<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD NUMBER</td>
</tr>
<tr>
<td>AD361295</td>
</tr>
<tr>
<td>CLASSIFICATION CHANGES</td>
</tr>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>LIMITATION CHANGES</td>
</tr>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
</tbody>
</table>

AUTHORITY

DSTL, ADM 204/3104, 18 Nov 2008; DSTL, ADM 204/3104, 18 Nov 2008

THIS PAGE IS UNCLASSIFIED
CONFIDENTIAL

AD 3 6 1 2 9 5

DEFENSE DOCUMENTATION CENTER
FOR
SCIENTIFIC AND TECHNICAL INFORMATION
CAMERON STATION, ALEXANDRIA, VIRGINIA

CONFIDENTIAL
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.
SIMULATION OF THE LAUNCHING PHASE OF THE MARK 8 PUMP-JET TEST VEHICLE.

BY

A.C. GROVE

MARCH 1965

Admiralty Research Laboratory
Teddington Middlesex

Confidential
SIMULATION OF THE LAUNCHING PHASE OF THE MARK 8 PUMP-JET TEST VEHICLE

by

A. C. Grove

ABSTRACT

The behaviour of the Mark 8 torpedo pump jet test vehicle was studied in the acceleration phase from launching at 25 knots to steady running at 45 knots. The effect of looking the elevators during the initial acceleration was considered for three configurations of the torpedo.
INTRODUCTION

In an attempt to explain the behaviour of the Mark 8 Pump-jet test vehicle, it was decided that a more detailed simulation of the control system characteristics was required. This simulation was to include non-linearities, such as end-stops, and the effect of body accelerations on the pendulum.

A detailed experimental examination of the actual control system was made in which the characteristics of the system were determined. From these figures it was possible to simulate the behaviour of the control system more exactly.

Three configurations of the body were considered, two og. positions, one with a tail ring added.

THE EQUATIONS OF MOTION OF THE TORPEDO

In a preliminary simulation it was assumed that the stability derivatives were calculated for a forward speed of 45 knots and the motion of accelerating from 25 knots was taken as a perturbation. As this was rather a large variation of speed the above method was compared with a simulation in which the stability derivatives were calculated as a function of the actual speed. The two methods differed sufficiently to justify the extra complication of varying the derivatives with speed which gives the more exact simulation.

The actual speed \(V \) is given by:

\[
V = (76 + u) \text{ ft/sec.}
\]

The equations of motion then becomes:

\[
(X_u - m) \ddot{\delta} \frac{X_u}{76} \cdot Vu - m\dot{\psi} = 0
\]

\[
(z_y - m) \ddot{\Theta} \frac{Z_y}{76} \cdot Vw + \frac{(Z_y + mu)}{76} \cdot \dot{\psi} + \frac{Z_y}{(76)^2} \cdot V^2 \dot{\delta} = 0
\]

\[
(M_{\delta} - I_{\delta}) \ddot{\delta} + \frac{M_{\delta}}{76} \cdot \dot{\psi} + \frac{M_{\delta}}{76} \cdot Vw + M_{\delta} \cdot \Theta + \frac{M_{\delta}}{(76)^2} \cdot V^2 \dot{\delta} + B.A = 0
\]

and \(\dot{\delta} + V \Phi - \omega = 0 \)

The transformation equations are:

\[
U = 2u \quad W = 10w \quad \Theta = 114.6\theta \quad \tilde{v} = V
\]

\[
P = p \quad Z = 2z \quad \tilde{\delta} = 1146 \tilde{\delta}
\]

\[
\tilde{\gamma} = 114.6\gamma \quad \tilde{\xi} = 573 \tilde{\xi}
\]

These give the machine equations

\[
(X_u - m) \frac{NU}{2} \frac{X_u}{76} \cdot Nu - m\Phi \theta = 0
\]

- 3 -

CONFIDENTIAL
(\zeta - \eta) \frac{\ddot{W}}{10} + \frac{Z_g}{76 \times 114.6} \frac{\ddot{V}}{76} + \frac{(Z_g - \mu_1)}{114.6} \frac{\ddot{V}}{76} + \frac{Z_g}{114.6} \frac{\ddot{V}}{76} = 0

\left(M_0 - I \right) \frac{\dddot{\Theta}}{114.6} + \frac{M_0}{76} \frac{\dddot{V}}{76} + \frac{M_0}{76} \frac{\dddot{V}}{76} + \frac{M_0}{76} \frac{\dddot{V}}{76} + \frac{M_0}{76} \frac{\dddot{V}}{76} + B \Delta = 0

\frac{P_Z}{2} - \frac{\dddot{\Theta}}{76} = 0

Substitution of the relevant figures from Table 1 and rearrangement of the equations gives:

10 P_U + 0.078 \dddot{W} + 0.01708 \dddot{W} = 0

\dddot{W} + 0.0241 \dddot{W} - 0.0142 \dddot{W} + 0.00278 P_2 \dddot{\Theta} + 0.0000808 V^2 = 0

P_2 \dddot{\Theta} + 0.0981 \dddot{W} + 0.0059 \dddot{W} + 0.1295 \dddot{W} + 0.000409 V^2 - 56.8 \Delta = 0

\dddot{W} + 0.01744 \dddot{W} - 0.20 \dddot{W} = 0

\dddot{W} - 76 - 0.50 \dddot{W} = 0

The flow diagram for these equations is given in figs. 1 and 2.

