UNCLASSIFIED

AD NUMBER

AD313420

CLASSIFICATION CHANGES

<table>
<thead>
<tr>
<th>TO:</th>
<th>unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM:</td>
<td>secret</td>
</tr>
</tbody>
</table>

LIMITATION CHANGES

<table>
<thead>
<tr>
<th>TO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No foreign distribution</td>
</tr>
</tbody>
</table>

AUTHORITY

Aug 1971-Group-4; DNA ltr., Apr 1975

THIS PAGE IS UNCLASSIFIED
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.
Ibis is a LOAN DUE DOCUMENT and must be returned to the Document Library by date.

Ordered for use on Project [..]
EFFECTS
OF
HIGH ALTITUDE NUCLEAR DETONATIONS
ON
HIGH FREQUENCY COMMUNICATIONS (U)

Prepared for the
DEFENSE ATOMIC SUPPORT AGENCY
by
William J. Russell, Jr.
Sol Perlman
Samuel E. Probst
U. S. Army Signal Radio Propagation Agency
Fort Monmouth, New Jersey

August 1959

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794. The transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.
LETTER OF PROMULGATION

"Effects of High Altitude Nuclear Detonations on High Frequency Communications" is a report on the communications outages observed in connection with the high altitude shots TEAK and ORANGE of Operation HARDTACK. The report was prepared for the Defense Atomic Support Agency by the U. S. Army Signal Radio Propagation Agency and is published for the information and guidance of all concerned.

EDWARD N. PARKER
Rear Admiral, USN
Chief, DASA
The purpose of this analysis is to determine the magnitude of the propagation effects of the high altitude nuclear blasts identified by the code names "Teak" and "Orange" in disrupting the radio communication links of both military and commercial services. The magnitude of these radio communication disruptions is examined for the distances from the blast location, the length of time of the disruption, and the delay in time between the blast and the beginning of the disruption on several communication circuits operating between each of various pairs of geographical terminals. The basis for evaluating these disruptions is primarily the log records of the reporting stations.

Normally, the engineered factors of a communications circuit are designed to enable a minimum acceptable signal to be received under the worst expected conditions. The minimum acceptable signal is the result of not only the attenuation for the length of the path, but also the absorptions and energy scattering along the path and the threshold condition of the receiver. Reliability of communication requires that the minimum acceptable signal be received for a sufficiently high percentage of the time. Propagation outage occurs when identifiably less than a minimum acceptable signal strength, or an unacceptably distorted signal is received for any appreciable time to disrupt standards of message transmission. The effects of Teak and Orange intensified the conditions contributing to propagation outage. The contributing conditions were the upsetting of the stability of the ionosphere, the increased absorption loss of the radiated signal and the loss of support for the higher frequencies in the vicinity of the shot area. The effects spread outward for a few thousand miles from the shot area.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>1</td>
</tr>
<tr>
<td>Letter of Promulgation</td>
<td>2</td>
</tr>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>List of Figures</td>
<td>5</td>
</tr>
<tr>
<td>Frontispiece Teak</td>
<td>18</td>
</tr>
<tr>
<td>Frontispiece Orange</td>
<td>20</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>22</td>
</tr>
<tr>
<td>II. Circuit Experience Versus Frequency Limitation Charts</td>
<td>24</td>
</tr>
<tr>
<td>III. Sequence of Synoptic Maps</td>
<td>30</td>
</tr>
<tr>
<td>IV. Effect of Engineering Factors on Propagation Outage</td>
<td>41</td>
</tr>
<tr>
<td>V. Evasion of Outages by Relaying</td>
<td>47</td>
</tr>
<tr>
<td>VI. Discussion</td>
<td>52</td>
</tr>
<tr>
<td>VII. Conclusions</td>
<td>54</td>
</tr>
<tr>
<td>VIII. Sources of Data</td>
<td>55</td>
</tr>
<tr>
<td>IX.Acknowledgements</td>
<td>56</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>I. Disruption of Air Traffic Control</td>
<td>57</td>
</tr>
<tr>
<td>II. Distances and Azimuthal Direction From Honolulu</td>
<td>61</td>
</tr>
<tr>
<td>III. Distances and Azimuthal Direction From San Francisco</td>
<td>62</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Key A</td>
<td>Key to Frequency Utilization Bar Charts of Combined Circuit Experience vs. Frequency Limitations</td>
</tr>
<tr>
<td></td>
<td>Combined Circuit Experience vs. Frequency Limitations</td>
</tr>
<tr>
<td>1</td>
<td>Honolulu Area Transmitting 31 July 1958</td>
</tr>
<tr>
<td>2</td>
<td>Honolulu Area Receiving 31 July 1958</td>
</tr>
<tr>
<td>3</td>
<td>Honolulu Area Transmitting 1 August 1958</td>
</tr>
<tr>
<td>4</td>
<td>Honolulu Area Receiving 1 August 1958</td>
</tr>
<tr>
<td>5</td>
<td>Honolulu Area Transmitting 2 August 1958</td>
</tr>
<tr>
<td>6</td>
<td>Honolulu Area Receiving 2 August 1958</td>
</tr>
<tr>
<td>7</td>
<td>Honolulu Area Transmitting 11 August 1958</td>
</tr>
<tr>
<td>8</td>
<td>Honolulu Area Receiving 11 August 1958</td>
</tr>
<tr>
<td>9</td>
<td>Honolulu Area Transmitting 12 August 1958</td>
</tr>
<tr>
<td>10</td>
<td>Honolulu Area Receiving 12 August 1958</td>
</tr>
<tr>
<td>11</td>
<td>Honolulu Area Transmitting 13 August 1958</td>
</tr>
<tr>
<td>12</td>
<td>Honolulu Area Receiving 13 August 1958</td>
</tr>
<tr>
<td>13</td>
<td>Various Circuit Paths in the Midway Island Area 1 August 1958</td>
</tr>
<tr>
<td>14</td>
<td>Various Circuit Paths in the Midway Island Area 11 August 1958</td>
</tr>
<tr>
<td>15</td>
<td>Various Circuit Paths in the Midway Island Area 12 August 1958</td>
</tr>
<tr>
<td>16</td>
<td>Various Circuit Paths in the Midway Island Area 13 August 1958</td>
</tr>
<tr>
<td>17</td>
<td>Various Circuit Paths in the Adak Area 31 July 1958</td>
</tr>
<tr>
<td>18</td>
<td>Various Circuit Paths in the Adak Area 1 August 1958</td>
</tr>
<tr>
<td>19</td>
<td>Various Circuit Paths in the Adak Area 2 August 1958</td>
</tr>
<tr>
<td>20</td>
<td>Various Circuit Paths in the Adak Area 11 August 1958</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>21</td>
<td>Various Circuit Paths in the Adak Area 12 August 1958</td>
</tr>
<tr>
<td>22</td>
<td>Various Circuit Paths in the Adak Area 13 August 1958</td>
</tr>
<tr>
<td>23</td>
<td>San Francisco Area Transmitting 31 July 1958</td>
</tr>
<tr>
<td>24</td>
<td>San Francisco Area Receiving 31 July 1958</td>
</tr>
<tr>
<td>25</td>
<td>San Francisco Area Transmitting 1 August 1958</td>
</tr>
<tr>
<td>26</td>
<td>San Francisco Area Receiving 1 August 1958</td>
</tr>
<tr>
<td>27</td>
<td>San Francisco Area Transmitting 2 August 1958</td>
</tr>
<tr>
<td>28</td>
<td>San Francisco Area Receiving 2 August 1958</td>
</tr>
<tr>
<td>29</td>
<td>San Francisco Area Transmitting 11 August 1958</td>
</tr>
<tr>
<td>30</td>
<td>San Francisco Area Receiving 11 August 1958</td>
</tr>
<tr>
<td>31</td>
<td>San Francisco Area Transmitting 12 August 1958</td>
</tr>
<tr>
<td>32</td>
<td>San Francisco Area Receiving 12 August 1958</td>
</tr>
<tr>
<td>33</td>
<td>San Francisco Area Transmitting 13 August 1958</td>
</tr>
<tr>
<td>34</td>
<td>San Francisco Area Receiving 13 August 1958</td>
</tr>
<tr>
<td>35</td>
<td>Various Circuit Paths in the Okinawa Area 31 July 1958</td>
</tr>
<tr>
<td>36</td>
<td>Various Circuit Paths in the Okinawa Area 1 August 1958</td>
</tr>
<tr>
<td>37</td>
<td>Various Circuit Paths in the Okinawa Area 2 August 1958</td>
</tr>
<tr>
<td>38</td>
<td>Various Circuit Paths in the Okinawa Area 11 August 1958</td>
</tr>
<tr>
<td>39</td>
<td>Various Circuit Paths in the Okinawa Area 12 August 1958</td>
</tr>
<tr>
<td>40</td>
<td>Various Circuit Paths in the Okinawa Area 13 August 1958</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>41a</td>
<td>1 August 1958 Time Interval Centered on: 0000Z</td>
</tr>
<tr>
<td>41b</td>
<td>1 August 1958 Time Interval Centered on: 0000Z</td>
</tr>
<tr>
<td>42a</td>
<td>1 August 1958 Time Interval Centered on: 0100Z</td>
</tr>
<tr>
<td>42b</td>
<td>1 August 1958 Time Interval Centered on: 0100Z</td>
</tr>
<tr>
<td>43a</td>
<td>1 August 1958 Time Interval Centered on: 0200Z</td>
</tr>
<tr>
<td>43b</td>
<td>1 August 1958 Time Interval Centered on: 0200Z</td>
</tr>
<tr>
<td>44a</td>
<td>1 August 1958 Time Interval Centered on: 0300Z</td>
</tr>
<tr>
<td>44b</td>
<td>1 August 1958 Time Interval Centered on: 0300Z</td>
</tr>
<tr>
<td>45a</td>
<td>1 August 1958 Time Interval Centered on: 0400Z</td>
</tr>
<tr>
<td>45b</td>
<td>1 August 1958 Time Interval Centered on: 0400Z</td>
</tr>
<tr>
<td>46a</td>
<td>1 August 1958 Time Interval Centered on: 0500Z</td>
</tr>
<tr>
<td>46b</td>
<td>1 August 1958 Time Interval Centered on: 0500Z</td>
</tr>
<tr>
<td>47a</td>
<td>1 August 1958 Time Interval Centered on: 0600Z</td>
</tr>
<tr>
<td>47b</td>
<td>1 August 1958 Time Interval Centered on: 0600Z</td>
</tr>
<tr>
<td>48a</td>
<td>1 August 1958 Time Interval Centered on: 0700Z</td>
</tr>
<tr>
<td>48b</td>
<td>1 August 1958 Time Interval Centered on: 0700Z</td>
</tr>
<tr>
<td>49a</td>
<td>1 August 1958 Time Interval Centered on: 0800Z</td>
</tr>
<tr>
<td>49b</td>
<td>1 August 1958 Time Interval Centered on: 0800Z</td>
</tr>
<tr>
<td>50a</td>
<td>1 August 1958 Time Interval Centered on: 0900Z</td>
</tr>
<tr>
<td>50b</td>
<td>1 August 1958 Time Interval Centered on: 0900Z</td>
</tr>
<tr>
<td>51a</td>
<td>1 August 1958 Time Interval Centered on: 1000Z</td>
</tr>
<tr>
<td>51b</td>
<td>1 August 1958 Time Interval Centered on: 1000Z</td>
</tr>
<tr>
<td>52a</td>
<td>1 August 1958 Time Interval Centered on: 1030Z</td>
</tr>
<tr>
<td>52b</td>
<td>1 August 1958 Time Interval Centered on: 1030Z</td>
</tr>
</tbody>
</table>
SECRET

LIST OF FIGURES, TABLES AND KEYS

(Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>53a</td>
<td>1 August 1958 Time Interval Centered on: 1100Z</td>
<td>130</td>
</tr>
<tr>
<td>53b</td>
<td>1 August 1958 Time Interval Centered on: 1100Z</td>
<td>131</td>
</tr>
<tr>
<td>54a</td>
<td>1 August 1958 Time Interval Centered on: 1130Z</td>
<td>132</td>
</tr>
<tr>
<td>54b</td>
<td>1 August 1958 Time Interval Centered on: 1130Z</td>
<td>133</td>
</tr>
<tr>
<td>55a</td>
<td>1 August 1958 Time Interval Centered on: 1200Z</td>
<td>134</td>
</tr>
<tr>
<td>55b</td>
<td>1 August 1958 Time Interval Centered on: 1200Z</td>
<td>135</td>
</tr>
<tr>
<td>56a</td>
<td>1 August 1958 Time Interval Centered on: 1230Z</td>
<td>136</td>
</tr>
<tr>
<td>56b</td>
<td>1 August 1958 Time Interval Centered on: 1230Z</td>
<td>137</td>
</tr>
<tr>
<td>57a</td>
<td>1 August 1958 Time Interval Centered on: 1300Z</td>
<td>138</td>
</tr>
<tr>
<td>57b</td>
<td>1 August 1958 Time Interval Centered on: 1300Z</td>
<td>139</td>
</tr>
<tr>
<td>58a</td>
<td>1 August 1958 Time Interval Centered on: 1330Z</td>
<td>140</td>
</tr>
<tr>
<td>58b</td>
<td>1 August 1958 Time Interval Centered on: 1330Z</td>
<td>141</td>
</tr>
<tr>
<td>59a</td>
<td>1 August 1958 Time Interval Centered on: 1400Z</td>
<td>142</td>
</tr>
<tr>
<td>59b</td>
<td>1 August 1958 Time Interval Centered on: 1400Z</td>
<td>143</td>
</tr>
<tr>
<td>60a</td>
<td>1 August 1958 Time Interval Centered on: 1430Z</td>
<td>144</td>
</tr>
<tr>
<td>60b</td>
<td>1 August 1958 Time Interval Centered on: 1430Z</td>
<td>145</td>
</tr>
<tr>
<td>61a</td>
<td>1 August 1958 Time Interval Centered on: 1500Z</td>
<td>146</td>
</tr>
<tr>
<td>61b</td>
<td>1 August 1958 Time Interval Centered on: 1500Z</td>
<td>147</td>
</tr>
<tr>
<td>62a</td>
<td>1 August 1958 Time Interval Centered on: 1530Z</td>
<td>148</td>
</tr>
<tr>
<td>62b</td>
<td>1 August 1958 Time Interval Centered on: 1530Z</td>
<td>149</td>
</tr>
<tr>
<td>63a</td>
<td>1 August 1958 Time Interval Centered on: 1600Z</td>
<td>150</td>
</tr>
<tr>
<td>63b</td>
<td>1 August 1958 Time Interval Centered on: 1600Z</td>
<td>151</td>
</tr>
<tr>
<td>64a</td>
<td>1 August 1958 Time Interval Centered on: 1630Z</td>
<td>152</td>
</tr>
<tr>
<td>64b</td>
<td>1 August 1958 Time Interval Centered on: 1630Z</td>
<td>153</td>
</tr>
</tbody>
</table>
LIST OF FIGURES, TABLES AND KEYS (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>65a</td>
<td>1 August 1958 Time Interval Centered on: 1700Z</td>
<td>154</td>
</tr>
<tr>
<td>65b</td>
<td>1 August 1958 Time Interval Centered on: 1700Z</td>
<td>155</td>
</tr>
<tr>
<td>66a</td>
<td>1 August 1958 Time Interval Centered on: 1800Z</td>
<td>156</td>
</tr>
<tr>
<td>66b</td>
<td>1 August 1958 Time Interval Centered on: 1800Z</td>
<td>157</td>
</tr>
<tr>
<td>67a</td>
<td>1 August 1958 Time Interval Centered on: 1900Z</td>
<td>158</td>
</tr>
<tr>
<td>67b</td>
<td>1 August 1958 Time Interval Centered on: 1900Z</td>
<td>159</td>
</tr>
<tr>
<td>68a</td>
<td>1 August 1958 Time Interval Centered on: 2000Z</td>
<td>160</td>
</tr>
<tr>
<td>68b</td>
<td>1 August 1958 Time Interval Centered on: 2000Z</td>
<td>161</td>
</tr>
<tr>
<td>69a</td>
<td>1 August 1958 Time Interval Centered on: 2100Z</td>
<td>162</td>
</tr>
<tr>
<td>69b</td>
<td>1 August 1958 Time Interval Centered on: 2100Z</td>
<td>163</td>
</tr>
<tr>
<td>70a</td>
<td>1 August 1958 Time Interval Centered on: 2200Z</td>
<td>164</td>
</tr>
<tr>
<td>70b</td>
<td>1 August 1958 Time Interval Centered on: 2200Z</td>
<td>165</td>
</tr>
<tr>
<td>71a</td>
<td>1 August 1958 Time Interval Centered on: 2300Z</td>
<td>166</td>
</tr>
<tr>
<td>71b</td>
<td>1 August 1958 Time Interval Centered on: 2300Z</td>
<td>167</td>
</tr>
<tr>
<td>72a</td>
<td>2 August 1958 Time Interval Centered on: 0000Z</td>
<td>168</td>
</tr>
<tr>
<td>72b</td>
<td>2 August 1958 Time Interval Centered on: 0000Z</td>
<td>169</td>
</tr>
</tbody>
</table>

