<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD NUMBER</td>
</tr>
<tr>
<td>AD326823</td>
</tr>
<tr>
<td>CLASSIFICATION CHANGES</td>
</tr>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>LIMITATION CHANGES</td>
</tr>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>AUTHORITY</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
THE PYROLYSIS OF O-CHLOROBENZALMALONONITRILE
IN A GAS FLOW SYSTEM

BY

E. PORTER
D.V. SINKINSON
and
T.F.S. TEES

PORTON TECHNICAL PAPER No. 788
THE PYROLYSIS OF O-CHLOROBENZALMALONONITRILE IN A GAS FLOW SYSTEM

by

E. PORTER, D.V. SINKINSON AND T.F.S. TEES

SUMMARY

To assist studies on the dispersion of o-chlorobenzalmalononitrile (CS) in the atmosphere from thermal generators, and as part of a general investigation of the chemical reactivity of CS, a study has been made of the pyrolysis of the compound which occurs during passage in a carrier gas stream through a heated silica tube. The effects of changes in the pyrolysis conditions, e.g. tube temperature, surface area of heated silica, nature of the carrier gas, concentration of CS, flow rate (i.e. residence time in the hot zone), on the extent and nature of the pyrolysis of CS have been examined.

Decomposition in nitrogen has been found to produce resinous substances which have not been identified; decomposition in oxygen results in the formation of simple products which have been identified and determined quantitatively. Conclusions are drawn as to the significance of the results with regard to the dissemination of CS from pyrotechnic mixtures.

(Sgd.) T.F. Watkins,
Supt., Chemistry Research Division.

(Sgd.) A.S.G. Hill,
Deputy Director.
THE PYROLYSIS OF O-CHLOROBENZALDEHYDE NONITRILE IN A GAS FLOW SYSTEM

by

E. PORTER, D.V. SINKINSON AND T.F.S. TEEES

INTRODUCTION

Solid C.W. agents may be dispersed either by mechanical or thermal means, the method of choice depending on the physical and chemical properties of the agent and the practical requirements of the situation (1). In all cases, the aim is to achieve maximum efficiency, i.e. the distribution of the maximum possible quantity of agent in its most active form. In order to obtain high efficiency by the thermal method of dispersion, the agent must possess adequate stability under the operative conditions of the generator. These conditions are, (i) the temperature, (ii) the effective contact time at the high temperature, (iii) other conditions affecting chemical reactivity, e.g. nature of molecular environment, presence of catalysts etc. To assist studies on the dispersion of o-chlorobenzaldechylene (CS) in the atmosphere it was necessary to obtain practical information on the thermal stability of CS under the conditions which might exist during thermal dispersion.

Of the two possible experimental methods for pyrolytic studies, i.e. the static and dynamic flow methods, the latter method seemed to be most suitable for studying the relationship between the decomposition of CS and its residence or contact times at various temperatures: this being the main information required. The results of these studies are described in this report.

EXPERIMENTAL

The apparatus is shown diagrammatically in Fig. 1 and details of construction are given in the Appendix. The experimental procedure is outlined below.

The furnaces were brought to the required temperatures and the pure dry carrier gas (oxygen or nitrogen) was passed through the apparatus (not including the carburetter and CS filters) for 20 - 30 minutes to remove any traces of water. After preheating the carburetter - previously weighed
complete with CS charge - in a gas flame, the complete apparatus was assembled and the run started by adjusting the flow rate of the carrier gas to the desired value. At the termination of the run, the carburetter was removed for weighing and the gas flow was continued for 10-15 minutes to carry residual traces of undecomposed CS into the condenser. The apparatus was then dismantled and the pyrolysis tube was cleared of waste products by heating at 600-700°C in an air stream.

Recovery of CS from the condenser and filter units was achieved by three solvent washes: acetonitrile, alcohol, and water were used successively. The two organic solvent fractions, which had been specially purified and dried before use, were mixed, made up to a known volume, acidified with perchloric acid (a few drops (2)) and the CS content was measured by the UV absorption method (3). It was assumed that the pyrolysis products did not introduce serious errors into the estimation since the absorption spectrum corresponded to that of pure CS over the spectrum range 2400 - 3200 Å. Ammonium chloride, which was present in the aqueous wash (v.s.), was estimated as chloride by Volhard's titration method.

As may be seen in Table 2, various other CS decomposition products were collected and estimated. Water was collected in dry alcohol (cooled with 'cardice') and was determined by the Karl Fischer method. Hydrocyanic and hydrochloric acids were determined (in total) gravimetrically by precipitation as the silver salts and were differentiated by repeating the precipitation on a fresh solution after boiling off the hydrocyanic acid. Carbon monoxide was measured as its addition compound with palladous chloride (PdCl₂·CO), and also by gas analysis with a Haldane type apparatus; the latter apparatus was also used to measure carbon dioxide. Nitrous oxide and acetylene were estimated by infra red gas analysis procedures.