THE CONTROL SYSTEM

This has been dealt with in more detail in ref. 1.

The motion of the pendulum is described by:

- \text{I}_P \dddot{\zeta} - P_0 \dddot{\zeta} - \text{W}_{\text{L}_1} \dddot{C} + C + H = 0

where \text{I}_P = \text{moment of inertia of the pendulum}
\eta = \text{angle to the true vertical}
P = \text{frictional or damping moment coefficient}
\xi = \text{angle rel. to torpedo body } \therefore \eta = \theta + \xi
C = \text{the moment due to centrifugal force on the pendulum arising from the rate of turn of the body}
H = \text{moment from depth pressure diaphragm}
\text{W}_{\text{L}_1} = \text{righting moment due to gravity}
\theta = \text{pitch angle of body}
A = \text{moment arising from accelerations, linear and angular.}

REF. 1 RITTER, H. and GROVE, A.C., A non-linear Simulation of the Depth Control System of the Mark 8xx Torpedo. ARL/G/M12.
With the appropriate numerical values this equation becomes:

\[
\frac{1}{36} \ddot{u} + \frac{0.32}{6} \ddot{\xi} + \ddot{\eta} + \frac{42}{32.2} \dot{\theta} \ddot{s} + \frac{1}{32.2} \dot{6w} + \frac{1}{32.2} \dddot{u} - \frac{1}{32.2} \dddot{w} = (0.242 + 4.83 \delta) \frac{1}{32.2} \dddot{s} - \frac{0.27}{57.3} z = 0
\]

Using the above transformation equations and rearranging we have:

\[
P^2 \xi + 0.384 \xi^3 + 36 \dddot{\xi} + 12.8 \dddot{\xi} - 10.45 z_{LM} + L
\]

\[
+ \ddot{\xi} \{0.0822 P \theta - 0.0223 \dddot{\xi} \dddot{w} - 0.0004 P^2 \theta\}
\]

\[
+ \dddot{w} (0.112 P \theta) - 0.2710 P^2 \theta = 0
\]

Also

\[
0.1 \dddot{\xi} + 0.5 \dddot{\theta} - 0.5 \dddot{\xi} = 0
\]

\[
\dddot{\delta} = -2 \dddot{\xi}
\]

\(z_{LM}\) is the depth term \(z\) limited to +68 volts on the positive side. This corresponds to a depth limit of +34 ft, due to the springs in the link box.

The moment \(L\) represents a semi-elastic stop at \(\dddot{\xi} = \pm 35\) volts which is the range of pendulum swing relative to the torpedo body.

It is shown in ref. 1 that the non-linear terms

\[
\dddot{\xi} \{0.0822 P \theta - 0.0223 \dddot{\xi} \dddot{w} - 0.0004 P^2 \theta\} \text{ and } 0.112 \dddot{w} \theta
\]

are negligible for the type of manoeuvre investigated here and hence they are omitted in the simulation. The control system includes a locking device which holds the elevators at a set angle for a predetermined time from launching.

The flow diagram of the control system is given in fig. 3.

RESULTS

As little was known about the thrust of the pumpjet a comparison is shown (fig. 4) between the velocity trace from the computer and the first few seconds of two full-scale test runs. The initial accelerations are in reasonable agreement showing that the estimated thrust was comparable to that achieved in the test runs.

The early full-scale trials on the test vehicle were carried out on a short-nosed body \((l = 22.31\) ft, \(x_G = 10.63\)" forward of mid-axis pt., 5.6" down aft trim and an estimated \(G = 0.64\)). As this body proved to be uncontrollable two remedies were tried on the torpedo:

(a) The nose was lengthened to \(l = 25.042\) ft giving \(x_G = 1.44\) ft forward of the mid-axis pt., and zero down aft trim.
and (b) various tail appendages were added to the normal length version. Three configurations, all of the long nosed body, are included in the present simulation.