Table I 1 August 1958 Circuits between Honolulu and etc. 170

Table II 1 August 1958 Circuits between San Francisco and etc. . . 172

Synoptic Maps of Reported Circuit Experience

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>73a</td>
<td>12 August 1958 Time Interval Centered on: 0000Z</td>
<td>174</td>
</tr>
<tr>
<td>73b</td>
<td>12 August 1958 Time Interval Centered on: 0000Z</td>
<td>175</td>
</tr>
<tr>
<td>74a</td>
<td>12 August 1958 Time Interval Centered on: 0100Z</td>
<td>176</td>
</tr>
<tr>
<td>74b</td>
<td>12 August 1958 Time Interval Centered on: 0100Z</td>
<td>177</td>
</tr>
<tr>
<td>75a</td>
<td>12 August 1958 Time Interval Centered on: 0200Z</td>
<td>178</td>
</tr>
<tr>
<td>75b</td>
<td>12 August 1958 Time Interval Centered on: 0200Z</td>
<td>179</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>76a</td>
<td>12 August 1958 Time Interval Centered on: 0300Z</td>
<td>180</td>
</tr>
<tr>
<td>76b</td>
<td>12 August 1958 Time Interval Centered on: 0300Z</td>
<td>181</td>
</tr>
<tr>
<td>77a</td>
<td>12 August 1958 Time Interval Centered on: 0400Z</td>
<td>182</td>
</tr>
<tr>
<td>77b</td>
<td>12 August 1958 Time Interval Centered on: 0400Z</td>
<td>183</td>
</tr>
<tr>
<td>78a</td>
<td>12 August 1958 Time Interval Centered on: 0500Z</td>
<td>184</td>
</tr>
<tr>
<td>78b</td>
<td>12 August 1958 Time Interval Centered on: 0500Z</td>
<td>185</td>
</tr>
<tr>
<td>79a</td>
<td>12 August 1958 Time Interval Centered on: 0600Z</td>
<td>186</td>
</tr>
<tr>
<td>79b</td>
<td>12 August 1958 Time Interval Centered on: 0600Z</td>
<td>187</td>
</tr>
<tr>
<td>80a</td>
<td>12 August 1958 Time Interval Centered on: 0700Z</td>
<td>188</td>
</tr>
<tr>
<td>80b</td>
<td>12 August 1958 Time Interval Centered on: 0700Z</td>
<td>189</td>
</tr>
<tr>
<td>81a</td>
<td>12 August 1958 Time Interval Centered on: 0800Z</td>
<td>190</td>
</tr>
<tr>
<td>81b</td>
<td>12 August 1958 Time Interval Centered on: 0800Z</td>
<td>191</td>
</tr>
<tr>
<td>82a</td>
<td>12 August 1958 Time Interval Centered on: 0900Z</td>
<td>192</td>
</tr>
<tr>
<td>82b</td>
<td>12 August 1958 Time Interval Centered on: 0900Z</td>
<td>193</td>
</tr>
<tr>
<td>83a</td>
<td>12 August 1958 Time Interval Centered on: 1000Z</td>
<td>194</td>
</tr>
<tr>
<td>83b</td>
<td>12 August 1958 Time Interval Centered on: 1000Z</td>
<td>195</td>
</tr>
<tr>
<td>84a</td>
<td>12 August 1958 Time Interval Centered on: 1100Z</td>
<td>196</td>
</tr>
<tr>
<td>84b</td>
<td>12 August 1958 Time Interval Centered on: 1100Z</td>
<td>197</td>
</tr>
<tr>
<td>85a</td>
<td>12 August 1958 Time Interval Centered on: 1200Z</td>
<td>198</td>
</tr>
<tr>
<td>85b</td>
<td>12 August 1958 Time Interval Centered on: 1100Z</td>
<td>199</td>
</tr>
<tr>
<td>86a</td>
<td>12 August 1958 Time Interval Centered on: 1300Z</td>
<td>200</td>
</tr>
<tr>
<td>86b</td>
<td>12 August 1958 Time Interval Centered on: 1100Z</td>
<td>201</td>
</tr>
<tr>
<td>87a</td>
<td>12 August 1958 Time Interval Centered on: 1200Z</td>
<td>202</td>
</tr>
<tr>
<td>87b</td>
<td>12 August 1958 Time Interval Centered on: 1200Z</td>
<td>203</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>88a</td>
<td>12 August 1958 Time Interval Centered on: 1230Z</td>
<td>204</td>
</tr>
<tr>
<td>88b</td>
<td>12 August 1958 Time Interval Centered on: 1230Z</td>
<td>205</td>
</tr>
<tr>
<td>89a</td>
<td>12 August 1958 Time Interval Centered on: 1300Z</td>
<td>206</td>
</tr>
<tr>
<td>89b</td>
<td>12 August 1958 Time Interval Centered on: 1300Z</td>
<td>207</td>
</tr>
<tr>
<td>90a</td>
<td>12 August 1958 Time Interval Centered on: 1330Z</td>
<td>208</td>
</tr>
<tr>
<td>90b</td>
<td>12 August 1958 Time Interval Centered on: 1330Z</td>
<td>209</td>
</tr>
<tr>
<td>91a</td>
<td>12 August 1958 Time Interval Centered on: 1400Z</td>
<td>210</td>
</tr>
<tr>
<td>91b</td>
<td>12 August 1958 Time Interval Centered on: 1400Z</td>
<td>211</td>
</tr>
<tr>
<td>92a</td>
<td>12 August 1958 Time Interval Centered on: 1430Z</td>
<td>212</td>
</tr>
<tr>
<td>92b</td>
<td>12 August 1958 Time Interval Centered on: 1430Z</td>
<td>213</td>
</tr>
<tr>
<td>93a</td>
<td>12 August 1958 Time Interval Centered on: 1500Z</td>
<td>214</td>
</tr>
<tr>
<td>93b</td>
<td>12 August 1958 Time Interval Centered on: 1500Z</td>
<td>215</td>
</tr>
<tr>
<td>94a</td>
<td>12 August 1958 Time Interval Centered on: 1530Z</td>
<td>216</td>
</tr>
<tr>
<td>94b</td>
<td>12 August 1958 Time Interval Centered on: 1530Z</td>
<td>217</td>
</tr>
<tr>
<td>95a</td>
<td>12 August 1958 Time Interval Centered on: 1600Z</td>
<td>218</td>
</tr>
<tr>
<td>95b</td>
<td>12 August 1958 Time Interval Centered on: 1600Z</td>
<td>219</td>
</tr>
<tr>
<td>96a</td>
<td>12 August 1958 Time Interval Centered on: 1630Z</td>
<td>220</td>
</tr>
<tr>
<td>96b</td>
<td>12 August 1958 Time Interval Centered on: 1630Z</td>
<td>221</td>
</tr>
<tr>
<td>97a</td>
<td>12 August 1958 Time Interval Centered on: 1700Z</td>
<td>222</td>
</tr>
<tr>
<td>97b</td>
<td>12 August 1958 Time Interval Centered on: 1700Z</td>
<td>223</td>
</tr>
<tr>
<td>98a</td>
<td>12 August 1958 Time Interval Centered on: 1730Z</td>
<td>224</td>
</tr>
<tr>
<td>98b</td>
<td>12 August 1958 Time Interval Centered on: 1730Z</td>
<td>225</td>
</tr>
<tr>
<td>99a</td>
<td>12 August 1958 Time Interval Centered on: 1800Z</td>
<td>226</td>
</tr>
<tr>
<td>99b</td>
<td>12 August 1958 Time Interval Centered on: 1800Z</td>
<td>227</td>
</tr>
<tr>
<td>Figure</td>
<td>12 August 1958 Time Interval Centered on:</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>100a</td>
<td>Time</td>
<td>228</td>
</tr>
<tr>
<td>100b</td>
<td>Time</td>
<td>229</td>
</tr>
<tr>
<td>101a</td>
<td>Time</td>
<td>230</td>
</tr>
<tr>
<td>101b</td>
<td>Time</td>
<td>231</td>
</tr>
<tr>
<td>102a</td>
<td>Time</td>
<td>232</td>
</tr>
<tr>
<td>102b</td>
<td>Time</td>
<td>233</td>
</tr>
<tr>
<td>103a</td>
<td>Time</td>
<td>234</td>
</tr>
<tr>
<td>103b</td>
<td>Time</td>
<td>235</td>
</tr>
<tr>
<td>104a</td>
<td>Time</td>
<td>236</td>
</tr>
<tr>
<td>104b</td>
<td>Time</td>
<td>237</td>
</tr>
<tr>
<td>105a</td>
<td>Time</td>
<td>238</td>
</tr>
<tr>
<td>105b</td>
<td>Time</td>
<td>239</td>
</tr>
<tr>
<td>106a</td>
<td>Time</td>
<td>240</td>
</tr>
<tr>
<td>106b</td>
<td>Time</td>
<td>241</td>
</tr>
<tr>
<td>107a</td>
<td>Time</td>
<td>242</td>
</tr>
<tr>
<td>107b</td>
<td>Time</td>
<td>243</td>
</tr>
<tr>
<td>108a</td>
<td>Time</td>
<td>244</td>
</tr>
<tr>
<td>108b</td>
<td>Time</td>
<td>245</td>
</tr>
<tr>
<td>109a</td>
<td>Time</td>
<td>246</td>
</tr>
<tr>
<td>109b</td>
<td>Time</td>
<td>247</td>
</tr>
<tr>
<td>110a</td>
<td>Time</td>
<td>248</td>
</tr>
<tr>
<td>110b</td>
<td>Time</td>
<td>249</td>
</tr>
<tr>
<td>111a</td>
<td>Time</td>
<td>250</td>
</tr>
<tr>
<td>111b</td>
<td>Time</td>
<td>251</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>112a</td>
<td>13 August 1958 Time Interval Centered on: 0100Z</td>
<td>252</td>
</tr>
<tr>
<td>112b</td>
<td>13 August 1958 Time Interval Centered on: 0100Z</td>
<td>253</td>
</tr>
<tr>
<td>113a</td>
<td>13 August 1958 Time Interval Centered on: 0200Z</td>
<td>254</td>
</tr>
<tr>
<td>113b</td>
<td>13 August 1958 Time Interval Centered on: 0200Z</td>
<td>255</td>
</tr>
<tr>
<td>114a</td>
<td>13 August 1958 Time Interval Centered on: 0300Z</td>
<td>256</td>
</tr>
<tr>
<td>114b</td>
<td>13 August 1958 Time Interval Centered on: 0300Z</td>
<td>257</td>
</tr>
<tr>
<td>115a</td>
<td>13 August 1958 Time Interval Centered on: 0400Z</td>
<td>258</td>
</tr>
<tr>
<td>115b</td>
<td>13 August 1958 Time Interval Centered on: 0400Z</td>
<td>259</td>
</tr>
<tr>
<td>116a</td>
<td>13 August 1958 Time Interval Centered on: 0500Z</td>
<td>260</td>
</tr>
<tr>
<td>116b</td>
<td>13 August 1958 Time Interval Centered on: 0500Z</td>
<td>261</td>
</tr>
<tr>
<td>117a</td>
<td>13 August 1958 Time Interval Centered on: 0600Z</td>
<td>262</td>
</tr>
<tr>
<td>117b</td>
<td>13 August 1958 Time Interval Centered on: 0600Z</td>
<td>263</td>
</tr>
<tr>
<td>118a</td>
<td>13 August 1958 Time Interval Centered on: 0700Z</td>
<td>264</td>
</tr>
<tr>
<td>118b</td>
<td>13 August 1958 Time Interval Centered on: 0700Z</td>
<td>265</td>
</tr>
<tr>
<td>119a</td>
<td>13 August 1958 Time Interval Centered on: 0800Z</td>
<td>266</td>
</tr>
<tr>
<td>119b</td>
<td>13 August 1958 Time Interval Centered on: 0800Z</td>
<td>267</td>
</tr>
<tr>
<td>120a</td>
<td>13 August 1958 Time Interval Centered on: 0900Z</td>
<td>268</td>
</tr>
<tr>
<td>120b</td>
<td>13 August 1958 Time Interval Centered on: 0900Z</td>
<td>269</td>
</tr>
<tr>
<td>121a</td>
<td>13 August 1958 Time Interval Centered on: 1000Z</td>
<td>270</td>
</tr>
<tr>
<td>121b</td>
<td>13 August 1958 Time Interval Centered on: 1000Z</td>
<td>271</td>
</tr>
<tr>
<td>122a</td>
<td>13 August 1958 Time Interval Centered on: 1100Z</td>
<td>272</td>
</tr>
<tr>
<td>122b</td>
<td>13 August 1958 Time Interval Centered on: 1100Z</td>
<td>273</td>
</tr>
</tbody>
</table>

Table III 12 August 1958 Circuits between Honolulu and etc 274

Table IV 12 August 1958 Circuits between San Francisco and etc . . 277
SECRET

LIST OF FIGURES, TABLES AND KEYS
(Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key B</td>
<td>Keys to Frequency Utilization Bar Charts of Combined Circuit Experience vs. Frequency Limitations</td>
</tr>
<tr>
<td>Key C</td>
<td>Key to Frequency Bar Charts Depicting Comparison of Circuit Experience, Engineering Factors and Frequency Limitations</td>
</tr>
</tbody>
</table>

Combined Circuit Experience vs. Frequency Limitations

| 123 | Various Circuit Paths between Honolulu Area and San Francisco Area 1 August 1958 | 282 |

Comparison of Circuit Experience, Engineering Factors and Frequency Limitations

| 124 | Honolulu Area Receiving San Francisco Area 1 August 1958 | 283 |
| 125 | Honolulu Area Transmitting to San Francisco Area 1 August 1958 | 284 |

Combined Circuit Experience vs. Frequency Limitations

| 126 | Various Circuit Paths between Honolulu Area and San Francisco Area 12 August 1958 | 285 |

Comparison of Circuit Experience, Engineering Factors and Frequency Limitations

| 127 | Honolulu Area Receiving San Francisco Area 12 August 1958 | 286 |
| 128 | Honolulu Area Transmitting to San Francisco Area 12 August 1958 | 287 |

Table V Summation of Successes and Failures Before and After Shot Time
San Francisco - Honolulu | 288 |

Combined Circuit Experience vs. Frequency Limitations

| 129 | Various Circuit Paths between Honolulu Area and Islands of Japan 1 August 1958 | 289 |

Comparison of Circuit Experience, Engineering Factors and Frequency Limitations

| 130 | Honolulu Area Receiving Islands of Japan 1 August 1958 | 290 |
SECRET

LIST OF FIGURES, TABLES AND KEYS
(Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Combined Circuit Experience vs. Frequency Limitations</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Circuit Paths between Honolulu Area and Islands of Japan 12 August 1958</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Honolulu Area Receiving Islands of Japan 12 August 1958</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Honolulu Area Transmitting to Islands of Japan 12 August 1958</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Various Circuit Paths between Okinawa and Honolulu Area 1 August 1958</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Okinawa Transmitting to Honolulu Area 1 August 1958</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Okinawa Receiving Honolulu Area 1 August 1958</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Various Circuit Paths between Okinawa and Honolulu Area 12 August 1958</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td></td>
</tr>
<tr>
<td>Okinawa Transmitting to Honolulu Area 12 August 1958</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Okinawa Receiving Honolulu Area 12 August 1958</td>
<td></td>
</tr>
</tbody>
</table>

Table VI Summation of Successes and Failures Before and After Shot Time

<table>
<thead>
<tr>
<th>Time</th>
<th>Tokyo - Honolulu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Combined Circuit Experience vs. Frequency Limitations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Various Circuit Paths between Okinawa and Honolulu Area 1 August 1958</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Okinawa Transmitting to Honolulu Area 1 August 1958</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Okinawa Receiving Honolulu Area 1 August 1958</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Various Circuit Paths between Okinawa and Honolulu Area 12 August 1958</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td></td>
</tr>
<tr>
<td>Okinawa Transmitting to Honolulu Area 12 August 1958</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Okinawa Receiving Honolulu Area 12 August 1958</td>
<td></td>
</tr>
</tbody>
</table>

Table VII Summation of Successes and Failures Before and After Shot Time

<table>
<thead>
<tr>
<th>Time</th>
<th>Okinawa - Honolulu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Combined Circuit Experience vs. Frequency Limitations</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>141</td>
<td>Multiple Parallel Relaying at 1200Z between Hawaii and San Francisco on 1 August 1958</td>
</tr>
<tr>
<td></td>
<td>Increased Circuit Capabilities from Assumption of Multiple Relaying</td>
</tr>
<tr>
<td>142</td>
<td>Hawaii - San Francisco 1 August 1958</td>
</tr>
<tr>
<td>143</td>
<td>Multiple Parallel Relaying at 1200Z between Manila and San Francisco 1 August 1958</td>
</tr>
<tr>
<td></td>
<td>Increased Circuit Capabilities from Assumption of Multiple Relaying</td>
</tr>
<tr>
<td>144</td>
<td>Manila - San Francisco 1 August 1958</td>
</tr>
<tr>
<td>145</td>
<td>Multiple Parallel Relaying at 1200Z between Guam and Hawaii 1 August 1958</td>
</tr>
<tr>
<td></td>
<td>Increased Circuit Capabilities from Assumption of Multiple Relaying</td>
</tr>
<tr>
<td>146</td>
<td>Guam - Hawaii 1 August 1958</td>
</tr>
<tr>
<td>147</td>
<td>Multiple Parallel Relaying at 1900Z between Hawaii and San Francisco 12 August 1958</td>
</tr>
<tr>
<td></td>
<td>Increased Circuit Capabilities from Assumption of Multiple Relaying</td>
</tr>
<tr>
<td>148</td>
<td>Hawaii - San Francisco 12 August 1958</td>
</tr>
<tr>
<td>149</td>
<td>Multiple Parallel Relaying at 1900Z between Manila and San Francisco 12 August 1958</td>
</tr>
<tr>
<td></td>
<td>Increased Circuit Capabilities from Assumption of Multiple Relaying</td>
</tr>
<tr>
<td>150</td>
<td>Manila - San Francisco 12 August 1958</td>
</tr>
<tr>
<td>151</td>
<td>Multiple Parallel Relaying at 2000Z between Guam and Hawaii 12 August 1958</td>
</tr>
<tr>
<td></td>
<td>Increased Circuit Capabilities from Assumption of Multiple Relaying</td>
</tr>
<tr>
<td>152</td>
<td>Guam - Hawaii 12 August 1958</td>
</tr>
</tbody>
</table>
SECRET

SELECTED GLOBAL COMMUNICATION PATHS

USED FOR THE ANALYSIS OF

TEAK AND ORANGE

SECRET
SECRET

SELECTED GLOBAL COMMUNICATION PATHS
USED FOR THE ANALYSIS OF

TEAK TEST
AUGUST 1958

KEY TO TERMINAL LOCATIONS:

91. SINGAPORE 96. WAKE IS.
97. SEATTLE 97. WASHINGTON, D.C.
98. SYDNEY 98. WELLINGTON
99. TOKYO 99. SAO CA IS.

SECRET
SECRET

SELECTED GLOBAL COMMUNICATION PATHS
USED FOR THE ANALYSIS OF

TEST ORANGE

AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. NANKING 57. LOS ALAMOS
2. ANCHORAGE 30. ENIWETOK 42. HOUSTON, PT. SAM 61. MANILA
6. ASMARA 32. FORMOSA 46. IWO JIMA 62. MIDWAY
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MONTICELLO
13. BANGKOK 39. HAWAI 51. KUWAIT 65. NADI, FIJI IS.
19. CANTON IS. 40. HEIDELBERG 53. LA GRANJA 69. OKINAWA
20. SHANGHAI

SECRET
SECRET

SELECTED GLOBAL COMMUNICATION PATHS

USED FOR THE ANALYSIS OF

TEST ORANGE

AUGUST 1958

KEY TO TERMINAL LOCATIONS

85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
91. TOKYO 99. SAMOA IS.
I. INTRODUCTION

1. A by-product of the release of energy following a nuclear blast is a dense cloud of ionized gases. These hot ionized gases rapidly rise with the fireball and are gradually diffused into the atmosphere. In past nuclear blasts close to the ground, evidences of radiations of radio noise energy were found mainly at the low frequency end of the radio spectrum. The high altitude nuclear blasts identified as "Teak" and "Orange" took place at heights of roughly 50 and 25 miles, respectively. At these elevated heights, the dense cloud of ionization associated with the rising fireball did not fully dissipate itself before attaining the lower reaches of the natural ionization layers. The still turbulent cloud of ionization disturbed and mixed with the natural ionization layers. X, gamma, and beta radiations were released in quantity and reacted on more distant portions of the ionosphere. These effects combined to disrupt communications over a wide region in the vicinity of the blast. It will be shown that the "Teak" shot caused an intense, wide-ranging disturbance to the HF communication band that was limited to a relatively short period of time of about four hours. It will also be shown that the "Orange" shot did not cause either as intense or as wide-ranging a disturbance to the HF communication band but that the effects lasted in some cases into the next day. In general, communication circuits were affected up to distances of a few thousand miles away from the shot location.

2. Since the initial reports indicated that the effects of the nuclear blasts were so widespread, it was decided to analyze the log records of the communication links for the range of distances and duration of the disturbance. Since the technical controllers on duty at the communication sites are primarily responsible for keeping message traffic moving, as a group they do not react to disturbances like trained scientific observers to gather and record their findings objectively and with precision. Rather they make various attempts to regain communication by switching frequencies, transmitters and antennas. Since circuit disturbances similar to those induced by the blast occur naturally from time to time, the technical controllers reacted to these artificial disturbances in their usual way. Although Army, Air Force, Navy and Central Intelligence Agency stations had been informed shortly before "Teak" to be on the lookout for unusual propagation effects, no one was prepared for the magnitude and the duration of the effects. In most cases special monitoring was conducted for only about one hour after shot time. For the Orange blast, the period of special monitoring was extended in many cases to approximately two hours after shot time. No one was prepared for the delayed reaction at dawn some six hours after the "Orange" blast when heavy absorption effects impaired communications. Consequently, not all log records convey the same information on the extent of the effects of both of these nuclear blasts. Also the scientific value of the log records is impaired by the prior demands on the responsibilities of the technical controllers.

3. On the other hand, a curious effect emerges from the log records. Not all circuits in the affected area report simultaneous loss of communication during the time following the high altitude nuclear blasts. Some circuits reported that they continued to operate where others reported loss of communication. A comparison will be made between facilities that were able and those that were not able to communicate over the identical circuit.
SECRET
paths during certain critical periods. This comparison will be based on available data concerning engineering factors and environments in order to demonstrate which modulations and engineering factors contributed the most to reliability of communications under the disturbed conditions.
II. CIRCUIT EXPERIENCE VERSUS FREQUENCY LIMITATION CHARTS

1. This section contains a discussion of the effects on circuits into, out of, or passing near circuit centers in the Pacific Area for which vertical incidence data is plotted.

2. A circuit center is identified as a common terminal for several point-to-point circuits and is understood to include the radio communication receiving and transmitting stations up to approximately 100 miles around a large city. The distance between circuit centers is much greater than the distance of a radio station from the city with which it is identified.