RESULTS

The relationship between the CS concentration and the extent of pyrolysis is shown in Table 1, and analytical results are given in Table 2 and Fig. 5. Variations in the percentage recovery of CS with the tube temperature for various gas flow rates are shown graphically in Figs. 2 and 3. The usual rate relationships are shown in Figs. 4A and 4B, the data for these graphs having been derived from that given in the preceding figures. Flow rates and contact times at various temperatures are tabulated in Table 3.

DISCUSSION

The high thermal stability of CS shown in the present work (Ref. Figs. 4A and 4B) is not surprising in view of the absence of thermally labile groups in the molecule, and also since it is known that unsaturated nitriles may be prepared in high yield by the catalytic dehydrogenation
of the saturated compounds at temperatures of 600°C(4). The present
data show that CS decomposes slowly in nitrogen at 700°C (30% decomposition
in 20 sec) and somewhat more rapidly in oxygen (30% decomposition in 120 sec
at 500°C). The former reaction in nitrogen results in the formation of
resinous products (probably polymeric) which have not been identified; the
latter reaction in oxygen results in the complete breakdown of the molecule
to simpler products (Table 2 and Fig.5), an almost quantitative yield of
carbon oxides being formed at the higher temperatures. It is likely that
ammonia is formed by gaseous hydrolysis of the cyano groups; acetylene
probably arises as a result of the rupture of the benzene ring, and nitrous
oxide is probably formed as a result of reduction of the higher oxide of
nitrogen by ammonia.

Both pyrolytic reactions are subject to surface effects (Figs.2B
and 3B) which, in the case of the silica wool packing, may result either
from an increase in heat transfer efficiency or reactions at the surface.
Both reactions are independent of CS concentration (within the limits of
experimental error) over the concentration range 0.02 - 0.8 g./l
(Table 1), and the reaction rates are not explicable in terms of any simple kinetic
law.

The available data on the functioning of pyrotechnic munitions charged
with chlorate/sucrose/CS mixtures (5) indicate that the maximum temperature
attained in the mixture is about 700°C and the contact time not greater than
one second; further, that the dissemination efficiency is dependent on the
proportions of the constituents of the mixture and on their particle sizes.
Under optimum conditions efficiencies of 98% may be achieved.

If the dispersion process is considered as consisting of two stages -
(i) the heterogeneous combustion reaction during which the CS is volatilized:
(ii) the ejection process during which the volatilized CS and the waste
gases, formed during the combustion, are expelled from the munition (6) -
then, it is probable that the temperature of 700°C is only attained during
stage (i) and that the one second contact time is sufficient to complete
both stages. During stage (i) the CS is volatilized whilst in contact with
an oxidising agent: during stage (ii) it is expelled to the atmosphere
whilst in contact with inert or reducing combustion products (providing
that the oxidising agent/fuel ratio is not too high). Since dissemination
efficiencies of 98% have been achieved it is clear that by regulating the
combustion conditions decomposition may be almost totally eliminated.
However, the present results permit the conclusion that decomposition is
more likely to occur during stage (i) than during stage (ii), (Ref. Fig.4A),
and this conclusion should be of assistance to those devising new CS
dissemination devices.

CONCLUSIONS

1. CS has a high thermal stability in an inert gas phase but is decomposed
more rapidly in an oxidising atmosphere.
2. Pyrolytic decomposition in nitrogen results in the formation of resinous products (probably polymeric); in oxygen, conversion to simple oxidation products occurs.

3. In the dissemination of CS by pyrotechnic mixtures decomposition is only likely whilst the agent is in an oxidising environment.

ACKNOWLEDGEMENTS

Assistance in the identification and estimation of pyrolysis products by infra-red methods was given by L.C. Thomas. Useful discussions on the methods of dispersing CS were held with M.A.P. Hogg.

(Sgd.) T.F. Watkins,
Supt., Chemistry Research Division.

EP/DVS/TFST/MC

(Sgd.) A.S.G. Hill,
Deputy Director.
REFERENCES

(1) E.W. Bateman and G.D. Heath

(2) E. Hutton, D.V. Sinkinson and T.F.S. Tees

(3) S. Houseley

(4) V. Migrdichian.

(5) M.A.P. Hogg

(6) G.D. Heath

P.T.P.767.

N.R.51.

Unpublished data.

P.T.P.444
Details of the Pyrolysis apparatus (Fig. 5)

CS Carburetter:— Charge 3 g; renewed for each run in oxygen. Enclosed in an electrically heated aluminium jacket controlled at a definite temperature within the range 130-160°C.

