-bandwidth product of the network by a factor of 3.103. Actually in an amplifier composed of several peaked stages the bandwidth increase over the simple RC coupled case will be even greater than 3.103 since the A curve is quite flat before breaking off sharply at approximately the half-power frequency. The figure of 3.103 compares quite
favorably with the infinite peaking circuit (6) which has a three db. point at $\phi = 4.02$, and is a 14.5% improvement over a four reactance three terminal network (7) which has a three db. point at $\phi = 2.71$.

A figure of merit for the normalized time delay is the $\pi/4$ point which in the uncompensated network corresponds to the 45 degrees phase point. This point is tabulated below:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>7.3</td>
<td>6.453</td>
<td>4.4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(calculated)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This point does not portray the entire picture since the A curve has considerable overshoot. The $\pi/4$ points for the infinite and four reactance maximally flat time delay networks occur at $\phi = 7.4$ and $\phi = 5.5$, respectively.

The pole-zero plots tend to tie together the three previous plots. It is seen that the poles of the A case are closest to the j axis thereby giving the best frequency response yet the poorest step response. The T case is just the opposite while the D case is a good compromise.
IX. BIBLIOGRAPHY

(2) Arc tan X, Table of, Applied Mathematics Series, National Bureau of Standards, February, 1953

(3) Exponential Function e^x, Table of the, Applied Mathematics Series, National Bureau of Standards, January, 1961

(5) Barlow, Peter, *Barlow's Tables etc.*, Chemical Publishing Co., 1957

(6) Deutsch, Sid, *Class Notes Course 4530*, Polytechnic Institute of Brooklyn, Spring 1962

TECHNICAL AND FINAL REPORT DISTRIBUTION LIST

PHYSICAL SCIENCES DIRECTORATE

<table>
<thead>
<tr>
<th>Code</th>
<th>Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Commander
AF Office of Scientific Research
ATTN: SRY
Washington 25, D.C.</td>
</tr>
<tr>
<td>2</td>
<td>Commander
AF Office of Scientific Research
ATTN: SRGL
Washington 25, D.C.</td>
</tr>
<tr>
<td>4</td>
<td>Commander
Wright Air Development Division
ATTN: WWAD
Wright-Patterson Air Force Base
Ohio</td>
</tr>
<tr>
<td>1</td>
<td>Commander
AF Cambridge Research Laboratories
ATTN: CRRELA
L.G. Hanscom Field
Bedford, Massachusetts</td>
</tr>
<tr>
<td>2</td>
<td>Commander
European Office
Office of Aerospace Research
The Shell Building
Brussels, Belgium</td>
</tr>
<tr>
<td>1</td>
<td>P.O. Box AA
Wright-Patterson Air Force Base
Ohio</td>
</tr>
<tr>
<td>1</td>
<td>Aeronautical Research Laboratories
ATTN: Technical Library
Building 450
Wright-Patterson Air Force Base
Ohio</td>
</tr>
<tr>
<td>1</td>
<td>Armed Services Technical Info. Agency
ATTN: TIPCR
Arlington Hall Station
Arlington 12, Virginia</td>
</tr>
<tr>
<td>1</td>
<td>Director of Research and Development Headquarters, USAF
ATTN: AFDRD
Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Office of Naval Research
Department of the Navy
ATTN: Code 420
Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Director, Naval Research Laboratory
ATTN: Technical Info. Officer
Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Chief of Research and Development
ATTN: Scientific Information Branch
Department of the Army
Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Chief, Physics Branch
Division of Research
U.S. Atomic Energy Commission
Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Atomic Energy Commission
Technical Information Extension
P.O. Box 62
Oak Ridge, Tennessee</td>
</tr>
<tr>
<td>1</td>
<td>National Bureau of Standards Library
Room 203, Northwest Building
Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Physics Program
National Science Foundation
Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Director, Office of Ordnance Research
Box CM, Duke Station
Durham, North Carolina</td>
</tr>
<tr>
<td>1</td>
<td>Director, Department of Commerce
Office of Technical Services
Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>AEDC (AEGIM)
Air Force Station
Tullahoma, Tennessee</td>
</tr>
<tr>
<td>1</td>
<td>Commander
AF Flight Test Center
ATTN: FTOOL
Edwards Air Force Base, California</td>
</tr>
<tr>
<td>1</td>
<td>Commander
AF Special Weapons Center
ATTN: SWOI
Kirtland Air Force Base, New Mexico</td>
</tr>
<tr>
<td>1</td>
<td>Commander
AF Missile Development Center
ATTN: HDOI
Holloman Air Force Base
New Mexico</td>
</tr>
<tr>
<td>1</td>
<td>Commander
Army Rocket and Guided Missile Agency
ATTN: ORDXR-OTL
Redstone Arsenal, Alabama</td>
</tr>
</tbody>
</table>
Commandant
Air Force Institute of Technology
AU Library
MCLI-LIB, Bldg. 125, Area B
Wright-Patterson Air Force Base
Ohio

Commander
Air Force Systems Command
ATTN: RDRS
Andrews Air Force Base
Washington 25, D.C.

Commanding General
U.S. Army Signal Corps Research and Development Laboratory
ATTN: SIGFM/EL-RPO
Ft. Monmouth, New Jersey

National Aeronautics and Space Administration
ATTN: Library
1520 H Street, N.W.
Washington 25, D.C.

Advanced Research Projects Agency
Washington 25, D.C.

Rand Corporation
1700 Main Street
Santa Monica, California

Chairman (Unclass. Reports)
Canadian Joint Staff
For DRB/DSIS
2450 Massachusetts Ave., N.W.
Washington 25, D.C.