3. An inspection of the charts, Figures 1-40, of consolidated circuit experience of circuit centers such as Honolulu, Midway, Adak, San Francisco, and Okinawa for the days before, of, and after the Teak and Orange nuclear blasts show that a pattern begins to emerge when the sampling is sufficiently large. Of the many locations that could have been chosen, only these have been plotted in this manner because data from a vertical incidence ionosphere station located nearby was available. The vertical incidence data is converted into equivalent 4000-km F-layer and 2000-km sporadic E-layer Maximum Usable Frequencies (MUF) for comparison with the circuit experience at each selected circuit center.

4. It should be pointed out that the circuit experience indicated by solid lines on the charts as outage time is not necessarily due to propagation only. Rather, this is the outage time charged in the log records to propagation failure because the transmission quality was less than acceptable and could not be certainly charged to equipment failure.

5. Although there was much communication activity associated with these tests nearer to Johnston Island (the location of the nuclear blasts), Honolulu is the nearest of the fixed point communication centers to the shot area. A rapid visual comparison will show that, of all of the more important circuit centers, Honolulu shows the maximum effect of both the Teak and Orange shots with the more distant circuit centers from Johnston Island being progressively less affected. This comparison shows that the intensity of the effects diminishes with increasing distance. This observation is particularly pertinent when it is recognized that Honolulu is 810 miles from Johnston Island. Other places reporting the effects of Teak and Orange are at the following approximate distances from Johnston Island:

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance from Johnston Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midway</td>
<td>935 miles</td>
</tr>
<tr>
<td>Canton</td>
<td>1350</td>
</tr>
<tr>
<td>Wake</td>
<td>1650</td>
</tr>
<tr>
<td>Samoa</td>
<td>2100</td>
</tr>
<tr>
<td>Adak</td>
<td>2500</td>
</tr>
<tr>
<td>Fiji</td>
<td>2550</td>
</tr>
<tr>
<td>Guam</td>
<td>3000</td>
</tr>
<tr>
<td>San Francisco</td>
<td>3100</td>
</tr>
<tr>
<td>Tokyo</td>
<td>3300</td>
</tr>
<tr>
<td>Okinawa</td>
<td>3950</td>
</tr>
<tr>
<td>Taipei</td>
<td>4400</td>
</tr>
<tr>
<td>Manila</td>
<td>4500</td>
</tr>
</tbody>
</table>

"See map, Figure (41) and Appendices II and III."
6. From the list of places reporting the effects of Teak and Orange, Honolulu, San Francisco, Tokyo, Okinawa, Taipei, and Manila are major fixed point circuit centers in terms of communication activity. With Honolulu being 810 miles from Johnston Island, the effects there are most intense. The other places being at greater distances from Johnston Island are subject to lower intensity effects since they represent communication paths further from the location of the nuclear blasts. Of the two nuclear blasts, the immediate effects of Teak were the more intense.

7. To the extent that log records were available, data was recorded of circuit experience versus frequency utilization for the day before, the day of, and the day after the nuclear shot in Z (Greenwich Mean) time. The chart for the day before the shot shows the normal behavior of the circuits terminating at the circuit center. The chart for the day of the shot shows the simultaneity and duration of the effects after the shot in impairing the circuits terminating at the circuit center. The chart for the day after the shot shows any lingering effects of the shot before the circuits return to normal at the circuit center. In the following discussions of the effects of both the Teak and the Orange shots respectively, each group of three charts should be studied with these considerations in mind. Except when otherwise indicated, all references will be made in Z time.

8. Immediately after the Teak blast on 1 August, communication both into and out of Honolulu (Figures 1-6) shows a consistent propagation outage pattern that was a maximum in the first four hours but extended over a total of twelve hours. The plots of the effects of Teak on communications into or out of Honolulu do not include data for circuits passing close by, for which Honolulu is not a terminal. At no time within this period, were all circuits inoperative either into or out of Honolulu. A further look at the charts for the 1st of August shows that the operative circuits were distributed over the available HF band from about 5 to 24 mc. The inoperative circuits were spread over the HF band from about 5 to 24 mc. Many logs indicated frequency shifts upward or downward to regain communication, and reported some success in re-establishing circuits. However, frequency shifts upward during the time of day when permitted by a rise in the MUF is normal procedure.

9. The sampling of the circuit experience into and out of Honolulu on the 12th of August (Figures 7-12) shows a modification in the propagation outage pattern compared with that occurring after the Teak blast. After the Orange blast very few of the circuits show an immediate and continuing outage. The major effect of the Orange blast appeared with the approach of local sunrise and continued for the remaining six hours of the chart. The mechanism that apparently accounts for this delayed reaction is absorption due to the photo-dissociation of the blast-generated negative ions by sunlight to create an excess of free electrons in the ionosphere. Actually propagation outage was reported for as much as 24 hours after sunrise at Honolulu following the Orange blast. Again, it is observed that both the operative and inoperative circuits are spread over the HF spectrum from about 5 to 24 mc. After local sunrise, when maximum absorption effects begin, the lower limit of usable frequencies shifts upward to about 13 mc. Note that there is much less evidence of mid-morning propagation outages on the date prior to test Orange.
10. The apparent greater density of circuits working out of rather than into Honolulu for Teak and Orange is partially due to the monitoring of Navy fleet broadcasts on a number of frequencies simultaneously at several distant points of reception by CIA monitoring stations. There are no corresponding return circuits carrying messages back to Honolulu.

11. The heavy solid curve is the 4000-km equivalent F-layer MUF and the upper heavy dashed curve is the 2000-km equivalent sporadic E-layer MUF based on the vertical incidence ionospheric data taken at Maui for the day recorded on the charts. These MUF's are indicative rather than correct because they were not taken at the individual control points of the circuits. There are so many circuits spread over the azimuth that a MUF at the control point for one circuit would not apply to the control points of other circuits. Furthermore, they differ from the predicted monthly average F-layer MUF that was calculated at the U. S. Army Signal Radio Propagation Agency for the various circuits into or out of Honolulu.

12. For the day of the Teak blast, a break in the heavy solid curve F-layer MUF at 28 mc occurs at shot time. The records of the vertical incidence data taken at Maui for three hours after shot time cannot be used for MUF calculations because these records are too badly disturbed. At about 1500Z, the F-layer MUF curve reappears at about 7 mc. The effect is as if the nuclear blast had blown a hole in the ionosphere in the vicinity of the shot area. As the ionosphere reforms, only the lowest frequencies begin to be supported. The typical spread between a nighttime F-layer MUF and a predawn dip is not as great as the dip in this case when the F-layer MUF reappears. Between about 1500 and about 1730Z, the F-layer MUF has risen from about 6 mc to about 21.5 mc. The rise covers the period of about 0500 to about 0730 Hawaiian Standard Time. This F-layer MUF rise is also much greater than usually occurs during the recovery from the predawn dip. Again attention should be drawn to the apparent circuit operations at frequencies above the equivalent F-layer MUF as based on vertical incidence data taken at Maui. As previously pointed out, the F-layer MUF that applies to a particular circuit is that associated with the control point of that circuit.

13. The 4000-km F-layer MUF based on the vertical incidence data taken at Maui for the day of the Orange shot differs from that of the Teak shot. Here the F-layer MUF begins to drop from about 30 mc at shot time to about 13 mc about four hours later. At this time the vertical incidence records became so disturbed that they cannot be used for determining local F-layer MUF until nine hours after shot time. The lower heavy dashed curve represents the minimum frequency (f-min) at which a reflection from any ionospheric layer appears on the ionogram. This parameter is normally read as an indication of the ionospheric absorption in the area. On Figures 9 and 10, f-min begins to climb very rapidly at about 1500Z. This rise occurs when the vertical incidence F-layer MUF recordings became unusable at about four hours after shot time. The rising vertical plot of f-min shows an excessive increase in absorption causing the break in the F-layer MUF plot. Although this extremely high f-min lasted only about one and one-half hours, the vertical incidence ionospheric data was too disturbed to be employed for calculating the F-layer MUF for five hours beginning at 1500Z on 12 August. This rising absorption was of relatively brief duration during the Teak shot and is not recorded on Figures 3 and 4. Local effects described previously
as the result of photodissociation of the negative ions by local sunrise
account for the excessive absorption associated with the delayed propagation
failures of circuits following the Orange blast.

14. Midway is 935 miles from Johnston Island and 1300 miles from
Honolulu. The charts of circuit experience for Midway for the 1st, 11th,
12th, and 13th of August (Figures 13-16) contained more data on circuits
that passed near to Midway than into Midway. Midway does have a circuit into
Honolulu. Midway is close to the control point for circuits from Honolulu to
Tokyo, Okinawa, Taipei and Manila. The effect of simultaneous circuit outage
following the Teak shot over a range of frequencies from 5 to about 20 mc is
very definitely indicated on Figure 13. At no time, however, were all such
circuits disrupted. The effects of Teak are noted at Midway for as much as
10 hours.

15. Figure 14 shows that on the day before the Orange shot some cir-
cuits experienced some propagation outage during the predawn and early
morning hours. For the day of the Orange shot, some of the many circuits
into and near Midway experienced propagation outage prior to shot time as
shown by Figure 15. Some of this propagation outage persisted into the hours
when the Orange shot caused propagation outage on some of the other circuits
near Midway. The general effect was one of prolonged but sporadic outage
caused both by natural influences and by the superimposed effects of the
Orange shot. Yet over the period of some twelve hours following the Orange
shot, there were circuits that continued to communicate in the HF band at
one time or another from 5 to 22 mc.

16. The vertical incidence data for Midway is incomplete for the day of
the Teak shot. Only between the hours of 0500 and 1000 and between 1600 and
2000 Z was data available to determine the 4000-km F-layer MUF. The f-min
data shows no extended period of absorption following the Teak shot that
could be plotted on the chart.

17. Figure 15 shows that 4000-km F-layer MUF began to diminish a half
hour after Orange shot time. No bottoming of the F-layer MUF appears here as
it did at Honolulu. The disturbance noted in the records of the vertical
incidence data for about 5 hours after shot time causes a break in the plotted
value of F-layer MUF until then. The F-layer MUF then is plotted for
another hour. Then a second period of disturbance occurs for an hour so that
at about 7 hours after shot time, the F-layer MUF can be plotted without any
further breaks. There is some propagation outage that begins with the period
of the second break in the F-layer MUF. The f-min data shows no extended
period of absorption following the Orange shot that can be plotted on Figure
15.

18. Adak lies some 2500 miles almost due north from Johnston Island.
Adak log records show communication with Honolulu primarily. Most of the San
Francisco and Seattle circuits which pass near to Adak on the great circle
path are plotted on the charts for Adak. Figures 17, 19, 20 and 22 represent
normal samples of propagation outage and circuit activity for days prior to
and after shot time. Figure 17 shows a little propagation outage 24 hours
before the Teak shot but with most circuits working right through. On the
day of the Teak shot (Figure 16), the response in propagation outage is delay-
ed in some instances by as much as one-half to one hour following shot time.
The propagation outage varied in length from one-half hour in most cases to
almost four hours in the worst case in the vicinity of Adak. Many other
circuits continued to operate with no outage or with only short outages in

SECRET
communication. The 4000-km F-layer MUF shows a drop about an hour preceding shot time. The drop continues to 11 mc about an hour after shot time when the F-layer becomes so disturbed that the records cannot be scaled. On the preceding day, 24 hours before the break, the F-layer MUF was 16 mc. The break in the F-layer MUF for the day of the Teak shot coincides with the time of the beginning of most propagation outages. The end of the break in the F-layer MUF occurs about four hours after shot time at about the time when many circuit propagation outages end. The propagation outages are similar to those at Honolulu but effect a smaller percentage of circuits in operation and for a shorter period of time.

19. Because of the occurrence of propagation outages at about the same time of the day, for the day before, the day of, and the day after the Orange shot (Figures 20, 21, 22) the certainty of associating propagation outages with Orange is seriously impaired at Adak.

20. Charts are available for circuit experience both into and out of San Francisco for the 31st of July, 1st, 2nd, 11th, 12th, and 13th of August (Figure 23-34) Z time. San Francisco, 3100 miles from Johnston Island, is a major circuit center and shows the effect of increased distance from the shot location when compared with Honolulu. For the Teak shot, there is shown a marked increase in propagation outage but affecting fewer circuits and for shorter periods than at Honolulu. This increased propagation outage builds up within the first hour after shot time and does not continue much more than four hours after shot time. For the Orange shot, the indicated propagation outage both into and out of San Francisco differs from Teak in that it was small and no clear association with the shot effects could be established. It should be noted that San Francisco communicates both to the north and east as well as to the west and south with various other places that are not near Johnston Island. This situation diffuses the effect of the nuclear blast on the circuit activity terminating at San Francisco from points in the Pacific.

21. The heavy solid curve showing the 4000-km F-layer MUF for San Francisco shows no unusual behavior as based on vertical incidence data for this location for 31 July, 1, 2, 11, 12, and 13 August. The comments made previously on the relation between such locally determined F-layer MUF and circuit behavior at Honolulu apply as well to San Francisco. This F-layer MUF is not located at a control point for any of the circuit paths into or out of San Francisco. Being determined from vertical incidence data close to San Francisco it can only show local conditions of the ionosphere.

22. The next group of charts of circuit experience to be examined is for Okinawa, 3950 miles from Johnston Island. These charts (Figures 35-40) are for 31 July, 1, 2, 11, 12, and 13 August. Okinawa communicates with Honolulu, Manila, and Tokyo and lies close to the control point for the Tokyo - Manila circuit. The variation in density of the data on these and other charts, particularly for the days before and after shot time, are largely due to availability or lack of availability of log data from all circuits that reported. The charts for 31 July and 11 August being for days before each of the nuclear blasts showed typical samples of propagation outage among the communicating circuits. For the Teak shot, the Okinawa chart shows an increase in propagation outage affecting a
greater percentage of circuits and of greater duration than at either Adak or San Francisco. These reported outages are distributed over a period of twelve hours. Some circuits recover about four hours after shot time and go out again nine hours after shot time. Not all propagation outage patterns are alike or simultaneous, but there are two periods of maximum occurrence of outage evident on the chart. This observation is reinforced by the behavior of the available ionosphere data which shows 2 periods during which it could not be scaled for F-layer MUF. For the Orange shot, there are several propagational outages of 8 to 20 hours duration. Three of these major outages started before shot time and therefore appear to be associated with more local causes of ionospheric disturbance. These local causes of ionospheric disturbance combined with the Orange shot effects account for the amount of propagation outage shown on the chart. However, it should again be noted that other circuits were operative over the band of 5 to 23 mc.
III. SEQUENCE OF SYNOPTIC MAPS

1. In order to obtain an overall geographic concept of the effects of Teak and Orange on the performance of the communication circuits, a sequence of synoptic maps (Figures 41-122) of the reported circuit experience was generated. Each map is a modified cylindrical projection of the globe. On these maps, each of the terminal locations of the reporting circuit paths is identified by a number as listed in the "Key to Terminal Locations." Each of the reporting circuits is shown by a line approximating a great circle connecting a pair of terminal locations.

2. Each map summarizes circuit data for a time interval of an hour centered on either the hour or half hour of Z time. A pair of great circle lines mark the division between day and night at the beginning and the end of the hourly interval. The great circle line to the right marks the beginning of the hourly interval and the one to the left marks the end of the hourly interval. Circuit paths that are partially in daylight and partially in darkness pass through this moving boundary line.

3. Each circuit path is shown as either a solid, a long-dashed, or a short-dashed line. The solid line is for a circuit path showing a successful communication performance of 80% or greater of the total frequency-quarter-hours of circuit experience reported by all services using the path. A long-dashed line is for a communication experience between 30% to 80% successful. Finally, a short-dashed line is for communication experience of 30% or less that is successful. The fraction associated with each circuit path is the communications capability. The numerator of the fraction represents the number of frequency-quarter-hours of successful communications, and the denominator is the number of frequency-quarter-hours for which circuit experience was reported. Circuit operation for intervals of less than fifteen minutes are included in the totals. Where the denominator is small, a change of one unit in the numerator causes a larger percentage change than where the denominator is large. It is to be noted that where the denominator is large, many more circuits are reported as using this circuit path. Available reports received from the Army, Navy, Air Force, CAA, AT&T, Globe Wireless, Mackay Radio, or any other agency that supplied records of operation during the period of the Teak and Orange tests were used. The type of modulation used, the power of the transmitter, the gain of the transmitting and receiving antennas, and the frequency employed at any hour of the day are disregarded in these summations.

4. Those maps with the time interval centered on the half hour were included to show in greater detail the effects of Teak and Orange for several hours after shot time. Lesser changes are shown only by changes in the fraction associated with the path and greater changes by changes in the line symbol identification.

5. As either the behavior of a circuit path, a group of circuit paths, or the overall array of circuit paths on the sequence of synoptic maps is studied, a pattern unfolds. Circuit paths that differ slightly in azimuth angle and originate from a common terminal differ in length of circuit path to a greater or lesser degree. For example, the circuits common to San Francisco and connecting with Tokyo, Okinawa, Formosa, and Hongkong are respectively about 5150, 6100, 6450, and 6900 miles but differ
by less than 6 degrees in azimuth. Tokyo is about 75% of the distance to Hongkong. The control points at the far end of these circuits from San Francisco are spread over about 1800 miles. If the propagation conditions at the far end control point of these paths of varying length are also varied in support frequency, the capability for successful communication will be affected accordingly.

6. For example, at a time interval centered on 0000Z, 1 August 1958, (Figure 41) in communicating with San Francisco, Hongkong showed a ratio of 0/4, Formosa showed a ratio of 6/6, Okinawa showed a ratio of 8/8, and Tokyo showed a ratio of 24/40. Since Formosa and Hongkong show a path length difference of only 450 miles and are both in daylight, it is probable that factors other than differences in propagation conditions account for the difference in communication performance. The differences in communications performance can more probably be ascribed to variations between these circuits in transmitter power, receiver sensitivity, receiving and transmitting antenna gains, types of modulation in use, number of channels in use, suitability of assigned frequencies, and correctness of log records. Thus under normal conditions of communication, independent of the effects of Teak and Orange, engineering and operational factors affect the records of reported circuit experience. In the same hourly interval, a similar comparison could be made of Honolulu communicating with Okinawa and Formosa. This indication of various degrees of difficulty under normal propagation conditions tends to reduce the significance of propagation outages as indications of the effects of Teak and Orange. Some data records, such as those from Adak which include monitoring of WWVH, contain prolonged normal propagation outages which do not represent communication losses. Furthermore, the communications performance of each circuit path is as dependent on engineering and operational factors as it is dependent on propagation factors. It should be noted that these maps show only data that was made available as log or other station records. Incompleteness in these station records affect these computed results. For example, circuit log records from such places as Canton Island, Nandi on Fiji Islands, and certain CAA records were prone to report periods of outage while not clearly stating when the circuits were operating normally. These deletions affect the accuracy of the data analysis.

7. Both Honolulu and San Francisco are common terminal points for numerous circuit paths in the Pacific and continental United States areas for which log data is available. Honolulu being some 820 miles from Johnston Island is of major interest as representative of circuits that are close to the shot location. Circuit paths from Honolulu lie mainly in the Northeast, Northwest, and Southwest quadrants. No log records are available for circuit paths in the Southeast quadrant from Honolulu. Circuit paths from San Francisco also occupy the Northeast, Northwest, and Southwest quadrants from this communications center. Many circuit paths from San Francisco go across the Pacific on great circle routes that lie to the north of Honolulu by more than 1000 miles. These North Pacific routes out of San Francisco should show the more remote effects of the Teak and Orange shots. The routes from Honolulu and San Francisco will be discussed primarily, but the maps will show other routes in the Pacific as well as Atlantic regions that are of lesser significance.
8. Depending on the length of the circuit path, on the more powerful signal that could be transmitted by better engineered circuits, and on the more reliable type of service rendered by particular forms of modulation, some of the reported circuits were better able than others to maintain communications. An examination of the consolidated data and the subsequent discussion will show that some of the available circuits in most hourly periods succeeded in maintaining communications during the worst effects of Teak and Orange.

9. To simplify the discussion of the sequence of the synoptic maps with respect to circuit paths that terminated in Honolulu and San Francisco for Teak and Orange, four tables (beginning on Page 170) were made of the ratios of satisfactory frequency-quarter-hours to transmitter operation frequency-quarter-hours. The ratios are tabulated for the successive hourly intervals centered on either the hour or half-hour for each circuit path examined. Trends in circuit path activity that correlate with the effects of Teak and Orange are then more easily studied.