Pyrolysis tube:— A transparent vitreosil tube. Length 97 cm; internal diameter 2.5 cm; internal surface area 760 cm²; internal volume 475 ml. Packed with silica wool:— 10 g of 5-20 μ diameter fibres of surface area 4350 - 17,400 cm². Lined with asbestos tape:— 194 cm length of 3 cm tape. Apparent temperature variation ± 5°C along length (excluding a 10 cm jointed length at both ends).

Furnace heater:— A glazed vitreosil tube wound with 19 gauge Xanthal wire, total resistance 28 ohms (cold). Covered with alundum and kaolin silicate cements and lagged with asbestos cloth.

Thermocouples:— Chromel alumel thermocouples used in pyrolysis tube. Calibrated in sulphur vapour (444.6°C) and in freezing aluminium (658.9°C). Connected directly to a Cambridge Spot Galvanometer.

Filter:— 18.5 cm diameter discs of glass fibre paper (Whatman GF/B) backed by a hardened cellulose filter paper (Whatman No.42) and held in an anti-leak jig.
TABLE 1

The Relationship Between CS Concentration and % Recovery

(a) Oxygen as carrier gas.

(b) Nitrogen as carrier gas.

<table>
<thead>
<tr>
<th>CS Conc. g.l.</th>
<th>Flow rate l.h⁻¹</th>
<th>Furnace Temp. °C</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 0.031</td>
<td>15</td>
<td>590</td>
<td>9</td>
</tr>
<tr>
<td>(a) 0.049</td>
<td>15</td>
<td>590</td>
<td>11</td>
</tr>
<tr>
<td>(a) 0.106</td>
<td>15</td>
<td>590</td>
<td>7.5</td>
</tr>
<tr>
<td>(a) 0.036</td>
<td>5</td>
<td>553</td>
<td>25.5</td>
</tr>
<tr>
<td>(a) 0.091</td>
<td>5</td>
<td>553</td>
<td>21</td>
</tr>
<tr>
<td>(b) 0.016</td>
<td>30</td>
<td>750</td>
<td>35.8</td>
</tr>
<tr>
<td>(b) 0.027</td>
<td>30</td>
<td>750</td>
<td>40.6</td>
</tr>
<tr>
<td>(b) 0.076</td>
<td>30</td>
<td>750</td>
<td>36.0</td>
</tr>
<tr>
<td>(b) 0.072</td>
<td>30</td>
<td>750</td>
<td>32.5</td>
</tr>
</tbody>
</table>
TABLE 2

PRODUCTS IDENTIFIED AFTER THE PYROLYTIC DECOMPOSITION OF CS IN OXYGEN

<table>
<thead>
<tr>
<th>Furnace Temp. (°C)</th>
<th>CS</th>
<th>CO</th>
<th>CO₂</th>
<th>H₂O</th>
<th>Cl⁻</th>
<th>CN⁻</th>
<th>NH₄⁺</th>
<th>N₂O</th>
<th>C₂H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>625</td>
<td>0.05</td>
<td>9.0</td>
<td>1.2</td>
<td>2.1</td>
<td>1.0</td>
<td>-</td>
<td>0.34</td>
<td>0.32</td>
<td>Trace</td>
</tr>
<tr>
<td>615</td>
<td>0.18</td>
<td>5.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
<td>0.22</td>
<td>0.09</td>
</tr>
<tr>
<td>595</td>
<td>0.42</td>
<td>2.4</td>
<td>-</td>
<td>-</td>
<td>0.32</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>587</td>
<td>0.52</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>563</td>
<td>0.82</td>
<td>0.74</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>530</td>
<td>1.0</td>
<td>0.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>490</td>
<td>1.0</td>
<td>Nil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 Mole CS = 10M CO; 10M CO₂; 2.5M H₂O; 1M N₂O; 2M NH₃; 3(4)M C₂H₂; 1M Cl⁻; 2M CN⁻.

CS concentration = 0.02 g.l⁻¹.