(1) Long-nosed torpedo \(1 = 25.042 \text{ ft.} \), \(x_0 = 1.44 \text{ ft.} \) forward of the mid-axis pt. which gives zero down aft trim and \(G = 0.64 \)

(2) Long-nosed torpedo \(1 = 25.042 \text{ ft.} \), \(x_0 = 0.75 \text{ ft.} \) forward of the mid-axis pt., which gives 0.67 ft. down aft trim and \(G = 0.57 \)

(3) Long-nosed torpedo \(1 = 25.042 \text{ ft.} \), \(x_0 = 0.75 \text{ ft.} \) forward of the mid-axis pt. with a tail ring of \(4\frac{1}{2}'' \) chord fitted behind the pump-jet. This gives \(G = 0.91 \) and 0.67 ft. down aft trim.

Figs. 5 and 6 show the depth traces for the body as (1) above. In fig. 5 the effect of a variation of the initial locked elevator angle (\(\delta_1 \)) is shown for a constant time of locking \(T_1 = 5 \text{ secs.} \). \(\delta_1 = 0 \) gives a very small disturbance but \(\delta_1 = \pm 2^\circ \) causes the torpedo to diverge from its set depth by 25 ft. in one direction and 19 ft. in the other. Fig. 6 shows the effect of a variation of \(T_1 \) for \(\delta_1 = \pm 2^\circ \). For \(T_1 < 3 \text{ secs.} \) the disturbance is hardly affected but for \(T_1 > 4 \text{ secs.} \) the peak depth is much larger.

Fig. 7 and 8 relate to the torpedo with reduced hydrodynamic stability (as (2) above). The effect of a variation of \(\delta_1 \) is shown in fig. 7 and it is seen that for the least disturbance \(\delta_1 \) should be about \(\pm 1\frac{2}{5}^\circ \). If \(\delta_1 > \pm 2^\circ \) the torpedo will rise too quickly, overshoot the steady depth value, and may surface. For \(T_1 < 6 \text{ secs.} \) (fig. 8) the disturbance is very small, but for \(T_1 = 7 \text{ secs.} \) the depth trace shows the damped oscillation which for greater \(T_1 \) may cause the torpedo to rise too quickly and surface. The initial rise and final steady value are caused by the presence of 0.67 ft. down aft trim.

The addition of a tail ring (3 above) reduces the depth variation for given values of \(T_1 \) and \(\delta_1 \) when compared with the previous cases. \(\delta_1 = \pm 2^\circ \) gives the least disturbance but the system can stand initial elevator angles as high as \(\delta_1 = \pm 3\frac{2}{5}^\circ \) and not show the oscillation of the previous configuration. Fig. 10 shows that provided \(T_1 < 4 \text{ secs.} \) its actual value is immaterial.

Typical elevators traces for each configuration of the torpedo are given in Fig. 11.

Fig. 12 is a comparison of the depth traces of a full-scale run (No. 106 short body with tail ring, \(x_0 = 0.89 \text{ ft.} \), \(\Delta = 0.467 \text{ ft.} \), \(T_1 = 4 \text{ secs}. \)) and a computer run (long body with tail ring \(x_0 = 0.75 \text{ ft.} \), \(\Delta = 0.467 \text{ ft.} \), \(\delta_1 = \pm 2.1^\circ \), \(T_1 = 5\frac{1}{2} \text{ secs.} \)). Note that the down aft trim has been reduced in this last simulation to that of the torpedo with which it is compared. In spite of the slight differences in the other parameters, there is good agreement between the two curves.
CONCLUSIONS

The behaviour of the long-nosed Mark 8 Pumpjet test vehicle has been investigated for two positions of the centre of gravity and with the addition of a tail ring.

Provided that the locked elevator angle is kept within fairly close limits ($< \pm \frac{\pi}{8}$ with $T_1 = 5$ secs) for the more suitable cases or that the time of locked elevator (T_1) is less than 4 secs, then all configurations are acceptable. With the extra tail ring and the consequent increase in stability the permissible range of initial elevator setting is more than doubled for $T_1 = 5$ sec.

If these parameters are above their respective limits then the torpedo will climb out of its dive so fast that it overshoots the steady state depth and may reach the water surface.