10. Honolulu circuit paths for Teak. (Figures 41 to 72)

(Table I) Since the Teak shot occurred in the vicinity of Johnston Island, the major effect was felt there and diminished with increasing distance. The Teak shot took place at 1050Z, which was 50 minutes past midnight, Hawaiian Standard Time.

a. The circuits communicating between Honolulu and Los Alamos are military. Up to 1200Z, no effect on communication reliability occurred with a ratio of 8/8 maintained. For the hour centered at 1230Z, the ratio decreased to 4/8. Over the four hour period from the hour centered at 1300 to 1600Z no communication was possible. From 1630 to 1730Z, the circuit gradually recovered until it was fully restored from 1730Z to the end of the day of 1 August Z-time. Teak did not affect this circuit until 1230Z, about one hour and forty minutes after shot time.

b. The circuits communicating between Honolulu and Washington, D.C. are military. Up to 1130Z, communication reliability was maintained with a ratio of 8/8. In the hourly interval centered at 1130Z, this circuit dropped to a ratio of 6/8. In the hourly interval centered at 1200Z, the ratio dropped to 4/8. The lowest ratio of 3/8 occurred in the hourly interval centered at 1230Z. The ratio went up again in the hourly intervals of 1300 to 1530Z to 4/8. From the hourly interval centered at 1600Z to Greenwich midnight, the ratio rose and stayed at 8/8. Over a period of four hours and thirty minutes, this circuit path was operating at reduced capability, although at no time was it completely inoperative. Some of the circuits survived the worst effects of Teak by operating just above the marginal limit of communication.

c. The circuits communicating between Honolulu and San Francisco are both military and commercial. Up to 1130Z as indicated by the hourly period of 1100Z communication reliability was maintained with a slightly fluctuating but high ratio reflecting little or no outage much of the time. In the hourly interval centered at 1130Z, this circuit showed a small decrease in ratio to 42/46. The maximum effect of Teak began in the hourly interval centered at 1200Z with a ratio of 32/47. This maximum
effect of Teak occurred about an hour after the shot. The maximum effect continued in the hourly interval centered at 1200Z with a ratio of 36/55. The circuits gradually improved until at the hourly interval centered at 1900Z it is fully recovered with a ratio of 69/69. Since the maximum effect of Teak caused a ratio of 32/47 in the hourly interval centered at 1200Z, 68% of the available transmitter operation in frequency-quarter-hours was available for satisfactory communication under the worst condition.

d. The Anchorage to Honolulu circuit path showed an effect from Teak at the hourly interval centered at 1130Z with a ratio of 4/10. The maximum effect of Teak occurred during the hourly intervals centered on 1300 and 1330Z with a ratio of 0/16. From the hourly interval centered at 1430Z to that at 1530Z, the ratio was 12/16. The circuit was fully recovered in the hourly interval centered at 1800Z. Reduced ratios of 11/16, 13/16, 13/16, 14/16, occurred in the hourly intervals centered at 1630, 1700, 2200 and 2400Z respectively. This is primarily a military circuit path. The engineered installations do not appear to have had sufficient margin in communication capability to withstand the effects of Teak during at least the first four hours after the shot.

e. The Adak to Honolulu circuit path data for Teak consists only of continuous monitoring of WWVH broadcasts at 10 and 15 mc. The outages shown during the night preceding and following the shot may be at least partially attributed to normal expected MUF failure. It is difficult to say that the ratio of 6/8 in the hourly interval centered at 1130Z or the reduced ratios appearing during the balance of the day were an indication of the effect of Teak.

f. The first records for the Midway to Honolulu circuit path began at the hourly interval centered at 1030Z, when the ratio is 0/1. Midway to Honolulu path appears to have had propagational difficulties at the start and it appears that the effects of Teak prevented communication from ever getting established that day.

g. The Tokyo to Honolulu circuit path is heavily active with military and commercial communications. Until the hourly interval centered at 1030Z all circuits with very few exceptions operated reliably. In the hourly interval centered at 1100Z the ratio dropped to 55/82. This hourly interval included the first 40 minutes after Teak. The previous hourly interval centered on 1030Z included the first 10 minutes after Teak, but showed no loss of communication capability. This shows that the effects of Teak on this circuit path were delayed by at least ten minutes if not longer. In the hourly interval centered at 1130Z, the first maximum effect of Teak is noted with a ratio of 33/80. For the remainder of the Teak day, the circuit path operated at reduced communication capability. The lowest communication capability occurred at the hourly intervals centered on 1530Z and 1900Z with ratios respectively of 16/57 and 14/68. These dips in communication capability seem to be associated most closely with the predawn dip typical of normal propagational conditions (Dawn occurred at about 1600Z at Honolulu and at about 2000Z at Tokyo). On the other hand, Teak affected the communication capability of the Tokyo - Honolulu circuit path more than it did the San Francisco - Honolulu circuit path. The added mechanism of absorption due to photodissociation of negatively charged ions with the appearance of sunrise on the path may have contributed to the difficulties experienced on the Tokyo -
h. The Okinawa to Honolulu circuit path is primarily for military communication. Although this circuit was active and adequately reported from the start of the radio day, it suffered virtually no outage until shot time. The communication capability then deteriorated for an hour and one half to a minimum value of $4/16$ which persisted for about eight hours, followed by complete recovery. As in the case of the Tokyo circuits, the circuits on this path suffered prolonged and severe disturbances following Test Teak.

i. The Formosa to Honolulu circuit path is primarily for military communication. During the first 4 hours of the radio day, the reported circuit experience built up rapidly while the communication capability progressively improved. The first post-shot outage was observed in the hour centered on 1230Z. A minimum in communication capability was first reached in the hourly interval centered on 1330Z, about 2 hours and 40 minutes after shot time. It lasted about 3 hours, and tended to reappear 5 hours later. Although Okinawa and Formosa are on the same azimuth from Honolulu the circuits from Honolulu to Formosa suffered far less from propagation outages than did those from Honolulu to Okinawa. This difference in performance indicates that the Formosa to Honolulu circuits were probably engineered to provide stronger received signals under comparable propagation conditions.

j. The Manila to Honolulu circuit path is utilized for both military and commercial communication. It is a long circuit path of 5290 miles. At shot time there occurred a considerable increase in circuit experience reported as unsuccessful. The first period of minimum ratios extended from the hourly intervals of 1100 to 1400Z. The second period of minimum ratios extended from the hourly intervals of 1600 to 2100Z. Complete loss of communication occurred in the hourly interval centered at 2000Z which is about an hour before local dawn at Manila. The outage at this time can be associated with the predawn dip of normal MUF behavior and the added effect of absorption due to the photodissociation of negative ions by sunlight at ionospheric heights. Circuits to the west of Honolulu seemed to suffer more than circuits to the east of Honolulu.

k. The circuit paths between Honolulu and the Pacific islands of Wake, Guam, Eniwetok, and Kwajalein are used primarily by the military, although some CAA traffic passes on the Wake path. All of these paths were profoundly disturbed after shot time. However, the Wake Island path provided no data until just before shot time (when it was completely out) and it stayed out for 2 hours after the shot. It then made a partial recovery for the rest of the day. The performance of the others deteriorated during the hour after the blast and they remained completely out for about the next 6 hours. Recovery occurred at roughly the time of local daybreak in the area. The superior performance of the Wake circuits could reflect the greater distance of the control point of this path from the center of disturbance.

l. The Johnston Island - Honolulu circuit is used mainly by the military. This path had heavy and successful traffic prior to the shot; only limited experience was reported for the next two hours but it,
too, was successful. During the remainder of the day attempts were made to resume the heavy flow of traffic, but with limited and irregular success. There were no hours of complete outage, the minimum performance occurring eight hours after the blast. The surprisingly adequate performance of this path may be partly explained by the fact that the major centers of disturbance were directly over the island and at the geomagnetic conjugate, whereas the control point of the path was some four hundred miles away.

m. The Sidney to Honolulu circuit path is mainly commercial communication. The reported log data extends from the hourly intervals centered on 1030 to 2400Z. Commercial standards of quality determined when these circuits were usable.

n. The Canton Island to Honolulu circuit has reported log data that extends from hourly intervals centered on 1030 to 1700Z. No communication occurred during this time in spite of a maximum of eight frequency-quarter-hours of transmitter operation.

c. The Nandi, Fiji Island to Honolulu circuit path has log data for hourly intervals extending from 1000 to 2300Z. During this period, the only successful communications occurred from 1800 to 2100Z and even then represented a small fraction of the total attempted.

II. San Francisco Circuit Paths for Teak (Table II)

San Francisco is about 2400 miles from Honolulu and is about 3100 miles from Johnston Island. Many of the circuits from San Francisco connect with places close to or on the Asiatic continent. These circuit paths are removed by about 1500 or more miles from Johnston Island and should be less affected by the Teak shot than the paths out of Honolulu.

a. Fort Sam Houston, Texas to San Francisco is mainly a military circuit path and shows no unusual communication outage associated with the Teak shot. The same is true for the Washington to San Francisco circuit path, for the Chicago to San Francisco circuit path, for the Seattle to San Francisco circuit path, and the Anchorage to San Francisco circuit path.

b. The Korea to San Francisco circuit path showed definite effects from the Teak shot. In the hourly interval following the shot the ratio began to drop and the outage became complete at 1300Z. Two hours later a rapid recovery occurred, followed over the remainder of the day by variable difficulty including another hour of complete outage at 2000Z.

c. The Hongkong to San Francisco and Formosa to San Francisco circuit paths showed what appeared to be a delayed effect from the Teak shot, however, since comparable outages were indicated prior to the shot, the post-shot outages may be due to propagation difficulties normal to this circuit path.

d. The paths between San Francisco and Tokyo, Okinawa, and Manila operated so well most of that day that reduced communication capability commencing at shot time is most probably connected with Teak.

e. The Bandung to San Francisco circuit path is not
significant in its indications since the data begins after shot time. The apparent effects are delayed by at least an hour after shot time.

f. The Guam to San Francisco circuit path is nearer to the area affected by Teak. The circuit path performed well prior to shot time. The performance was degraded in the hourly intervals immediately following the shot and communications were totally lost by 1230Z.

g. The Sydney to San Francisco circuit path, 7420 miles long, passes very close to the test area which makes it more vulnerable to the effects of the Teak shot. This circuit path performed well prior to shot time at 1050Z. In the succeeding hourly intervals up to that centered on 2000Z, no communication was possible. In the hourly intervals centered on 2000 and 2300Z, the circuit path recovered but failed again in the following hourly intervals.

12. Honolulu circuit paths for Orange (Table III) (Figures 73-122)

The Orange shot also occurred in the vicinity of Johnston Island and, in general, the major effect diminished with increasing distance. The Orange shot took place at 1030Z (30 minutes past midnight Hawaiian Standard Time), 12 August 1958 at a height of about 25 miles above the earth's surface. The severity of the first effect of the Orange test was more confined in area and did not affect as much of the communication activity or for as long a time as the Teak test. The second and major effect of the Orange shot was associated with the signal absorption resulting from excess electrons released from negative ions by photodissociation with the appearance of sunrise on the ionized cloud spreading outward from Johnston Island. With Johnston Island being 820 miles to the west of Honolulu, the spreading ionized cloud had more effect on circuits to the west than on circuits to the east of Honolulu when sunrise appeared in this region.

a. The Los Alamos to Honolulu circuit path is mainly for military communication. Up to the hourly interval centered on 1230Z, two hours after shot time, the communication capability was unimpaired. The circuit capability was reduced and fluctuated from the first effect of Orange between the hourly intervals centering on 1300 to 1500Z. The second effect of Orange caused the circuit to drop out completely between the hourly intervals centered on 1530 to 2030Z. The circuit rapidly recovered in the hourly interval centered on 2100Z and stayed recovered until 24 hours after shot time.

b. The Washington D.C. to Honolulu circuit path is mainly for military communication. After operating at almost maximum capability until about 1300Z, the circuit capability was reduced and fluctuated between the hourly intervals centered at 1330 to 1500Z. The second effect was observed when the circuit dropped out completely in the hourly intervals centered on 1530 and 1600Z. The circuit was recovering, but operating at 50% of capability over most of the period up to the hourly interval centered on 2000Z. From then, until 24 hours after shot time where the record ends, circuit operation appeared normal.

c. The San Francisco to Honolulu circuit path is for both military and commercial communication. Up to the hourly interval centered on shot time, the circuit capability was almost maximum. From then to 1600Z,
the circuit capability was reduced approximately 12% and fluctuating. Between the hourly intervals centered on 1600 to 2300Z, the second effect of Orange caused the circuit capability to fluctuate between 45% to 75% in two distinct intervals. Between the hourly intervals centered on 0300 to 1000Z on 13 August, the decrease to 82% of circuit capability was reached in the hourly intervals centered on 0600 and 0700Z. During the effects of Orange, the communication capability of this circuit path was at no time less than 45%. That the effects of Orange were not more serious is considered to be due to the well engineered circuits in use.

d. The Anchorage to Honolulu circuit path is mainly for military communication. Communication capability was 100% up to about 1100Z. From then to 1600Z, fluctuations in path capability occurred. Minimum performance of the circuit was logged in the hourly intervals centered on 1630 to 1830Z when the second effect of Orange was indicated. Sunlight should appear on this northerly path at about 1600Z. No further impairment of communication was logged until the record ended.

e. The Adak to Honolulu circuit path log records include monitoring of WWVH. The reduced capability recorded for this path may have been as much due to normal propagation outage as to the effects of the Orange shot.

f. The Midway to Honolulu circuit path is 1296 miles long and is mainly for military communication. This circuit worked at maximum capability up to an hour after shot time. The circuit capability decreased to zero over most of the next 12 hours.

g. The Tokyo to Honolulu circuit path is for both military and commercial communication. Prior to shot time propagation outage existed on this path to a greater or lesser degree. No propagation outage could be associated with the first effect of Orange. Between the hourly intervals centered on 1630 to 2400Z, the increase in outage appeared to be due to the second effect of Orange. In the hourly intervals centered on 1930Z and 2000Z, no communication occurred although many transmitters were on the air. For the reported time on the radio day of 13 August, communication was again at a maximum.

h. The Okinawa to Honolulu circuit path is mainly for military communication. The presence of normal propagation outage obscured the effects of Orange. The minimum capability of 8/16 occurred in the hourly interval centered on 1130Z and 1200Z. Other minima occurred at the hourly intervals centered on 2100, 2230, and 2330Z respectively.

i. The Formosa to Honolulu circuit path is mainly for military communication. Because this circuit path was experiencing some propagation outage prior to the Orange shot, propagation outage from shot time to 0700Z of 13 August could be due to both causes as well as to either one alone. Between the hourly periods centered on 1300Z, 12 August to 0300Z, 13 August, no communication was possible.

j. The Manila to Honolulu circuit path is mainly for military communication. The first effects of Orange appeared to affect communication during the hourly intervals centered on 1030 to 1130Z. The second effect occurred between the hourly intervals centered on 1830 to 2400Z. The second
The Wake to Honolulu circuit path is mainly for military communication. The first effect was not observed on this path. The propagation outages that occurred in the hourly intervals centered on 1830 to 2400Z of 12 August are caused by the second effect of Orange.

The Guam to Honolulu circuit path is mainly for military communication. The first effect of the Orange shot are noted during the hourly intervals centered on 1100 to 1300Z. The second effect of the Orange shot was not observed during the hourly intervals centered on 1630 to 2400Z, with no communication in the hourly intervals centered on 2000 and 2100Z.

The Eniwetok to Honolulu circuit path is mainly for military communication. The first effect of Orange was noted during the hourly intervals centered on 1030 to 1130Z. The second effect of Orange was observed between the hourly intervals centered on 1630Z, 12 August to 0100Z, 13 August. No communication occurred in the hourly intervals centered on 1800 to 2100Z and that at 2300Z.

The Kwajalein to Honolulu circuit path is mainly for military communication. The first effect of the Orange shot was noted during the hourly intervals centered on 1200 and 1130Z. The second effect of Orange occurred between the hourly intervals centered on 1830Z, 12 August to 0200Z, 13 August. Minimum communication capability occurred during the hourly intervals centered on 2000 to 0100Z.

The Johnston Island to Honolulu circuit path is mainly for military communication. Propagation outages prior to shot time mask the first effect of Orange. These same normal propagation outage causes also mask to some extent the second effect of the Orange shot. No communication was possible between the hourly intervals centered on 1830 to 2400Z. At the hourly interval centered on 0700Z of 13 August, all circuits were fully restored.

The Sidney to Honolulu circuit path is mainly for commercial communication. From the hourly intervals centered on 1730Z on 12 August to 0300Z on 13 August, no communication was possible although transmitter operation was reported. This outage is charged to the second effect of Orange.

The Canton Island to Honolulu circuit path is mainly for commercial communication. Reported transmitter operation occurred for the hourly intervals centered on 1730 to 2400Z. In the hourly intervals centered on 2030 to 2400Z, no communication was possible. This is the period of the second effect of the Orange shot.

The Nandi, Fiji Islands to Honolulu circuit path is mainly for commercial communication, and reported transmitter operation from the hourly intervals centered on 1600 to 2400Z. Due to the second effect of Orange, no communication occurred.

13. San Francisco Circuit paths for Orange (Table IV)

On the circuit paths having San Francisco as one terminal, the
The effects of Orange are not as readily recognizable. In the circuit paths that are affected, there is a reasonable time correlation of the first and second effects of the Orange shot.

a. The Fort Sam Houston, Texas to San Francisco circuit path is mainly for military communication. The propagation difficulties between the hourly intervals centered on 1030 to 1330Z may be just as likely due to lack of nighttime support for the frequencies used as to the effects of the Orange shot since this circuit path is so far removed from the shot location. The propagation difficulties that occur from the hourly interval centered on 1720Z onward occur well after sunrise appeared on this path. No definite association with the more dominant second effect of Orange can be found in the presence of the propagational difficulties on this path. The same analysis can be applied to the data for the Washington to San Francisco circuit path, to the Chicago to San Francisco circuit path, to the Seattle to San Francisco circuit path, and to the Anchorage to San Francisco circuit path.

b. The Korea to San Francisco circuit path is mainly for military communication. Reduced communication capability when it does occur on this path does not coincide with either the first or second effect of the Orange shot.

c. Such data as is available for the Hong Kong to San Francisco circuit path and for the Formosa to San Francisco circuit path does not coincide with either the first or second effect of the Orange shot.

d. The Tokyo to San Francisco circuit path is for both military and commercial communication. During the hourly intervals centered on 1100 to 1330Z, the reduced communication capability on this circuit path coincides with the first effect of the Orange shot. During the hourly intervals centered on 1230 and 1300Z, a 10% reduction in capability occurred. The reduced communication capability during the hourly intervals centered on 1800 to 1930Z coincide the second effects of the Orange shot. In the hourly interval centered on 1830Z, a reduction of 33% in circuit capability occurred.

e. From the available data for the Okinawa to San Francisco circuit path, Bandung to San Francisco circuit path, Sidney to San Francisco circuit path, Singapore to San Francisco circuit path, Wellington to San Francisco circuit path, and the complete data for the Manila to San Francisco circuit path does not coincide with the first or second effect of the Orange shot.

f. The Guam to San Francisco circuit path is mainly for military communication. The propagation difficulties on this path do not coincide directly with either the first or second effect of the Orange shot. The reported reduced effects of communication capability occurred between the hourly intervals centered on 1330 to 1700Z, and centered on 1800 to 2400Z of 12 August, and centered on 0600 to 1100Z of 13 August. The reduced communication capability occurred some two to two and one half hours after the corresponding times for the first and second effects of the Orange shot as felt at Honolulu.

14. The first and second effects of the Orange shot affected communication capability of circuits that have one terminal in Honolulu much more
recognizably than that of circuits that have one terminal in San Francisco. The Orange shot was more local in its effects than the Teak shot.
IV. EFFECT OF ENGINEERING FACTORS ON PROPAGATION OUTAGE

1. As stated previously, propagation outage due to Teak and Orange more often occurred on communication circuits located closer to the shot area. This is particularly observed on circuits having one terminal that is close to the shot area such as Honolulu. Honolulu is a major radio communication center in the Pacific Area and is used by many military and commercial radio links. These radio circuits represent a wide range of engineering factors in their design and construction. Not all circuits operating during the period immediately following Teak and Orange suffered to the same extent from propagation outage. The differences in engineering factors among the circuits must have contributed the deviations in the effects on signal reception.