Oxygen flow rate = 50 l.h⁻¹.
TABLE 3

CONTACT TIMES (SEC)

<table>
<thead>
<tr>
<th>Flow rate l.h(^{-1})</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>30</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>138.0</td>
<td>69.0</td>
<td>46.0</td>
<td>23.0</td>
<td>13.8</td>
<td>5.8</td>
</tr>
<tr>
<td>500</td>
<td>120.6</td>
<td>4.3</td>
<td>40.2</td>
<td>20.1</td>
<td>12.1</td>
<td>5.0</td>
</tr>
<tr>
<td>550</td>
<td>113.4</td>
<td>56.7</td>
<td>37.8</td>
<td>13.9</td>
<td>11.3</td>
<td>4.7</td>
</tr>
<tr>
<td>575</td>
<td>110.0</td>
<td>55.0</td>
<td>36.6</td>
<td>18.3</td>
<td>11.0</td>
<td>4.6</td>
</tr>
<tr>
<td>600</td>
<td>106.8</td>
<td>53.4</td>
<td>35.6</td>
<td>17.8</td>
<td>10.7</td>
<td>4.5</td>
</tr>
<tr>
<td>700</td>
<td>95.8</td>
<td>47.9</td>
<td>31.9</td>
<td>15.9</td>
<td>9.6</td>
<td>4.0</td>
</tr>
<tr>
<td>750</td>
<td>91.4</td>
<td>45.7</td>
<td>30.5</td>
<td>15.2</td>
<td>9.1</td>
<td>3.8</td>
</tr>
<tr>
<td>800</td>
<td>87.0</td>
<td>43.5</td>
<td>29.0</td>
<td>14.5</td>
<td>8.7</td>
<td>3.6</td>
</tr>
</tbody>
</table>
Scheme for flow pyrolysis of Cs. vapour.

Fig. 1.

- **C.S. evaporator, in** metal enclosure, thermostatted between 130°C to 130°C.
- **Silica pyrolysis tube** with a bore of 2.5 cm and length of 95 cm.
- **Condenser (water-cooled)**.
- **Vitreosil tube carrying heater winding tube** lined with asbestos cloth, lagged with alundum-kaolin-silicate cements.
- **Porton technical paper 786**
- **Flowmeter rotameter**
- **Drying tower** (P₂O₅)
- **Control valve gas cylinder**
- **VARIAC**
- **Filter glass fibre sheet**, 18.5 cm dia. circle.
- **Thermocouples chromel-alumel**.
FIG. 2a. PYROLYSIS OF C.S. IN NITROGEN IN CLEAR SILICA TUBE.

FIG. 2b. PYROLYSIS OF C.S. IN NITROGEN IN PACKED SILICA TUBE.

PORTON TECHNICAL PAPER 783
FIG. 3a. PYROLYSIS OF CS IN OXYGEN IN CLEAR SILICA TUBE.

FIG. 3b. PYROLYSIS OF CS IN OXYGEN IN PACKED SILICA TUBE.

PORTON TECHNICAL PAPER 788.
FIG. 4a.

THE RATE OF PYROLYTIC DECOMPOSITION IN NITROGEN.

FIG. 4b.

THE RATE OF PYROLYTIC DECOMPOSITION IN OXYGEN.

PORTON TECHNICAL PAPER 798
THE FORMATION OF CARBON MONOXIDE FROM C.S. DURING PYROLYSIS IN OXYGEN. (FLOW RATE 50 L/h.)

FIG. 5.

PORTON TECHNICAL PAPER 788.
RESTRICTED

DISTRIBUTION

P.T.P. No. 738

WAR OFFICE

D.C.S.(A)
D.C.D.R.D. (4 copies)
E.P.4

R. & D. Establishments
C.D.E.E. (37 copies)
N.O. Estab. Nancekuke (2 copies)

Advisory Bodies
Members of C.D.A.B. (11 copies)
Members of Chemistry Committee (7 copies)
Scientific Advisory Council (4 copies)

MINISTRY OF AVIATION

T.I.L. (2 copies)

BRITISH JOINT SERVICES MISSION
R. Holmes, Esq., D.R. Staff (7 copies)

OVERSEAS (through T.I.L.)

AUSTRALIA

Defence Standards Laboratories (3 copies)
Senior Representative, Dept. of Supply Army Staff (U.K.)
R.A.A.F. (Technical Section)

CANADA

Chairman, Defence Research Board (2 copies)
Defence Research Chemical Laboratories, Ottawa (2 copies)
Suffield Experimental Station

U.S.A.

Reading Panel (13 copies)
U.S. Chem. Corps Liaison Officer, Porton (7 copies)
Defense Technical Information Center (DTIC)
8725 John J. Kingman Road, Suit 0944
Fort Belvoir, VA 22060-6218
U.S.A.

AD#: AD326823
Date of Search: 29 July 2008
Record Summary: WO 189/1100
 Title: The pyrolysis of O-chlorobenzalmononitrile in a gas flow system
 Availability Open Document, Open Description, Normal Closure before FOI Act: 30 years
 Former reference (Department) PTP 788
 Held by The National Archives, Kew

This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (http://www.nationalarchives.gov.uk) and found the document is available and releasable to the public.

The document has been released under the 30 year rule.
(The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as UNLIMITED.