A. C. Grove (S.O.)

ACC/ES
\textbf{TABLE 1}
\textit{Details of the Mark 8th Torpedo (Long Nose)}

<table>
<thead>
<tr>
<th>Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>76 ft/sec. accelerating from 42.2 ft/sec.</td>
</tr>
<tr>
<td>Length</td>
<td>300.5 ins = 25.042 ft.</td>
</tr>
<tr>
<td>Diameter</td>
<td>21 ins</td>
</tr>
<tr>
<td>Cross-Area</td>
<td>2.405 sq. ft.</td>
</tr>
<tr>
<td>C.G. position</td>
<td>167.5" from tail</td>
</tr>
<tr>
<td>C.B. "</td>
<td>167.5" " "</td>
</tr>
<tr>
<td>Buoyancy</td>
<td>3090 lb. (W-B) will be taken as zero</td>
</tr>
<tr>
<td>Weight</td>
<td>3170 lb.</td>
</tr>
<tr>
<td>Mass</td>
<td>98.45 slugs</td>
</tr>
</tbody>
</table>

\textbf{Stability Derivatives}

\[Z_w = \frac{\partial C_Z}{\partial \alpha} \times \frac{1}{2} \rho AV = -408.5 \]
\[M_w = \frac{\partial C_M}{\partial \alpha} \times \frac{1}{2} \rho AV^1 = 2450 \]
\[Z_q = \frac{\partial C_Z}{\partial q} \times \frac{1}{2} \rho AV^1 = -4676.78 \]
\[M_q = \frac{\partial C_M}{\partial q} \times \frac{1}{2} \rho AV^1^2 = -44946 \]
\[Z_{\delta} = \frac{\partial C_Z}{\partial \delta} \times \frac{1}{2} \rho AV^2 = -11321 \]
\[M_{\delta} = \frac{\partial C_M}{\partial \delta} \times \frac{1}{2} \rho AV^2 = -147870 \]
\[\mu_u = Z_u = 0 \]
\[m_f = 121.84 \quad m_a = 5.95 \text{ slugs} \quad l_f = 11.907 \text{ ft.} \]

\[\begin{align*}
 X_u &= -2.0713 \quad (I_y - M_{\theta}^\gamma) = 6272 \\
 Z_{\theta} &= -124.26 \quad (X_u - m) = -100.52 \\
 Z_{\theta} &= -70.85 \quad (Z_{\theta} - m) = -222.71 \\
 X_u &= -59.4 \quad m_{\theta} = 14.049
\end{align*} \]
FIG. 1 MARK 8 TORPEDO - LONG NOSE
FIG. 2 MARK 8 TORPEDO - LONG NOSE (contd)
FIG. 3 MARK 8 TORPEDO-LONG NOSE CONTROL SYSTEM

CONFIDENTIAL

LOCKING CIRCUIT
$\delta = \pm 1.44 \text{ ft}$ $G = 0.64$
$T_1 = 5 \text{ secs}$ $\delta_1 = \pm \frac{1}{2}$

$\delta = \pm 0.75 \text{ ft}$ $G = 0.57$
$\delta_1 = \pm 2^\circ$ $T_1 = 5 \text{ secs}$

$\delta = \pm 0.75 \text{ ft}$ WITH TAIL RING
$G = 0.91$
$\delta_1 = \pm 2.5^\circ$ $T_1 = 5 \text{ secs}$

FIG. 11
<table>
<thead>
<tr>
<th>Copy No.</th>
<th>DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2</td>
<td>D.N.P.R.</td>
</tr>
<tr>
<td>3 - 27</td>
<td>D.R.D.S.(N)</td>
</tr>
<tr>
<td>28</td>
<td>Scientific Adviser, British Navy Staff, Washington, D.C.</td>
</tr>
<tr>
<td>29</td>
<td>D.G.W.(N)</td>
</tr>
<tr>
<td>30</td>
<td>D.W.U.(N)</td>
</tr>
<tr>
<td>31 - 35</td>
<td>Capt., Supt., A.U.W.E.</td>
</tr>
<tr>
<td></td>
<td>1 copy attn. Mr. I. J. Campbell</td>
</tr>
<tr>
<td></td>
<td>1 copy attn. Mr. D. R. Hiscock</td>
</tr>
<tr>
<td></td>
<td>1 copy attn. Mr. J. O. Ackroyd</td>
</tr>
<tr>
<td></td>
<td>1 copy attn. Mr. A. Nairn</td>
</tr>
<tr>
<td>36</td>
<td>Supt., A.E.W.</td>
</tr>
<tr>
<td>37 - 50</td>
<td>A.R.L. File</td>
</tr>
</tbody>
</table>
Defense Technical Information Center (DTIC)
8725 John J. Kingman Road, Suite 0944
Fort Belvoir, VA 22060-6218
U.S.A.

AD#: AD361295

Date of Search: 18 November 2008

Record Summary: ADM 204/3104
Title: Simulation of the launching phase of the Mk 8 pump-jet test vehicle
Availability Open Document, Open Description, Normal Closure before FOI Act: 30 years
Former reference (Department) G/N14
Held by The National Archives, Kew

This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (http://www.nationalarchives.gov.uk) and found the document is available and releasable to the public.

Access to UK public records is governed by statute, namely the Public Records Act, 1958, and the Public Records Act, 1967. The document has been released under the 30 year rule. (The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as UNLIMITED.