2. To analyze the relationship of the engineering factors to the reliability of communication under the more difficult propagation conditions caused by the effects of Teak and Orange, the performance of point-to-point circuits having one terminal in Honolulu is discussed in the following paragraphs. This discussion will be based on Figures 123-140 which present the operating experience of the individual circuits on a frequency versus time of day basis. The plots are made for the radio day of Teak and Orange respectively on modified MUF-LUF charts. Each path for each radio day is presented on a sequence of three charts.

3. The first chart of the sequence contains the hours of operation for the radio day of each circuit transmitting in both directions over the specified circuit path. The transmitting circuits include all military, other governmental and commercial services communicating by radio between these terminals for which data was available. Each circuit is identified with the receiving agency, type of service, and the user's designation when more than one circuit was in operation. That period of operation which is satisfactory is identified by a dotted portion of the line, and that period of operation which is associated with propagation outage is identified by a solid line. The arrowhead at one end of the line or the other designates the direction toward which the signal is being transmitted as identified in the title. When no transmission occurs, no portion of the line is drawn for this period of time. Superimposed on the chart are curved lines associated with the MUF and LUF. Across the upper part of the chart is a continuous solid curve connecting plotted points which are the predicted monthly average MUF for the circuit path. Also across the upper part of the chart is a solid curve with a break in it at or within about four hours after shot time. This solid curve is the equivalent 4000-km F-layer MUF determined from vertical incidence data for the radio day of the shot taken at the Maui Ionosphere Station. The dashed curve with discontinuities in it across the upper part of the chart is the 2000-km sporadic E-layer MUF determined from the vertical incidence data for the radio day of the shot taken at Maui. The longer dashed curve across the lower half of the chart is the f-min transcribed from the same vertical incidence data. The curves plotted from the vertical incidence data are not characteristic of the path control points of any circuit. However, this is the only ionospheric data that is available that can be compared with the effects on communication that occurred on circuits terminating at Honolulu on the radio day of each nuclear shot. This
propagation data is close enough to the control points of the Honolulu terminated circuits to be useful for comparisons.

4. The second chart of the sequence contains the available data on ACAN and AACS circuits transmitting to Honolulu. For this purpose, the engineering factors of transmitter power, type of service on the circuit, and the transmitting and receiving antennas used on the circuit are specified. The MUF and f-min curves are copied from the first chart of the sequence. The additional curves plotted on this chart are the one or more LUF's that are identified with an ACAN and/or AACS circuit operating over that circuit path. The LUF is identified with the engineering factors of the circuit using that path specified in the key.

5. The third chart of the sequence contains the available data on ACAN and AACS circuits transmitting from Honolulu. The information given in the previous paragraph for the description of the data on that chart applies to this chart also. Only ACAN and AACS circuit information is used on the second and third charts of each sequence for reasons including the following:

a. Inquiries for engineering information on the circuits of non-military and commercial agencies could arouse curiosity by persons not under control of military security.

b. Engineering factors supplied by non-military and commercial circuits were not directly applicable to the techniques utilized by the Radio Propagation Agency for calculation of LUF's.

c. ACAN and AACS engineering factors were available to the U.S. Army Signal Radio Propagation Agency through existing channels. The correctness of the data for the day of the nuclear shot could be verified.

d. This analysis of the effects of nuclear detonations on the reliability of communication, is of primary interest to the military.

6. The LUF's are based on monthly predicted propagation conditions for normal communication on their path. LUF conditions after the nuclear shot are not likely to be the same as those of the predicted LUF.

7. Honolulu to San Francisco Circuit Path (Figures 123-128)

a. Teak (Figures 123-125 and Table V)

(1) This circuit path is 2400 miles in length and is the most active from Honolulu. It is used by ACAN, AT&T, CAA, AACS, RCA, Mackay Radio, and Globe Wireless. This circuit path is subject to multipathing because of the possibility of permitting more than one mode to be received at low angles of arrival. On the charts the predicted monthly average MUF and the MUF computed from Maui vertical incidence ionospheric data, hereafter known as the Maui radio day MUF, do not differ very much up to shot time. When shot time occurred, the lack of usable vertical incidence data caused the Maui radio day MUF to be suddenly discontinued at 28 mc. The Maui radio day MUF reappeared about three hours later at about 6.5 mc. The monthly average MUF predicted for this time of day is about 19 mc. The disturbed condition of the ionograms after the Teak shot
SECRET

made it impossible to plot the Maui radio day MUF for the three hours after shot time. For about an hour and twenty minutes, the Maui radio day MUF hovers around 6 mc. During the next three hours, the Maui radio day MUF climbs from 6 to 22 mc and circuits affected by Teak recover communication.

(2) Honolulu receiving (Figure 124)

(a) Reference to Table V shows that prior to shot time there was no unusual difference in the number of accumulated hours of outage and in the number of frequency changes for the total hours of transmission time by ACAN-SSB, ACAN-CSRTT and AACS-SSB. After shot time, Table V shows that for the remainder of the radio day, AACS-SSB had accumulated four hours and fifteen minutes of outage ascribed to propagation difficulties and eight hours and fifty-five minutes of successful communications and time for frequency changes after trying five frequency changes. Neither ACAN-CSRTT or ACAN-SSB report any propagation outage after the Teak shot. Nominally, time taken for frequency changes is about fifteen minutes and this time is not shown in every instance as part of the outage time.

(b) With the same type of sixteen channel SSB modulation and with about the same kind of antennas, ACAN-SSB used four kw of power whereas the AACS-SSB used two kw of power. Both circuits operated for a time after the Teak shot at about 7 mc. The major difference is the advantage of increased power on the ACAN-SSB circuit. The ACAN-CSRTT circuit had the advantages of operating at a still lower frequency of 5.1 mc and using a type of service that proved more reliable than SSB operation.

(3) San Francisco receiving (Figure 125)

(a) Reference to Table V shows that in this transmission direction the ACAN circuits were again less affected by the Teak test.

(b) The same comments that apply to operation with Honolulu receiving apply to San Francisco receiving when considering the reasons that AACS-SSB had more communication difficulties than either ACAN-SSB or ACAN-CSRTT. It is to be noted that the outage as a result of Teak with San Francisco receiving was observed about an hour after shot time.

b. Orange (Figures 126-128 and Table V)

(1) For most of the time prior to shot time, the monthly average MUF and the Maui radio day MUF do not differ greatly. Just prior to shot time, the Maui radio day MUF peaked at 37 mc while the monthly average MUF reached a maximum of about 24 mc. When shot time occurred, the disruptions to communications were not as extensive on this path as with the Teak shot. After shot time, the Maui radio day MUF decreases more rapidly with the passage of time than the predicted monthly average MUF and also drops to a much lower frequency. The major disruptions occur with the coming of dawn near the Honolulu area. The f-min rises after daybreak to an unusually high frequency level. The result is increased propagation outage over the next several hours. This absorption outage affects the various circuits at different times and for varying
durations. Between 1500 and 2000Z, the Maui radio day F-layer MUF is disrupted by the absorption effect. The Maui radio day sporadic E-layer MUF is disrupted apparently by absorption until 1800Z.

(2) There are two effects of Orange. The first effect was the disturbance of the ionospheric layers in the vicinity of the shot area. One of the results of this effect is the inability of the ionosphere to refract a wave front in the normal manner after the turbulent disturbance by the high altitude nuclear blast. When the nuclear-blast-induced turbulence subsided, reliable communication was restored when undisturbed propagation support of the ray path was reestablished. The nuclear blast took place at about midnight Hawaiian Standard Time. Over the next six hours, the rising fireball and the radiation from it produced a large region with an excess of negative ions. The second effect was the signal absorption resulting from the release of an excessive quantity of electrons by photodissociation of these negative ions with the appearance of sunlight. The second effect took place about six or more hours after the first effect. Both of these effects are evident on Figures 126-128.

(3) Honolulu receiving (Figure 127). Reference to Table V shows that in this transmission direction the ACAN circuits were less affected by Test Orange than the AACS circuit.

(4) San Francisco receiving (Figure 128). Reference to Table V shows that in this transmission direction the ACAN circuits were again less affected by Test Orange.

(5) Since the engineering factors for these circuits during Orange were the same as they were during Teak, AACS-SSB continued to show performance inferior to ACAN-SSB and ACAN-CSRTT. ACAN-CSRTT had no propagation outage with Honolulu receiving and thirty minutes of propagation outage with San Francisco receiving after the Orange shot. The durations of the first and second effects of Orange were greater on AACS-SSB than on ACAN-SSB. The absorption effects are more likely related to the ionosphere near Honolulu than to the ionosphere near San Francisco.

8. Honolulu to Tokyo Path (Figures 129-134)

a. Teak (Figures 129-131 and Table VI)

(1) This path is about 3850 miles long and is subject to multipathing because of the possibility that more than one mode can be received at low angles of arrival. The effects of Teak are immediate and are felt on many circuits for as much as nine hours after shot time. This path has circuits used by ACAN, US Navy, AACS, and CAA. CIA and AVCO made signal strength recordings of transmissions on this path.

(2) Effects (Figures 130 and 131). Reference to Table VI shows that in this case also, for both directions of transmission, the ACAN circuits suffered less outage as a result of Teak than the AACS circuit.
SECRET

(3) Signal reception at Honolulu suffered less from propagation outage due to Teak than did signal reception at Tokyo. In general AACS-SSB was more vulnerable to propagation outages due to both natural causes and the effects of Teak than either ACAN-SSB or ACAN-CSRTT. ACAN-SSB used more transmitter power for the same type of modulation than AACS-SSB. CSRTT proved to be a more reliable type of modulation than SSB for overcoming propagation difficulties. Also it may be said that ACAN-SSB possibly made a more nearly optimum use of its frequencies, and Air Force teletype terminal equipment is possibly more vulnerable to bias and distortion errors.

b. Orange (Figures 132-134 and Table VI)

(1) The disruptions to communications by the effects of Orange are roughly equivalent on both directions of transmission between Honolulu and Tokyo. The discussion that appears in paragraph 7 b (2) above concerning the effect of Orange on the Honolulu to San Francisco path applies to this path as well. The easterly control point of the Honolulu-Tokyo path lies closer to and more in line with the disturbances emanating from Johnston Island than does the control point of the San Francisco path. This circumstance may partially account for the inferior performance of the Tokyo path.

(2) Effects (Figures 133 and 134). Reference to Table VI shows that the ACAN circuits in both directions again were less affected by the results of the blast than were the AACS circuits.

(3) In particular, the major difference was the greater power used by ACAN-SSB for the same type of modulation and very nearly the same antenna characteristics. Again it may be that ACAN-SSB made a more nearly optimum use of its frequencies with hours of operation, and Air Force teletype equipment is possibly more vulnerable to bias and distortion errors.

9. Honolulu to Okinawa Path (Figures 135-140)
a. Teak (Figures 135-137 and Table VII)

(1) This path is about 4650 miles long. The effects of Teak are almost immediate and are felt on the ACAN and AACS circuits for as much as ten hours after shot time. Refer to earlier comments on Teak for the Honolulu to San Francisco and Honolulu to Tokyo Paths for the discussion of the Maui radio day MUF and the significance of the comparison of the f-min with the LUF. Again the ACAN circuit in each case suffered less outage as a result of the Teak blast than did the AACS circuit. See Table VII for a summary of these results.

(2) Again it can be said that with the same type of modulation and nearly the same antenna characteristics, ACAN-SSB was less subject to propagation outage than AACS-SSB because its transmitter power was greater; it possibly made a more nearly optimum use of transmitter frequencies with hours of operation; and its teletype equipment is possibly less vulnerable to bias and distortion errors on SSB circuits.
b. Orange (Figures 138-140 and Table VII)

(1) The disruptions to communications by the effects of Orange are greater than by Teak for ACAN-SSB and less for AACS-SSB with Okinawa receiving. However, ACAN-SSB did not suffer from propagation outage as much as AACS-SSB in either direction. Refer to previous discussions of the effects of Orange on the Honolulu to San Francisco and Honolulu to Tokyo Paths.

(2) While the improvement in maintaining communications by ACAN-SSB compared with AACS-SSB is not as great as in previous instances, a margin of difference still exists. It should be understood that the added degradation of propagation as a result of Teak and Orange rendered marginal even those point-to-point circuits which were adequate for undisturbed propagation conditions. The degree to which this marginal performance results in outage appears to depend on the safety factors used in the design of the circuits.

10. As much difficulty in multi-channel radioteletype communication has been described by various observers as being propagation outage caused by multipathing as outage caused by signal absorption under the circumstances of tests Teak and Orange. More reliable forms of modulation such as SSB voice, CSRTT and hand-keyed CW are less likely to be affected in readability by multipathing interference and by weak signals. The human operator of a CW receiving circuit can read and correctly receive messages thru interference and below threshold response levels of teletype machine equipment. Priority messages that require reliable reception under conditions similar to Teak and Orange should utilize these more dependable forms of modulation.
V. EVASION OF OUTAGES BY RELAYING

1. Need for Relaying:

The onset of any large scale international emergency would result in the immediate generation of limited amounts of extremely high priority radio traffic. Established communication networks are designed to pass large quantities of traffic with tolerable delays, and with full regard for the individual interests of the various services and enterprises involved, both military and commercial. For emergencies, however, the need is for prearranged control of all existing facilities to yield immediate delivery of a few messages of extreme urgency. Just such a system of overall control is postulated in the following analysis of potential benefits to be expected from the assignment of all available circuitry to high priority traffic.

2. Mode of Operation Assumed for Emergencies:

a. Specifically, let it be assumed that:

(1) Certain messages will have unquestioned priority status by their very nature.

(2) Any such messages will be clearly recognized as being of this nature, and yet will be so obviously linked to the special emergency situation that their possibility will in no way impede normal operations in the absence of emergency.

(3) These messages will not require authorization, or any prior processing or liaison activity. They can be directly sent, relayed, received, or delivered, subject only to limitations of propagation and equipment.

(4) All facilities, whether commercial or military, regardless of type of service employed, going anywhere or everywhere, will (if of adequate range and if currently functioning successfully) be at the complete and instant disposal of any such messages.

(5) All such facilities will be used to transmit the messages regardless of the performance or use of any or all of the others. All receivers which will receive these messages will directly dispatch them to all transmitters, which will retransmit them.

b. The general situation is one of a single message percolating through any and all links of a partially obstructed long range communications network which, in this case, is presumed to include every appropriate and functioning radio facility.

3. Estimation of Relay Benefits:

a. For computational purposes, the links are considered to be available for all times in which their circuit logs noted successful reception, their capabilities being accumulated in units of frequency-hours, not of channel-hours or of circuit-path-hours. For example, on a circuit path from point A to point B carrying two-way traffic on 16 channel SSB,
SECRET

4 channel MUX, and 1 channel CS RTT, only six frequencies are nominally employed and continuous successful reception in both directions for one hour credits the path with six frequency-hours of capability. These frequency-hours are then treated as unit messages or units of information, with no provision at intermediate terminals for storage. The messages proceed by various possible alternate paths using no more than two relay points per path, the capacity of each path being limited by the capacity of its least capable link as expressed in frequency-hours. No more units are assumed to be sent to a relay point than can leave it, or vice-versa, but each point may serve more than one route. The total benefits from multiple relaying are then taken to be the summed capabilities of the various possible alternate paths.

b. No corresponding figure is presented for the total number of frequency-hours attempted during parallel relaying; during the initial stages of such operation it may be presumed that virtually all facilities in the network will be devoted to the effort regardless of whether their contributions prove ultimately to have been required. Rapid identification and release of redundant circuitry would drastically reduce the total number of frequency-hours involved in the transmission of the priority message. This process is highly dependent on specific conditions however, and is not predicted here.

c. It will be noted that two concepts in the evaluation of relay benefits are not mere simplifications, but are in contradiction to the conditions existing within the communications network. The frequency-quarter-hours of capability of the various circuit paths have been accumulated onto the synoptic maps on the basis of reciprocity, with no regard for actual directions of traffic flow. This ambivalence is carried into the application of the circuits as links in relay networks, for which purpose a strict adherence to directional capabilities would be more realistic. In addition, the totalled relay capabilities should reflect the joint contributions of the alternate paths. The process of combination should preserve the constricting effect of the less capable of the various intermediate links, but the data was not sufficiently accurate, complete, or controlled to permit a vigorous combination of probabilities. The restriction that no more message units may leave a relay point than can be sent to it has the desired effect of penalizing the totalled capabilities for the performances of their weaker links, although actual relay stations would not be restricted in their ability to duplicate incoming messages.

4. Application to Three Typical Circuit Paths. Since actual emergencies may not resemble the tests either in the number of blasts or in their placement, no detailed analysis of multiple parallel relaying has been prepared for every communication path concerned. Instead, three typical circuits paths have been selected to illustrate the orders of magnitude of the benefits to be expected from such stringent control of radio traffic during abnormal periods. These paths are San Francisco - Honolulu, San Francisco - Manila, and Guam - Honolulu.

a. San Francisco - Honolulu, Test Teak

(1) This path has many well-engineered circuits and seldom dropped below 70 per cent effectiveness during hourly intervals soon after
the first shot, with much higher percentages prevailing at earlier and later times. Inspection of the graph beneath Figure 142 shows this high ratio of successful frequency hours to the total number attempted, and also shows that the number of successful frequency hours could have been roughly doubled within any hour of the day by appropriate use of all available parallel circuitry using no more than two relay points on each of the additional paths. During the disturbed hours immediately following the shot an even greater relative increase in capability could have been obtained from such relaying. In the hour centered on Greenwich Noon only 68% of the frequency hours attempted were successful, but multiple relaying could have more than tripled the useful total.

(2) The parallel linkages contributing to the predicted total capability of the priority circuit generally consisted of all of the paths in and out of the priority terminals plus a considerably attenuated use of the rest of the network. Figure 141 contains a map and a diagram of the network of all the parallel routes which were considered in the computation of the total increases plotted in Figure 142. The individual links are numbered in accordance with the frequency-hours of successful operation experienced by each during the one-hour period centered on Greenwich Noon, 1 August 1958, a period selected as typical of early post-shot conditions. These frequency-hours are indicated regardless of whether they can contribute to the ultimate delivery of the priority traffic.

(3) In the diagram the network has been spatially rearranged to clarify the various possible interconnections which could aid transmissions between Honolulu and San Francisco. All links are again numbered in accordance with their successful frequency-hours within the interval. In addition, they bear in parentheses the number of frequency-hours contributing directly to the delivery of parallel-relayed priority traffic. The arrows indicate the direction of transmission along these contributing links of messages originating in Honolulu. When all traffic was arbitrarily assumed to have originated there, it is seen that a total of 26 3/4 units left this terminal. Eight of these units proceeded directly to San Francisco; the remainder scattered into the net via Anchorage, Manila, Okinawa, Taipei, and Tokyo. Although all the links converging on San Francisco could have provided a total of 28 1/4 frequency-hours, the capacity of the circuit was limited to the 26 3/4 which could have left Honolulu. Of these, six left Honolulu for Taipei. There was a direct route from Taipei to San Francisco capable in this hour of carrying one half of one unit, and there were similar routes to San Francisco from Guam, Manila, Okinawa, and Tokyo, each of which were directly accessible from Taipei. The link from Guam to San Francisco was completely out during this particular hour so none of the three frequency-hours which the junction at Taipei could send to Guam were able to continue on along to San Francisco without exceeding the permitted number of relay points. Of the two units which could be sent from Taipei to Okinawa, only one could continue to San Francisco. The two units each which could be sent to Manila and to Tokyo had direct routes of ample capacity on to their destination. In all, Taipei could have disposed of 5 1/2 units out of the 6 received from Honolulu.

