UNCLASSIFIED

<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD319669</td>
</tr>
</tbody>
</table>

CLASSIFICATION CHANGES

<table>
<thead>
<tr>
<th>TO:</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM:</td>
<td>SECRET</td>
</tr>
</tbody>
</table>

LIMITATION CHANGES

<table>
<thead>
<tr>
<th>TO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution is unlimited.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; OCT 1960. Other requests shall be referred to Arnold Engineering Development Center, Arnold AFB, TN.</td>
</tr>
</tbody>
</table>

AUTHORITY

THIS PAGE IS UNCLASSIFIED
AD 319 669

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
(TITLE UNCLASSIFIED)

DRAG FORCE TESTS
ON A LENTICULAR SHAPE
IN TUNNEL HOTSHOT 1

By
William Wolny
VKF, ARO, Inc.

October 1960

ARNOLD ENGINEERING
DEVELOPMENT CENTER
AIR RESEARCH AND DEVELOPMENT COMMAND

U.S. AIR FORCE
DRAG FORCE TESTS
ON A LENTICULAR SHAPE
IN TUNNEL HOTSHOT 1

By
William Wolny
VKF, ARO, Inc.

October 1960
ARO Project No. 361112
Contract No. AF 40(600)-800 S/A 11(60-110)
ABSTRACT

Drag measurements were made on a lenticular shaped body at Mach numbers from 17 to 20 at zero angle of attack. A trend was established for the effect of viscous interaction on the measured drag.
CONTENTS

ABSTRACT ... 2
NOMENCLATURE .. 4
INTRODUCTION .. 5

APPARATUS
 Wind Tunnel .. 5
 Model .. 5
 Instrumentation .. 5

PROCEDURE .. 6
RESULTS ... 6
REFERENCES ... 6

TABLE

1. Run Log .. 7

ILLUSTRATIONS

Figure

1. Tunnel Hotshot 1, a 16-in.,-diam. Hypervelocity Wind Tunnel .. 8
2. VKF-16-C Arc Chamber and Throat Assembly 9
3. Model 1C ... 10
4. Typical Schlieren in Hotshot 1; M = 17.5, Re = 413 x 10^3 ... 11
5. Typical Oscillograph Trace 12
6. Drag Coefficient Trend with Viscous Interaction Parameter at \(\alpha = 0 \) deg ... 13
NOMENCLATURE

C_{D_0} Drag coefficient at zero angle of attack, drag/qS
c Chord length, maximum diameter, in.
M Mach number
q Dynamic pressure, $\rho V^2/2$, psia
Re Reynolds number, based on model diameter
S Model reference area, based on model diameter, in.2
t Maximum model thickness, in.
V Velocity, ft/sec
α Angle of attack, deg
ρ Free-stream density, atm
INTRODUCTION

A lenticular shape was tested for the Air Proving Ground Center (APGC), Eglin Air Force Base, Florida in Tunnel Hotshot 1 of the von Karman Gas Dynamics Facility, Arnold Engineering Development Center (VKF-AEDC) from July 22 to August 4, 1960. The objective of the test was to obtain aerodynamic drag data at Mach numbers from 17 to 20 at zero angle of attack.

APPARATUS

WIND TUNNEL

Tunnel Hotshot 1 (Fig. 1) is a hypervelocity, blowdown wind tunnel with a 16-in.-diam test section. In these tests nitrogen, initially confined to the arc chamber, was heated and pressurized to approximately 3000°K and 1000 atm by generating an electric arc in the chamber. The heated gas then expanded through a conical nozzle into the test section where Mach numbers of approximately 20 were obtained. Additional description of this tunnel is included in Ref. 1. New copper arc chamber liners and new Semicon tungsten throats were used for each run. The arc chamber configuration is shown in Fig. 2.

MODEL

The APGC supplied two models of one configuration (Fig. 3). The models were constructed with a thin outer skin of resin-impregnated fiberglass and were filled with foamed plastic.

INSTRUMENTATION

The aerodynamic drag was measured with a single-component strain-gage balance. The drag force was sensed on the balance centerline which coincided with the model centerline.

Arc chamber pressure was measured with a strain-gage-type pressure transducer. Test section pitot pressure and model base pressure were measured with variable-reluctance transducers.

Manuscript released by author October 1960.
A double pass schlieren system was used to obtain the shock pattern about the model on several runs. A typical schlieren photograph is shown in Fig. 4.

PROCEDURE

The test was conducted at Mach numbers from 17 to 20 at nominal initial stagnation pressures of 16,000 psia and temperatures of 3000°F. Nitrogen was used as the test gas. For this test the Reynolds number, based on model diameter, varied from 154,000 to 413,000. A run log is presented in Table 1.

Four runs were made with 0.089-in. -diam throats and three with 0.125-in. -diam throats to provide variation in the free-stream conditions. A typical oscillograph trace is shown in Fig. 5.

RESULTS

The measured drag coefficient at zero angle of attack versus \(M^3/\sqrt{\text{Re}} \) for the lenticular shape is shown in Fig. 6. The trend in variation of viscous drag with this parameter is consistent with flat plate theory and data reported in Ref. 2. The experimental drag value at Mach 8 (Ref. 3) is shown in Fig. 6 for comparison with the Hotshot 1 data.

REFERENCES

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Mach Number</th>
<th>Reynolds Number* x 10^{-3}</th>
<th>Density, atm</th>
<th>Velocity, ft/sec</th>
<th>C_D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1576</td>
<td>17.51</td>
<td>413</td>
<td>2.39 x 10^{-3}</td>
<td>7.43 x 10^3</td>
<td>0.0292</td>
</tr>
<tr>
<td>1577</td>
<td>19.50</td>
<td>154</td>
<td>0.86</td>
<td>8.73</td>
<td>0.0377</td>
</tr>
<tr>
<td>1578</td>
<td>17.87</td>
<td>391</td>
<td>2.15</td>
<td>7.41</td>
<td>0.0305</td>
</tr>
<tr>
<td>1580</td>
<td>19.07</td>
<td>161</td>
<td>0.95</td>
<td>8.73</td>
<td>0.0356</td>
</tr>
<tr>
<td>1582</td>
<td>19.44</td>
<td>161</td>
<td>0.89</td>
<td>8.59</td>
<td>0.0362</td>
</tr>
<tr>
<td>1583</td>
<td>17.20</td>
<td>254</td>
<td>1.78</td>
<td>8.28</td>
<td>0.0246</td>
</tr>
<tr>
<td>1584</td>
<td>17.17</td>
<td>261</td>
<td>1.82</td>
<td>8.30</td>
<td>0.0254</td>
</tr>
</tbody>
</table>

*Reynolds number is based upon a model diameter of 6 in.
Assembly

Arc Chamber, Nozzle, and Test Section

Fig. 1 Tunnel Hotshot 1, a 16-in.-diam Hypervelocity Wind Tunnel
$t = 0.866 \text{ in.}$

$S = 28.27 \text{ in.}^2$

$t/c = 0.144 \text{ in.}$

Fig. 3 Model 1C
Fig. 5 Typical Oscillograph Trace
Fig. 6 Drag Coefficient Trend with Viscous Interaction Parameter: \(\alpha = 0 \text{ deg} \)