(4) Similar examination of the other routes out of Honolulu proves them all to have been just capable of delivering their initial units without overtaxing the links into San Francisco. Other possible routing
SECRET

arrangements might have slightly reduced the number of units which required two intermediate relay points, but would not have recovered the lost one half of one frequency-hour. The total number of units leaving Honolulu was thus reduced from 26 3/4 to 26 1/2 frequency-hours. This total represents the relay assisted capabilities of the circuit, as opposed to the unassisted total of 8 frequency-hours out of 11 3/4 attempted.

b. San Francisco - Honolulu, Test Orange

After the second shot, the performance of the circuit path gradually deteriorated until sunrise; daylight disrupted many of the services on this path and by 1900Z only 8 3/4 of the 19 3/4 frequency-hours attempted were successful. The use of multiple parallel relaying could have nearly doubled the capability of the circuit at this hour, providing a total of 17 frequency-hours. Refer to Figures 144 and 143, which plot these capabilities against time, both with and without relaying; and which also trace out the contributing network links for the hour interval centered on 1900Z. This route is considered typical of long Pacific paths of high traffic density which approach or traverse the region affected by the shot.

c. San Francisco - Manila, Test Teak

(1) Prior to the first explosion, from three to five frequencies were successfully received in as many tries on this path. Relaying would have tripled the capability but was unnecessary. After the shot the proportional benefits from relaying were maintained and the need for them increased sharply during the next three hours. By 1300Z only three frequency-hours out of the eight attempted were successfully received in the hour interval. Relaying could have raised the total capability to ten and one fourth frequency hours. After 1300Z conditions improved. Refer to Figure 146.

(2) At 1200Z five units out of eight and one half were successfully received; relaying could have provided nine more for a total capability of fourteen frequency-hours. The contributions from the various links involved are charted in Figure 145, on the page facing the plot capabilities.

d. San Francisco - Manila, Test Orange

The second explosion had virtually no effect on this circuit's capabilities; five frequency hours per hour were successfully received out of five attempted for seven hours following the test, and no outages occurred during the rest of the day. Relaying would have more than tripled this capacity. See Figures 148 and 147. This route is considered typical of long Pacific paths not directly traversing the shot area.

e. Guam - Honolulu, Test Teak

Refer to Figures 150 and 149. This route is much shorter than the other two but crosses the shot area; for half a day preceding the first blast only two frequency-hours per hour were attempted at most, and not always with success. Relaying would have greatly increased the capabilities of the circuit. Three hours before the shot the performance
of the path declined; after the shot all the circuits along this path failed even though the reported total number of frequency-hours attempted rose sharply. The benefits which could have been realized from relaying were considerably reduced during this period as the parallel circuits encountered their own outages; however, relaying was always possible within the hour intervals to the extent of at least five frequency-hours per hour. Between 1600 and 2000Z original conditions were gradually restored. Figure 150 illustrates the capabilities and contributions of the relaying network during the hour centered on Greenwich Noon. Relaying could have added seven frequency hours to the capabilities of the circuit, thus providing in this particular case, the only successful communication.

f. Guam - Honolulu, Test Orange

The second explosion found this circuit already experiencing moderate outages. Following the shot these outages did not appreciably increase but the improvements to be realized from relaying sharply decreased. Daytime conditions degraded the performance of the path until there occurred a complete failure of all of the three and one half frequency-hours attempted during the hour centered on 2000Z. Relaying benefits were also at a minimum at that time but still could provide eight frequency-hours. Refer to Figures 152 and 151. This circuit is considered to be typical of paths of moderate length traversing the shot area and requiring relaying in order to maintain communication.
VI DISCUSSION

1. In performing the analysis of the effects of the high altitude nuclear blasts of Teak and Orange on communication in the HF band, the sources of data employed were primarily the log records. Additional sources that proved less useful were magnetic tape recordings and Esterline Angus type paper strip charts. Two types of difficulties arose in organizing the data for analysis. One arose from the communication practices and jargon used by the operations staff monitoring a particular communication system and the other from the lack of supplementing the written and mechanically recorded log data with adequate reference information and scaling of measurements.

2. The difficulties arising from the variations of communication practices and jargon used by a particular communication system in monitoring its own operations required access to ACP and JANAP manuals and help by experienced communicators associated with the monitoring system. The initial step was the identification of these ACP and JANAP manuals and requesting these from their sources. This step was time consuming. The interpretation of specific practices required obtaining the help of an experienced communicator associated with the monitoring of each communication system. His interpretations helped to recognize that not all operators on duty were maintaining their logs in a uniform manner. Some of the operators on duty kept their log records in an individual manner that added difficulties to the analysis by use of modifications and self-generated abbreviations. Tracking down these interpretations and deviations were also time consuming. Liaison with representatives of the Army, Air Force, and Navy-communication systems led to the discovery of the variability in human judgement exercised in the preparation of these logs. It is known that more than one technician had a hand in the preparation of the logs at any one fixed point station. Each military service supplied logs for a number of their fixed point stations. The technician preparing any of these log records could range from one with many years of experience in performing this duty and with a perceptiveness in recognizing and assessing improper behavior in equipment or difficulties in propagation conditions to one who is in an "on the job training" status. Yet in the log record, each man's entries carry the same weight. The manual of each military communication service shows that an experienced technician must have an extensive knowledge of the operating transmitters, receivers, teletypewriters, land-line equipment, etc. and operating procedures to properly assess the determination of operating conditions of a communication circuit. The reliability of using the logs as a basis of data analysis is reduced by the spread in human judgment exercised by the group of technicians that prepared these.

3. Another difficulty that arose with the log records was the appearance of entries in the log of a station at one end of a circuit that were not corroborated by entries in the log of the station at the other end of the circuit. For example the receiving log of one station often contained reference to a transmission incompletely or even differently recorded in the transmitter log of the other station, and vice versa. Since these logs originated in August of 1958, and the memories of operating personnel at this late date are unreliable, the decisions by the log analysts on this project had to be made arbitrarily in many instances.
4. Supplementing the written and mechanically recorded log data with adequate reference information and scaling of measurements is both an administrative and technical responsibility that must not be overlooked. Without such complete reference information, the capability for analyzing the data is seriously degraded. It can be shown that such oversights were common in the written log records and mechanically recorded data. As far as possible and long after the fact so that memories were dimmed and some records were no longer available, serious efforts were made to obtain this missing reference information. Only partial success can be claimed for this effort.

5. Much of the mechanically recorded data by magnetic tape or paper strip chart had no significance because it lacked an identifiable reference level and a calibration scale. Furthermore, some mechanically recorded data which was identifiable proved to have been taken in a technically inappropriate manner. For example such data should be based on the received input signal and not on an output signal and accurate time references should be provided.

6. Not only should the reference data be for the calibration but it should also identify the equipment and circuit information. Each log sheet should be identified by circuit or route number, type of communication modulation technique, number of active channels, call letters, power of transmitter, transmitting and receiving antenna type and their dimensions, and any other special information of value to the test. In a great many cases identification information was lacking. Engineering changes were made at these communication installations from time to time both prior to and after the tests. If this reference identification information is taken later, it can and has been confused by engineering changes. This identification information is needed for analysis of equipment capabilities for the propagation conditions on the day of the test.

7. Finally it may be pointed out that to give added significance to synoptic data from a number of receiving and transmitting locations, uniformity of instrumentation and calibration techniques should be provided. This standardization requires planning but the rewards would justify it in significance of the comparisons.
VII. CONCLUSIONS

1. The effects of Teak on HF communication were intense, almost immediate, and widespread, impairing reliability of communication. Reliability of communication was impaired from Honolulu to San Francisco for as much as four hours after Teak and to Tokyo and Okinawa for as much as nine and ten hours after Teak, respectively.

2. Prior to the time of Orange, many of the circuits were troubled with propagation outages. On those circuits, the effects of Orange were not readily separated from those causes of propagation outage already there. It appeared that the severity of the propagation outages increased as a result of the shot within the general geographical area of Test Orange.

3. The first effects on HF communication of Orange were almost immediate and impaired reliability of communication on certain paths, but were not as intense or as widespread as the effects of Teak.

4. The "morning after" or second effects on HF communication of Orange impaired reliability of communication on various circuits for as much as twenty-four hours after the beginning of the second effect. The second effect began about six or more hours after the first effect with the particular times being strongly influenced by the time of sunrise within the affected region. The second effect was therefore considered to be caused by the absorption of signals as a result of the release of an excessive quantity of electrons by photodissociation with the appearance of sunlight on the diffused ions produced by the explosion.

5. During the time period of the effects of Teak and Orange, some successful communication activity on circuits within the affected area was distributed with considerable uniformity over the spread between the upper and lower limits of the HF band. In an overall sense, there is no general indication of an advantage in going to a higher or lower frequency within the HF band.

6. In no instance were all HF circuits into or out of any one communication center such as Honolulu, inoperative at the same time for any appreciable period.

7. When all communication was out on three typical paths in the vicinity of the shot, analysis showed that communication could have been provided by multiple parallel relaying.

8. On military HF communication circuits, CSRTT modulation appeared to be affected least, and SSB modulation appeared to be affected less than other forms of modulation.

9. Improved engineering factors, such as more powerful transmitters, more effective types of modulation and higher gain antennas for receiving and transmitting reduced the deleterious effects of high altitude nuclear blasts on HF communications. Back-up circuits, using manual keying of powerful transmitters can maintain reliable communication during highly disturbed conditions characterized by multipathing even when only a barely detectable carrier exists.
VIII SOURCES OF DATA

The data sources for this study are:

a. Log records, strip charts and magnetic tape recordings supplied to AFSWP by the point-to-point circuits of the Army and the Air Force, and the shore stations of the Navy;

b. Supplementary log records furnished by the point-to-point circuits of the Army and the Air Force;

c. Log records of monitorings by the CIA of the Navy transmissions and by the Army of WWVH transmissions supplied to AFSWP;

d. Letter reports of circuit outages by CAA; and

e. Rand gathered data of commercial communication company experiences as reported by RCA, AT&T, Mackay Radio, and Globe Wireless.

This information was supplemented by access to ACP, JANAP, and other military documentation to identify circuits and interpret military communication practices of the Army, Navy, and Air Force point-to-point HF circuits.
IX ACKNOWLEDGEMENTS

This is to acknowledge the help provided and the patience exhibited in sifting through the data, helping to organize and analyze it, and reducing the sorted information into charts and tables by Mr. Henry H. Fleming, Jr., Mr. Richard F. McConnell, Mr. Albert G. Ehler, Mr. James A. Stevens, Mr. Peter P. Martin, and Mrs. Florence Briller.
DISRUPTION OF AIR TRAFFIC CONTROL OVER THE PACIFIC

1. The Artificially Induced Ionospheric Disturbance. In midsummer of 1958 two very high yield atomic weapons were exploded at such heights as to free them from the absorbing, damping, and generally constricting properties of the dense layers of the lower atmosphere. A large portion of the energy of these detonations was therefore available as radiation of X rays, ultraviolet light, and fast electrons. If unabsorbed by intervening layers of air, these rays so alter the normal structure of the ionosphere as to produce a localized but severe equivalent to a natural ionospheric disturbance. High frequency communications which depend upon orderly reflections from the affected portions of the ionosphere may then encounter drastic reductions in F-layer critical frequencies, highly absorbing D-layer ionization even at night, and intense sporadic E-layer activity. Such reflections as occur are apt to be very diffuse or scattered, the lack of a single dominant mode of transmission degrading reception of high-baud-rate transmissions even when adequate signal-to-noise ratios are maintained. However, voice transmissions also suffered; notably those concerned with the control of aviation over the Pacific Area.

2. Significance of Simultaneous Outages.

a. From a global or long-term viewpoint, the actual combinations of yield and altitude employed in the tests were such as to produce relatively brief and local effects. Certain vital communications between aircraft and their ground terminals, and between ground terminals, traversed the affected region and were quite unable to tolerate the resulting protracted interruptions. Many of the point-to-point circuits in the vicinity are maintained by various military services; in times of emergency their traffic could be of the utmost urgency, and their reported outages must be so evaluated.

b. The disruptions to services associated with air traffic control produced by the first detonation were immediate, severe, clearly identifiable with the event, and not fully expected. They thus exhibit certain elements associated with operating conditions during any sudden, well-coordinated, and partially successful attempt to jam all communications within a particular area. The transient nature of these effects diminishes but does not eliminate the significance of any simultaneous communication outage.

3. Comments on General Data on Air Traffic Control Outages. Most of the data furnished for analysis concern the behaviour of point-to-point circuits. These reports are more factual than expressive, and the true impact of simultaneous outage on the routine operations of the communicator is more dramatically illustrated by the effects of the nuclear tests on flight scheduling of aircraft. The Rand Corporation and the Defense Atomic Support Agency have forwarded certain narrative material gathered from the files of the agencies concerned. Difficulties with communications were frequently compounded by the lack of available channels of administrative liaison, but propagationally induced losses of contact proved highly disruptive to aviation in the Pacific Area. The accompanying outages to military flights were of equally critical significance, inasmuch as the
armed services now increasingly depend on sky-wave communications to be reliable and secure. In times of emergency the services are, therefore, severely affected by their loss. A brief summary of this narrative material follows.

4. Material Relating to Test TEAK

a. Prior to this first shot the CAA, the major air carriers, and their communications subsidiaries were notified that the test site should be avoided by at least 521 nautical miles, and that within this radius the hazards to aircraft and to personnel might be serious but would not be persistent. Planes were routed accordingly, but these precautions were not accompanied by any comprehensive briefing of the personnel directly involved in radio communications. One actual effect of the first explosion was to produce a severe but local ionospheric disturbance which rapidly spread beyond the radius mentioned in the official warning. Concurrently, a similar disturbance appeared in the region of the geomagnetic conjugate, disrupting communications between the Fiji Islands, Samoa, and New Zealand. Spectacular visible aurora appeared at both conjugate points but not at Canton Island, which lies between them. Likewise, all types of high frequency communication were immediately disrupted at both conjugate points, but local communications within the Canton Island area were maintained. Samoa was blacked out to all overseas points for over six hours, and to the Fiji Islands for over twelve. Aircraft traffic control was maintained with great difficulty at Nandi during the blackout. Australia and New Zealand, although well removed from the geomagnetic conjugate, also reported interference to their air-ground communications.

b. The exact times of failure of the air-ground circuits, and their actual circuit paths at these times, are not well defined since these facilities are used by moving terminals for brief and infrequent transmissions. Canton Island, which is 1900 miles SW of Honolulu, 1350 miles south of the explosion, and roughly on the geomagnetic equator experienced no difficulties with local air-to-ground traffic although it had trouble maintaining point-to-point communications. Guam, which is 3220 miles to the west, and Los Angeles, 2560 miles to the northeast, were likewise little affected. Wake Island, which has very nearly the same distances from Honolulu and from the explosion as has Canton, but which is west from these sites, lost contact with a total of 17 airplanes for more than 90 consecutive minutes. Honolulu maintained some semblance of traffic control in its area by using VHF and UHF, and by relaying messages from plane to plane. Wake Island was more limited in its VHF-UHF capabilities, but 12 hours after the blast did make an anomalous contact with a plane 750 miles due east on 121.5 mc. Possibly, the Hawaiian islands enjoy much greater line-of-sight ranges than do the atolls because higher locations are available for the antennas; however, the statement is made that high frequency sky wave communications to aircraft out of Honolulu were little if any better than they were at Wake. The actual number of 90-minute alerts in the Honolulu area was not given but was stated by Aeronautical Radio Inc. to represent about ten percent of all of the flights for a period of 12 to 14 hours following the blast. Voice communications between Honolulu and Wake Island using the air-to-ground equipment failed for about 14 hours.

c. Most of the failures when originally reported by the air-to-ground terminals occurred on the usual frequencies of 8 to 13 mc, but both
higher and lower frequencies were soon tried. Whether such changes brought any consistent benefits is doubtful, and temporary restoration of service would depend on whether the circuit had been first affected by the rising absorption or by the diminishing support.

d. The 90-minute alerts do not offer a proportional index to propagation difficulties since they arise only from very protracted outages and may be lifted by brief or deviously relayed reports. They do provide a measure of the disruption of normal operations, the CAA and the airlines taking a very serious view of such status even when applicable to but one aircraft. Apparently the normal procedure is to intercept the flight with another airplane on the premise that the trouble may be equipmental or that the first flight has met with some misfortune. One such intercept mission is stated to have promptly lost contact with its base, becoming in due time just one more of the many 90-minute alerts. There is no mention of any more such missions, and the CAA later reached the opinion that traffic control and flight-following search and rescue services were impossible under such conditions.

5. Material Relating to Test ORANGE

a. The widespread inconveniences imposed by the first explosion on civilian agencies, with the ensuing publicity, led these agencies to press for wider dissemination of advance notices concerning the probable effects on communication of the second blast. The announced hazard radius for this shot had been reduced to 435 nautical miles, but Pan American Airways, for one, had decided to ground all its aircraft in the Pacific for four hours after the blast since certain expert advice had indicated the likelihood of a blackout over the entire area for this period. An eighteen-hour warning prior to the scheduled time of the shot was accompanied by permission to alert the operators, who diligently sought out reportable phenomena and interruptions. It was highly unlikely, therefore, in this second test, that any such occurrences could pass unnoticed if they were of significant magnitude, duration, and geographical extent.

b. As in the case of the first test, the second was detonated in the middle of the local nighttime. Brief fades were noted, audible "clicks" or "thumps" appeared on monitored circuits at the exact time of the blast, but traffic was not disrupted. The immediate effect on communications of this lower explosion was well illustrated by the report of an operator who was attempting to take a LORAN fix on Hawaiian stations from a point 1180 nautical miles from Honolulu towards Los Angeles. At precisely the published time of detonation, the LORAN signals gradually faded and completely disappeared for 30 seconds, then reappeared as a clutter of pulses which were unmatchable between master and slave station. This effect persisted for about one minute, and was followed by a brief period in which the two stations each exhibited matchable pulses accompanied by signals which were identified by the operator as representing "ground wave" propagation. Three minutes after the blast conditions became perfectly normal, at which time the high frequency receivers were monitored and found to be unaffected. The operator stated that he had not previously encountered ground wave signals at night at such a range. Similarly, AACS at Honolulu noted a very brief drop-out of the MUX circuit to Kwajalein on 17 mc, while the SSB circuit to Guam on 20 mc and the RTT circuit to Christmas Island on 10 mc showed no apparent effect at blast time. Except for such sporadic
observations of very minor failures exactly coincident with the shot, the high frequency aircraft control circuits into Honolulu were continuously monitored during the next hour without serious degradation in performance observed, at which time all special precautions were discontinued. The usual pre-dawn dip in F-layer support frequency was severe, but no real trouble was suspected until the local sunrise brought a steadily increasing number of uncorrectable outages. Simultaneously, ionospheric sounders in the area noted a rapid rise in absorption levels; this excessive absorption blanked out most of the soundings taken during the period of least F-layer support. At the geomagnetic conjugate Apia and Nandi reported that high frequency circuits were unaffected but that the lower frequencies, which are more readily absorbed, were unusable.

c. Some of the disruption of ground-to-air communications was the indirect result of concurrent point-to-point outages. Honolulu AACS reported "Equipment malfunction at this and other stations accounted for some inability to maintain contact." "--when the high side of the band went out the low side was generally good." "Frequencies in the 3 to 9 mc band appeared most reliable in the period 0700 to 1300Z, and in the 10 to 18 mc band during the period 1300 to 0700Z." "We were to a reasonable degree able to maintain communications with adjacent air-to-ground stations on air-to-ground frequencies." "--communications built up to a peak at about 1000Z (12 Aug) then deteriorated to almost a complete blackout at approximately 1700Z and continuing through 0100Z (on the 13th)."

d. A more general report on air-to-ground communications indicated that the major trouble was encountered in the Honolulu area, starting as early as 1400Z of the 12th of August, improving at 2300Z and becoming normal at 1300Z of the next day. Conditions were worse on transmissions to the west and south of the islands, better to the east, while San Francisco reported no significant effect on its air-to-ground messages. During the troubled 24 hours Honolulu accumulated 24 alerts, ten of which involved civil aircraft, and one of which lasted four and one half hours. Wake Island, which had been so disrupted in its air-ground capabilities during the first test, reported only intermittent outages during the 24 hours following the second and was able to relay messages to Honolulu from planes which had lost contact with the latter terminal. San Francisco was also able to relay position reports.

e. The crisis at Honolulu peaked during local mid-morning, with serious difficulties becoming apparent by 1730Z; a complete blackout of air-to-ground communications in all directions developed an hour later, with the result that trans-oceanic air traffic out of the area was suspended at 2035Z. Shortly after (local) noon conditions began to improve slightly, first towards the east; by mid-afternoon nearly normal operations became possible, but flight separation restrictions remained in force out of Honolulu until 0715Z.
Appendix II

Distances and Azimuthal Directions

<table>
<thead>
<tr>
<th>The Distance From Honolulu To:</th>
<th>Distance in Miles</th>
<th>Distance in Km</th>
<th>Azimuth Angle from Honolulu in Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Alamos</td>
<td>3250</td>
<td>5230</td>
<td>60° 16'</td>
</tr>
<tr>
<td>Washington D.C.</td>
<td>4833</td>
<td>7778</td>
<td>55° 00'</td>
</tr>
<tr>
<td>San Francisco</td>
<td>2394</td>
<td>3852</td>
<td>53° 41'</td>
</tr>
<tr>
<td>Anchorage</td>
<td>2776</td>
<td>4467</td>
<td>5° 52'</td>
</tr>
<tr>
<td>Adak</td>
<td>2410</td>
<td>3875</td>
<td>339° 03'</td>
</tr>
<tr>
<td>Tokyo</td>
<td>3837</td>
<td>6175</td>
<td>299° 30'</td>
</tr>
<tr>
<td>Shanghai</td>
<td>4970</td>
<td>8000</td>
<td>297° 10'</td>
</tr>
<tr>
<td>Midway</td>
<td>1296</td>
<td>2086</td>
<td>293° 31'</td>
</tr>
<tr>
<td>Okinawa</td>
<td>4655</td>
<td>7490</td>
<td>290° 52'</td>
</tr>
<tr>
<td>Formosa (Taipei)</td>
<td>4978</td>
<td>8011</td>
<td>290° 50'</td>
</tr>
<tr>
<td>Manila</td>
<td>5290</td>
<td>8515</td>
<td>280° 41'</td>
</tr>
<tr>
<td>Wake Is.</td>
<td>2293</td>
<td>3697</td>
<td>274° 04'</td>
</tr>
<tr>
<td>Guam</td>
<td>3788</td>
<td>6097</td>
<td>271° 49'</td>
</tr>
<tr>
<td>Eniwetok</td>
<td>2710</td>
<td>4365</td>
<td>262° 06'</td>
</tr>
<tr>
<td>Kwajalein</td>
<td>2442</td>
<td>3930</td>
<td>255° 04'</td>
</tr>
<tr>
<td>Johnston Is.</td>
<td>811</td>
<td>1306</td>
<td>250° 11'</td>
</tr>
<tr>
<td>Sydney</td>
<td>5073</td>
<td>8164</td>
<td>228° 59'</td>
</tr>
<tr>
<td>Nandi, Fiji Is.</td>
<td>3193</td>
<td>5139</td>
<td>216° 52'</td>
</tr>
<tr>
<td>Canton Is.</td>
<td>1901</td>
<td>3059</td>
<td>211° 15'</td>
</tr>
</tbody>
</table>
APPENDIX III
DISTANCES AND AZIMUTHAL DIRECTIONS

<table>
<thead>
<tr>
<th>The Distance From</th>
<th>Distance</th>
<th>Azimuth Angle from San Francisco</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Francisco To:</td>
<td>in Miles</td>
<td>in Km</td>
</tr>
<tr>
<td>Ft. Sam Houston</td>
<td>1490</td>
<td>2395</td>
</tr>
<tr>
<td>Washington</td>
<td>2439</td>
<td>3925</td>
</tr>
<tr>
<td>Chicago</td>
<td>1851</td>
<td>2979</td>
</tr>
<tr>
<td>Seattle</td>
<td>680</td>
<td>1100</td>
</tr>
<tr>
<td>Anchorage</td>
<td>2000</td>
<td>3215</td>
</tr>
<tr>
<td>Seoul</td>
<td>5604</td>
<td>9018</td>
</tr>
<tr>
<td>Hong-Kong</td>
<td>6895</td>
<td>11096</td>
</tr>
<tr>
<td>Formosa (Taipei)</td>
<td>6435</td>
<td>10357</td>
</tr>
<tr>
<td>Tokyo</td>
<td>5113</td>
<td>8229</td>
</tr>
<tr>
<td>Okinawa</td>
<td>6090</td>
<td>9801</td>
</tr>
<tr>
<td>Manila</td>
<td>6960</td>
<td>11200</td>
</tr>
<tr>
<td>Bandung</td>
<td>8649</td>
<td>13920</td>
</tr>
<tr>
<td>Guam</td>
<td>5830</td>
<td>9385</td>
</tr>
<tr>
<td>Honolulu</td>
<td>2394</td>
<td>3852</td>
</tr>
<tr>
<td>Sydney</td>
<td>7420</td>
<td>11942</td>
</tr>
</tbody>
</table>
KEY TO FREQUENCY UTILIZATION BAR CHARTS OF COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS
Circuit Experience:

\[\begin{align*}
\text{Circuit} & \begin{cases}
\text{Passed} & \cdots \cdots \cdots \\
\text{Failed} & \cdots \cdots
\end{cases}
\end{align*} \]

Bars are plotted for periods of successful reception or of outages definitely attributed to propagation conditions. Length of bar corresponds to the duration of circuit conditions. For all other interruptions the bar is omitted.

Frequency Limitations:

\[\begin{align*}
& \text{Observed } F_2 \text{ MUF from Vertical Incidence Data} \\
& \text{MUF} \\
& \text{Observed } E_s \text{ MUF from Vertical Incidence Data} \\
& \text{LUF} \text{ Observed } F_{\text{min}} \text{ from Vertical Incidence Data}
\end{align*} \]

Notes:

Observed values apply to Date of Chart.
Observed values based on Vertical Incidence Data.
Data taken at ionosphere station identified with communication area for which the individual graph is prepared.
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
Honolulu Area Transmitting

31 July 1958

See Key A, Page 64

Figure 1
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
Honolulu Area Receiving

31 July 1958

See Key A, Page 64

Figure 2
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With Honolulu Area Transmitting

1 August 1958

See Key A, Page 64
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths with
Honolulu Area Receiving

1 August 1958

See Key A, Page 64

Figure 4
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With Honolulu Area Transmitting

2 August 1958

See Key A, Page 64

Figure 5
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With Honolulu Area Receiving

2 August 1958

See Key A, Page 64

Figure 6
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With Honolulu Area Transmitting

11 August 1958

See Key A, Page 64
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With Honolulu Area Receiving

11 August 1958

See Key A, Page 64

Figure 8
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With Honolulu Area Transmitting

12 August 1958

See Key A, Page 64

Figure 9
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
Honolulu Area Receiving

12 August 1958

See Key A, Page 64

Figure 10
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With Honolulu Area Transmitting

13 August 1958

Figure 11
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
Honolulu Area Receiving

13 August 1958

See Key A, Page 64

Figure 12

SECRET
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

For Various Circuit Paths In
The Midway Is. Area

1 August 1958

See Key A, Page 64
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS
For Various Circuit Paths In
The Midway Is. Area
11 August 1958

Figure 14

SECRET
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS
For Various Circuit Paths In
The Midway Is. Area

12 August 1958

See Key A, Page 64

Figure 15
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

For Various Circuit Paths In
The Midway Is. Area

13 August 1958

See Key A, Page 64

Figure 16
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS
For Various Circuit Paths In
The Adak Area

31 July 1958

See Key A, Page 64.
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS
For Various Circuit Paths In
The Adak Area
1 August 1958
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

For Various Circuit Paths In
The Adak Area

2 August 1958

See Key A, Page 64

Figure 19
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS
For Various Circuit Paths In
The Adak Area

11 August 1958

See Key A, Page 64
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

For Various Circuit Paths In
The Adak Area

12 August 1958

See Key A, Page 64

Figure 21
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

For Various Circuit Paths In
The Adak Area

13 August 1958

See Key A, Page 64
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
San Francisco Area Transmitting

31 July 1958

See Key A, Page 64

Figure 23
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
San Francisco Area Receiving

31 July 1958

See Key A, Page 64

Figure 24
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
San Francisco Area Transmitting

1 August 1959

See Key A, Page 64
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
San Francisco Area Receiving

1 August 1958

See Key A, Page 64
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
San Francisco Area Transmitting

2 August 1958

See Key A, Page 64

Figure 27
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With San Francisco Area Receiving

2 August 1958

See Key A, Page 64

Figure 28

SECRET
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS
Various Circuit Paths With
San Francisco Area Transmitting
11 August 1958
See Key A, Page 64

Figure 29
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
San Francisco Area Receiving

11 August 1958

See Key A, Page 64

Figure 30
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
San Francisco Area Transmitting

12 August 1958

See Key A, Page 64
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
San Francisco Area Receiving

12 August 1958

See Key A, Page 64
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
San Francisco Area Transmitting

13 August 1958

See Key A, Page 64

Figure 33
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Various Circuit Paths With
San Francisco Area Receiving

13 August 1958

See Key A, Page 64

Figure 34

SECRET
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

For Various Circuit Paths In
The Okinawa Area

31 July 1958

See Key A, Page 64
COMBINED CIRCUIT EXPERIENCE V3 FREQUENCY LIMITATIONS

For Various Circuit Paths In
The Okinawa Area

1 August 1958

See Key A, Page 64
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

For Various Circuit Paths in
The Okinawa Area

2 August 1958

See Key A, Page 64
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

For Various Circuit Paths In
The Okinawa Area

11 August 1958

See Key A, Page 64

Figure 38
SECRET

U.S. ARMY SIGNAL
RADIO PROPAGATION AGENCY

COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS
For Various Circuit Paths In
The Okinawa Area

12 August 1958

See Key A, Page 64

Figure 39
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS
For Various Circuit Paths In
The Okinawa Area

13 August 1958

See Key A, Page 64
SECRET

SYNOPTIC MAPS OF REPORTED CIRCUIT EXPERIENCE

DURING TIME INTERVAL OF ONE HOUR ALONG

SELECTED GLOBAL COMMUNICATION PATHS

105 SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0000Z

1 AUGUST 1958
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 0000 Z

I AUGUST 1958

KEY TO TERMINAL LOCATIONS:
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY
() - Numerator of fraction is 4 x (number of usable frequency hours.)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0100Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG 51. LOS ALAMOS
2. ANCHORAGE 30. ENIWETOK 42. HOUSTON, FT. SAM 52. MAMIL
6. ASMARA 32. FORMOSA 46. IWO JIMA 62. MIDWAY
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MENTORANDS
19. CANTON IS. 40. MIDWAY 56. LA GRANJA 69. OKINAWA
33. KOROMARU
43. KONAGA
58. KIO
71. PALMIRA IS.
72. QUARRY HEIGHTS
81. SAIGON
80. SAN FRANCISCO
82. SEOUL
83. SHANGHAI

Figure 450a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0100 Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE
87. SEATTLE
88. SYDNEY
93. TOKYO
96. WAKE IS.
97. WASHINGTON, D.C.
98. WELLINGTON

KEY TO FREQUENCY UTILITY

0% to 30% of frequencies tried were useful: ————
30% to 80% of frequencies tried were useful: ————
80% to 100% of frequencies tried were useful: ————

() numerator of fraction is 4 x [number of usable frequency hours]
Denominator is 4 x [number of frequency hours attempted during hour interval depleted].
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0200Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALAU IS.
2. ANCHORAGE 30. ENITOK 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ASMARA 32. FORMOSA 46. IWO JIMA 62. MIDWAY 81. SAIGON
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MENTORANGE 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. KUALA LUMPUR 65. NADI, FIJI IS. 82. SEOUL
19. CANTON IS. 40. HELSINKI 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

Figure 43a
SECRET 110
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0200Z

I AUGUST 1958

KEY TO TERMINAL LOCATIONS:
85. SINGAPORE 86. WASHINGTON, D.C.
87. SEATTLE 88. WELLINGTON
89. TOKYO

KEY TO FREQUENCY UTILITY

- 0% to 30% of frequencies tried were useful:
- 30% to 60% of frequencies tried were useful:
- 60% to 100% of frequencies tried were useful:

\(\frac{\text{Numerator of fraction in 4x(number of usable frequency hours)}}{\text{Denominator in 4x(number of frequency hours attempted during hour interval depicted.)}} \)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0300Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADAK 21. CHICAGO 41. NONGKLAHONG 57. LOS ALAMOS
2. ANCHORAGE 30. ENNIVIK 42. HOUSTON, FT. SAM 61. MANILA
6. ASMARA 32. FORMOSA 46. IWU JIMA 65. MIDWAY
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MONTAGU DEE
13. BANGKOK 39. HAWAII 51. KWAIALAIN 65. NANDI, FIJI IS.
19. CAMBODIA 40. HEIDELBERG 53. LA GRANJA 61. OKINAWA

Figure 44a

SECRET

112
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0300Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: - - - - -
30% to 60% of frequencies tried were useful: - - - -
60% to 100% of frequencies tried were useful: - - -

(X) - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0400Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG 59. LOS ALAMOS 71. PALMYRA IS.
2. ANCHORAGE 30. EMMETTOK 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ASABA 32. FORMOSA 46. TWO JIMA 62. MIDWAY 81. SAINTOON
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MUNICHANEE 82. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. NEAULSAEIN 65. NAGO, FII IS. 82. SEOUL
19. CANTON IS. 40. NEUMISCH 53. LA GRANJA 69. OKINAWA 83. SHIBAIS

Figure 45a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0400Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY

0% to 10% of frequencies tried were useful: --------
10% to 50% of frequencies tried were useful: ---------
50% to 100% of frequencies tried were useful: -------

- Numerator of fraction is 4 x (number of usable frequency hours)
- Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0500Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADAK 21. CHICAGO 41. HONOLULU 57. LOS ALAMOS 71. PALAU IS.
2. ANCHORAGE 30. ENIWETOK 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ASMARA 32. FORMOSA 46. TWO JIMA 62. MIDWAY 81. SAIGON
12. BANDUNG 37. GUAM 48. JOHNSTON IS. 64. MENTIGRANTE
19. CANTON IS. 40. HEIDELBERG 53. LAOZHA 69. OKINAWA 83. SHANGHAI

Figure 40a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0500Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY
0% to 3% of frequencies tried were useful: — — — — — — — — — —
30% to 80% of frequencies tried were useful: — — — — — — — — — —
80% to 100% of frequencies tried were useful: — — — — — — — — — —

() — Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted during hour interval depicted.)

SECRET

117 Figure 46b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0600Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALAU IS.
2. ANCHORAGE 30. ENTWETOK 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
3. ASMARA 32. FORMOSA 46. IWO JIMA 62. MIDWAY 81. SAIPAN
4. BANDUNG 37. GUAM 48. JOHNSTON IS. 64. MONTIGRANDE 82. SAN FRANCISCO
5. BANGKOK 39. HAWAII 51. KWAJALEIN 65. NADI, FIJI IS. 83. SEOUL
6. CAMPTON IS. 40. HEIDELBERG 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

Figure 47a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 0600Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
86. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY

{ } - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0700Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ASIAK 21. CHICAGO 41. MNUHUDO 57. LOS ALAMOS
6. ASMA 32. FORMOSA 46. IWO JIMA 61. MANILA
30. ENSONOK 42. HOUSTON, PT. SAM 62. MIDWAY
9. BANGKOK 39. HAWAII 48. JOHNSTON IS. 64. MENTORANGE
10. CANTON IS. 40. HEIDELBERG 53. LA GRANJA
2. ANCHORAGE 30. ENSONOK 42. HOUSTON, PT. SAM
6. ASMA 32. FORMOSA 46. IWO JIMA
12. BANGKOK 39. HAWAII 51. KWAIALIN
13. BANGKOK 39. HAWAII 51. KWAIALIN
19. CANTON IS. 40. HEIDELBERG 53. LA GRANJA
69. OKINAWA
71. PALMYRA IS.
72. QUARRY HEIGHTS
81. SARON
82. SECUL.
83. SHANGHAI

Figure 48a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0700 Z

I AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: ---------
30% to 80% of frequencies tried were useful: -------
50% to 100% of frequencies tried were useful: -----

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted during hour interval depicted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0800Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALMYRA IS.
2. ANCHORAGE 30. ENVICE 42. HOUSTON, FT. SAM 61. MAHLA
6. ASHARA 32. FUKUOKA 46. IRIO JIMA 62. MIDWAY
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MINTGRANGE
13. BANGKOK 39. HAWAII 51. KALALIHN 65. MAOA, FIJI IS.
19. CANTON IS. 40. HONGKONG 53. LA GRANJA 69. OKINAWA
83. SHANGHAI

Figure 49a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0800 Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 90. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY

\[
\left(\frac{X}{Y} \right) = \text{Numerator of fraction is } 4 \times (\text{number of usable frequency hours}) \\
\text{Denominator is } 4 \times \text{(number of frequency hours attempted during hour interval depicted.)}
\]

SECRET

Figure 47b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 0900Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADAK 21. CHICAGO 41. HONGKONG 61. MANILA
2. ANCHORAGE 30. ENEWETOK 42. HOUSTON, FT. SAM 62. MIDWAY
6. ASHRA 32. FORMOSA 46. IWO JIMA 64. MONTGOMERY
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY
13. BANGKOK 39. HAWAII 51. KWAJALEIN 65. NADI, FIJI IS.
19. CANTON IS. 40. HEIDELBERG 53. LA GRANDE 69. OKINAWA

SECRET

Figure 50a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0900 Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY

- Numerator of fraction is 4 x (number of usable frequency hours)
- Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 1000Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALGRAVE IS.
2. ANCHORAGE 30. ERIWETOK 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
5. ASHRA 32. FORMOSA 46. IWO JIMA 62. MIDWAY 81. SAIGON
12. BEIJING 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERIE 80. SAN FRANCISCO
13. BANGKOK 39. KUWAIT 51. KUWAIT 65. NAGORI, FIJI IS. 82. SEOUL
19. CANTON IS. 40. MARINA 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

Figure 51a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON 1000Z

[[Map Image]]

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY

- 0% to 30% of frequencies tried were useful:
- 30% to 60% of frequencies tried were useful:
- 60% to 100% of frequencies tried were useful:

\[\frac{\text{Numerator of fraction is } 4 \times \text{number of usable frequency hours}}{\text{Denominator is } 4 \times \text{number of frequency hours attempted during hour interval depicted}} \]
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1030Z

1 AUGUST 1958

NIGHT

DAY

NIGHT

DAY

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALMYRA IS.
2. ANCHORAGE 30. KIWINOR 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ASMARA 32. FORMOSA 46. IWO JIMA 62. MIDWAY 81. SAIGON
12. BAYHUSD 37. GUAM 48. JOHNSTON IS. 64. MENTOR,VANCE 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. KWJALEZIN 65. NANDI, FIJI 10. 82. SEOUL
19. CANTON IS. 40. HEIDELBERG 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

Figure 32a
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1030Z

1 AUGUST 1958

SECRET

KEY TO TERMINAL LOCATIONS

85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY

0% to 30% of frequencies tried were useful: -- -- -- --
30% to 60% of frequencies tried were useful: -- -- -- --
60% to 100% of frequencies tried were useful: -- -- -- --

\(\frac{N}{F} \) -- Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted during hour interval depicted.)

SECRET

129 Figure 52b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON 2100Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK
2. ANCHORAGE
6. ASAMA
12. BANGKOK
13. BANGKOK
19. CANTON IS.
21. CHICAGO
30. KINSHI
32. MAMORU
37. GUAM
39. HAWAII
40. HEIDELBERG
41. KEMOKelon
42. HOUSTON, PT. SAM
46. IWO JIMA
57. LOS ALAMOS
59. OKINAWA
71. PALMYRA IS.
72. QUARRY HEIGHTS
74. SAIGON
80. SAN FRANCISCO
82. SEOUL
83. SHANGHAI

SECRET

Figure 32a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1100Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: - - - - -
30% to 60% of frequencies tried were useful: -----
60% to 100% of frequencies tried were useful: ------

() Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted during hour interval depicted.)

SECRET
131 Figure 37b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1130Z

I AUGUST 1958

1. ADAK 21. CHICAGO 41. HONGKONG 77. LOS ALAMOS 71. PALAYRA IS.
2. ANCHORAGE 30. KINSHASA 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ASMARA 32. FORMOSA 46. IWO JIMA 62. MIDWAY 81. SAIGON
12. BANDUNDU 37. GUAM 48. JOHNSTON IS. 64. MENTORANGE 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. DWJAJALEIN 65. NADI, FIJI IS. 82. SEOUL
19. GANTON IS. 40. HEIDELBERG 57. LA GRANJA 69. OKINAWA 83. SHANGHAI

Figure 52a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1130Z

1 AUGUST 1958

NIGHT DAY NIGHT

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY

0% to 30% of frequencies tried were useful: -------
30% to 60% of frequencies tried were useful: ----
60% to 100% of frequencies tried were useful: ---

\[\frac{X}{4} \]

Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted during hour interval depicted.)

SECRET
133 Figure 54b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1200Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALMYRA IS.
2. ANCHORAGE 30. ENIWETOK 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ASMARA 32. FORMOSA 46. IWO JIMA 62. MIDWAY 81. SAIGON
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MENTORANIE 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. NWAJALEIN 65. NADI, FIJI IS. 82. SEOUL
19. OAKTON IS. 40. MUSELBERG 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

SECRET

Figure 55a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1200Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 10% of frequencies tried were useful: --------
10% to 50% of frequencies tried were useful: ---------
50% to 100% of frequencies tried were useful: -----------------

\(\frac{X}{Y} \) - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted during hour interval depicted.)

SECRET

Figure 25b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1230Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALMYRA IS.
2. AMCHURDGE 30. EMIRATE 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ASAMBA 32. FORMOSA 46. IWO JIMA 62. MIDWAY 81. SAIDON
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. KUJALIKIN 65. MAROI, FIJI IS. 82. SEOUL
19. CANTON IS. 42. BOLINGBOLO 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

Figure 56a
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1230Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: ---
30% to 80% of frequencies tried were useful: ----
80% to 100% of frequencies tried were useful: -----

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted during hour interval depicted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1300Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAN 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALAOBA IS.
2. ANCHORAGE 30. ZHWEI TOK 42. HOUSTON, PT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ASMARA 32. FORMOSA 46. TAO JIMA 62. MIDWAY 81. SAIGON
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MENTORANGE 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. WAKAJIN 65. NANDI, FIJI IS. 82. SEOUL
19. CANTON IS. 40. HEIDELBERG 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

Figure 57a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1300 Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
19. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: ----
30% to 60% of frequencies tried were useful: ----
60% to 100% of frequencies tried were useful: ----
\(\frac{\text{Numerator of fraction is } 4 \times \text{number of usable frequency hours}}{\text{Denominator is } 4 \times \text{number of frequency hours attempted during hour interval depicted.}} \)

SECRET

139
SECRET

SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1330Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAM 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALMIRA IS.
2. ANCHORAGE 30. ENTETON 42. HOUSTON, FT. SAM 61. MANILA 72. QUANTY HEIGHTS
6. ASWARA 32. FORMOSA 46. IWO JIMA 62. MIDWAY 81. CAPEOON
12. BANDUNG 37. GUAM 48. JUPITER'S IS. 64. MONTGOMERY 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. NAJAFB 65. NADI, FIJI IS. 82. SEOUL
19. CANTON IS. 40. HEIDELBERG 53. LA GHANDA 69. OKINOWA 83. CHONGQAI

Figure 59a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1330Z

I AUGUST 1958

KEY TO TERMINAL LOCATIONS:
1. SINGAPORE
2. WAKE IS.
3. SEATTLE
4. WASHINGTON, D.C.
5. SYDNEY
6. WELLINGTON
7. TOKYO
8. SEOUL
9. LONDON
10. BRUSSELS

KEY TO FREQUENCY UTILITY:
0% to 30% of frequencies tried were useful: ———
30% to 60% of frequencies tried were useful: ———
60% to 100% of frequencies tried were useful: ———

\[
\left(\frac{\text{numerator of fraction}}{\text{denominator of fraction}} \right) = \frac{\text{numerator of fraction}}{\text{denominator of fraction}} \times \frac{\text{number of usable frequency hours}}{\text{number of frequency hours attempted during hour interval depleted}}
\]

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON 1400Z

1 AUGUST 1958
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1400Z

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
89. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 20% of frequencies tried were useful: --------
20% to 40% of frequencies tried were useful: -----
40% to 80% of frequencies tried were useful: ---
80% to 100% of frequencies tried were useful: --

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET

Figure 57c
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1430Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK, 21. CHICAGO, 41. HONGKONG, 57. ILI ALAMA
2. ANCHORAGE, 30. ENTRIX, 42. HOUSTON, PT. SAM, 61. MANILA
3. ASIB, 32. FORNEY, 46. INO JIMA, 62. MIDWAY
7. BAGUANGI, 37. GUAM, 48. JOHNSTON IS, 64. MAITISHAR
12. HALCHUN, 39. HAWAII, 51. MIAJALEIN, 65. NADOL, FIJI IS
13. NAMIB, 30. HAINAN, 49. NAMIB, FIJI IS
19. CANTON IS, 40. HAINAN, 53. LA GRANJA
60. ORIMANA
82. SEOUL
83. SHANGHAI

Figure 60a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 1430Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: ----
30% to 80% of frequencies tried were useful: ---
80% to 100% of frequencies tried were useful: ----

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET
245
Figure 6Cb
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 1500Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
1. ADAK 21. CHICAGO 41. HONGKONG 57. LEG ALAMOS 71. PALMYRA IG.
2. ANCHORAGE 30. ENIDOK 42. HOUSTON, PT. SAM 61. MANILA 72. QUARRY HEIGHTS
3. ASABA 32. FOGNICA 46. INO JIMA 62. MIDWAY 81. PAKON
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MIDTURBANE 86. SAN FRANCISCO
13. BANGKOK 39. MAHALLATI 51. KUJEALIN 65. NADI, FIJI IS. 82. ST.PAUL
19. CANTON IS. 40. HEIDELBERG 53. LA GUANJA 67. OKINAWA 83. SHANGHAI

Figure 61A
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1500Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
6% to 90% of frequencies tried were useful:
90% to 99% of frequencies tried were useful:
99% to 100% of frequencies tried were useful:

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET

Figure 61b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1530Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

89. SINGAPORE 96. WAKE IS.
17. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILIY

0% to 30% of frequencies tried were useful: — — — — —
30% to 60% of frequencies tried were useful: — — — — —
60% to 100% of frequencies tried were useful: — — — — —

() Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 1600Z

1 AUGUST 1958

Figure 634
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1600Z

I AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAPE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: ————
30% to 80% of frequencies tried were useful: ———
80% to 100% of frequencies tried were useful: ———

\[
\frac{\text{Numerator of fraction is } 4 \times \text{(number of usable frequency hours)}}{\text{Denominator is } 4 \times \text{(number of frequency hours attempted during hour interval depicted.)}}
\]
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1630Z

1 AUGUST 1958
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1630Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
65. SINGAPORE 96. WAKE IS.
67. SEATTLE 97. WASHINGTON, D.C.
68. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 10% of frequencies tried were useful: - - - -
10% to 50% of frequencies tried were useful: - - -
50% to 100% of frequencies tried were useful: - -

() - Numerator of fraction is 4 x (number of usable frequency hours)
() - Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1700Z

1 AUGUST 1958
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 1800Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADAK 21. CHICAGO 41. HONGKONG 57. IAG: ALASKA
2. ANCHORAGE 30. ENTEKOR 42. HOUSTON, TX, SAM 58. MANILA
3. ASAMA 32. FORMOYA 46. FRA JIMA 59. MIDWAY
6. HANAMONG 37. GUAM 48. JOHNSTON IS. 60. MONTGOMERY
12. HANJONG 31. HAWAII 51. OWAMA 61. NADI, FIJI IS.
13. BANGKOK 39. KOWA 52. OKINAWA
14. GANON AS. 40. KEPLERBERG 53. LA OAXACA

SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1800Z

AUGUST 1958

KEY TO TERMINAL LOCATIONS:

85. SINGAPORE
87. SEATTLE
93. TOKYO
96. WAKE IS.
97. WASHINGTON, D.C.
98. WELLINGTON
99. SAMOA IS.

KEY TO FREQUENCY UTILITY

% of frequencies tried were useful:

0% to 10% of frequencies tried were useful:

30% to 80% of frequencies tried were useful:

80% to 100% of frequencies tried were useful:

\(\frac{X}{Y} \) - Numerator of fraction is 4 x (number of usable frequency hours) Denominator is 4 x (number of frequency hours attempted during hour interval depicted.)

SECRET

157 Figure 66A
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1900Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ADAK 21. CHICAGO 41. HONOLULU 57. LAG ALAMO
2. ANCHORAGE 30. ENID 42. HOUSTON, FT. SAM 61. MANILA
3. ASAMAR 32. FONGSA 46. TAO JIMA 62. MIDWAY
12. BANDAR 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY
13. BANGKOK 39. HAWAI 51. NAJAYIJSIN 65. NAHU, FJII IS.
19. CANTON IS. 40. HEIDELBERG 53. A LAI KANSA 66. OKINAWA

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1900Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
85. SINGAPORE 96. WASHINGTON, D.C.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY:

\[\frac{X}{Y} \]
- Numerator of fraction is \(4 \times \) (number of usable frequency hours)
- Denominator is \(4 \times \) (number of frequency hours attempted
during hour interval depleted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 2000Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
1. ADAK 21. CHICAGO 41. HONGKONG 57. LEG ALASKA
2. ANCHORAGE 30. KUNAIK 42. HOUSTON, FT. SAM 61. MANILA
6. ASAMU 32. TORREVIAJA 46. IWO JIMA 62. MINDY
12. BANDONG 37. GUAM 48. JERSEY IS. 64. MONTGOMERY
13. BANGKOK 39. HAWAII 51. KAJALIN 65. NADI, FIJI IS.
19. CANTON IS. 40. HIDDASA 53. LA GRANJA 69. OKINAWA

Figure C6a
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2000Z

I AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SUMA IS.

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: - - - - -
30% to 50% of frequencies tried were useful: - - - -
50% to 100% of frequencies tried were useful: - - - -

\(\frac{\text{numerator of fraction is } 4 \times \text{(number of usable frequency hours)} }{\text{denominator is } 4 \times \text{(number of frequency hours attempted during hour interval depicted)}} \)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 2100Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS
2. ANCHORAGE 30. ENID NICK 42. HOUSTON, FT. SAM 61. MANILA
6. ASHARA 32. FORMOSA 46. IWO JIMA 62. MIDWAY
12. BANGKOK 37. GUAM 44. JOHNSTON IS. 64. MONTESPACE
19. CANTON IS. 40. HEIDELBERG 55. LA GRANJA 69. OKINAWA

SECRET

Figure 69a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2100Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY

\(\frac{\text{Number of usable frequency hours}}{\text{Number of frequency hours attempted}} \) - Denominator is 4 x (number of frequency hours attempted during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2200Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG 57. LAS ALAMEDAS 71. PALMYRA IS.
2. ANCHORAGE 30. ENIWETOK 42. HOUSTON, PT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ADANA 32. FORMOSA 46. TRU JIMA 62. MIDWAY 81. SATON
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. KWAJALEIN 65. NANDI, FIJI IS. 82. SEOUL
19. GAMBIA IS. 40. HEIDELBERG 53. LA GRANJA 68. OKINAWA 83. SHANGHAI

Figure 70a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2200Z

I AUGUST 1958

KEY TO TERMINAL LOCATIONS
83. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SANTA IS.

KEY TO FREQUENCY UTILITY

\(\frac{x}{y} \) - Numerator of fraction is \(x \) (number of usable frequency hours)
Denominator is \(4y \) (number of frequency hours attempted
during hour interval depicted.)

SECRET

Figure 70b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2300Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAX 21. CHICAGO 41. HONOLULU
2. ANCHORAGE 30. ENFIELD 42. HOUSTON, FT. SAM
3. ASABA 32. FORMOSA 46. TAO JIMA
12. HONGKONG 37. GUAM 48. JOHNSTON IS.
13. BANGKOK 29. HAWAII 51. KWALEI
19. CANTON IS. 40. REIDELBERG 53. LA GUANITA

SECRET

Figure 71a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2300Z

1 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
83. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA 15.

KEY TO FREQUENCY UTILITY:
0% to 30% of frequencies tried were useful: ---
30% to 60% of frequencies tried were useful: ---
60% to 100% of frequencies tried were useful: ---

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0000Z

2 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAI 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALAINA IS.
2. ANCHORAGE 30. ENIWETOK 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ASHARA 32. FORNEQGA 46. IWO JIMA 62. MIDWAY
12. BANDUNG 37. GUAM 48. JOHNSTON IS. 64. MONTGOERZE 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. KWAMEZIN 65. NADI, FIJI IS. 82. SEOUL
19. CANTON IS. 40. HEIDELBERG 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

Figure 72a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0000Z

2 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
65. SINGAPORE 96. WAKE IS.
67. SEATTLE 97. WASHINGTON, D.C.
68. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY:
6% to 20% of frequencies tried were useful: ————
30% to 80% of frequencies tried were useful: ————
80% to 100% of frequencies tried were useful: ————

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)
<table>
<thead>
<tr>
<th>Circuit</th>
<th>0000</th>
<th>0100</th>
<th>0200</th>
<th>0300</th>
<th>0400</th>
<th>0500</th>
<th>0600</th>
<th>0700</th>
<th>0800</th>
<th>0900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Alamos</td>
<td>8%</td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td>8%</td>
</tr>
<tr>
<td>San Francisco</td>
<td>54%</td>
<td>60%</td>
<td>56%</td>
<td>60%</td>
<td>55%</td>
<td>46%</td>
<td>69%</td>
<td>72%</td>
<td>59%</td>
<td>51%</td>
<td>42%</td>
<td>32%</td>
<td>36%</td>
<td>24%</td>
<td>32%</td>
<td>28%</td>
<td>32%</td>
<td>24%</td>
</tr>
<tr>
<td>Anchorage</td>
<td>8%</td>
</tr>
<tr>
<td>Adak</td>
<td>2%</td>
<td>4%</td>
<td>6%</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Midway</td>
<td>0%</td>
</tr>
<tr>
<td>Tokyo</td>
<td>24%</td>
<td>32%</td>
</tr>
<tr>
<td>Okinawa</td>
<td>12%</td>
<td>16%</td>
<td>16%</td>
<td>13%</td>
<td>14%</td>
<td>16%</td>
<td>16%</td>
<td>15%</td>
<td>16%</td>
<td>16%</td>
<td>15%</td>
<td>14%</td>
<td>13%</td>
<td>13%</td>
<td>13%</td>
<td>13%</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>Formosa</td>
<td>2%</td>
<td>4%</td>
</tr>
<tr>
<td>Manila</td>
<td>6%</td>
<td>8%</td>
</tr>
<tr>
<td>Wake Is.</td>
<td>0%</td>
</tr>
<tr>
<td>Guam</td>
<td>4%</td>
<td>6%</td>
</tr>
<tr>
<td>Kwajalein</td>
<td>4%</td>
</tr>
<tr>
<td>Johnston Is.</td>
<td>16%</td>
<td>15%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>18%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>14%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
</tr>
<tr>
<td>Sidney</td>
<td>0%</td>
</tr>
<tr>
<td>Canton Is.</td>
<td>0%</td>
</tr>
</tbody>
</table>

Communication Capability for the day of the Teak Nuclear shot of Circuit Paths which have one terminal in Honolulu.

Numerator is in units of quarter-hours of successful circuit communications over a period of one hour.

Denominator is in units of circuit quarter-hours of transmitter radiations over a period of one hour.

Z time is given for center of hourly period.

170
Table I Continued

Circuits between
Honolulu and

<table>
<thead>
<tr>
<th>Time</th>
<th>1300</th>
<th>1330</th>
<th>1400</th>
<th>1430</th>
<th>1500</th>
<th>1530</th>
<th>1600</th>
<th>1630</th>
<th>1700</th>
<th>1800</th>
<th>1830</th>
<th>1900</th>
<th>1930</th>
<th>2000</th>
<th>2030</th>
<th>2100</th>
<th>2200</th>
<th>2300</th>
<th>0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Alamos</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>2/2</td>
<td>6/6</td>
<td>9/9</td>
<td>8/8</td>
</tr>
<tr>
<td>Anchorage</td>
<td>0/0</td>
<td>6/6</td>
<td>12/12</td>
<td>12/12</td>
<td>12/12</td>
<td>11/11</td>
<td>13/13</td>
<td>15/15</td>
</tr>
<tr>
<td>Adak</td>
<td>4/4</td>
<td>7/7</td>
<td>8/8</td>
<td>7/7</td>
<td>8/8</td>
<td>5/5</td>
<td>8/8</td>
</tr>
<tr>
<td>Midway</td>
<td>0/0</td>
</tr>
<tr>
<td>Tokyo</td>
<td>32/32</td>
<td>31/31</td>
<td>30/30</td>
<td>28/28</td>
<td>24/24</td>
<td>16/16</td>
<td>14/14</td>
<td>14/14</td>
<td>10/10</td>
<td>37/37</td>
<td>34/34</td>
<td>38/38</td>
<td>32/32</td>
<td>32/32</td>
<td>32/32</td>
<td>32/32</td>
<td>32/32</td>
<td>32/32</td>
<td>32/32</td>
</tr>
<tr>
<td>Formosa</td>
<td>16/16</td>
<td>10/10</td>
<td>14/14</td>
<td>12/12</td>
<td>12/12</td>
<td>15/15</td>
<td>12/12</td>
</tr>
<tr>
<td>Manila</td>
<td>7/7</td>
<td>10/10</td>
<td>8/8</td>
<td>6/6</td>
<td>13/13</td>
<td>14/14</td>
<td>6/6</td>
<td>4/4</td>
<td>2/2</td>
<td>0/0</td>
<td>5/5</td>
<td>8/8</td>
<td>8/8</td>
<td>8/8</td>
<td>8/8</td>
<td>8/8</td>
<td>8/8</td>
<td>8/8</td>
<td>8/8</td>
</tr>
<tr>
<td>Wake Is.</td>
<td>5/5</td>
<td>4/4</td>
<td>4/4</td>
<td>4/4</td>
<td>4/4</td>
<td>2/2</td>
</tr>
<tr>
<td>Guam</td>
<td>0/0</td>
</tr>
<tr>
<td>Eniwetok</td>
<td>0/0</td>
</tr>
<tr>
<td>Kwajalein</td>
<td>0/0</td>
</tr>
<tr>
<td>Johnston Is.</td>
<td>4/4</td>
<td>4/4</td>
<td>6/6</td>
<td>10/10</td>
<td>12/12</td>
<td>14/14</td>
<td>12/12</td>
<td>12/12</td>
<td>5/5</td>
<td>2/2</td>
<td>0/0</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
</tr>
<tr>
<td>Sidney</td>
<td>10/10</td>
<td>4/4</td>
<td>0/0</td>
</tr>
<tr>
<td>Canton Is.</td>
<td>0/0</td>
</tr>
<tr>
<td>Mandi, Fiji Is.</td>
<td>0/0</td>
</tr>
</tbody>
</table>
SECRET

Table II
1 August 1958

| 2 time |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 |
| Pt. Sam Houston | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Washington | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 7 | 7 | 8 | 8 | 7 | 7 |
| Chicago | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 7 | 6 | 6 | 6 | 6 | 6 | 6 |
| Seattle | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| Anchorage | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Korea | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Hongkong | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Formosa | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Okinawa | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Manila | 10 | 12 | 9 | 11 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Bandung | 4 | 6 | 6 |
| Guam | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Sydney | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Singapore | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Wellington | 4 | 6 | 8 |

Communication Capability for the day of the Tseck nuclear shot of Circuit Paths which have one terminal in San Francisco.

Numerator is in units of quarter-hours of successful circuit communications over a period of one hour.

Denominator is in units of circuit quarter-hours of transmitter radiations over a period of one hour.

2 time is given for center of hourly period.
Table II Continued

<table>
<thead>
<tr>
<th>Location</th>
<th>1300</th>
<th>1330</th>
<th>1430</th>
<th>1450</th>
<th>1500</th>
<th>1550</th>
<th>1600</th>
<th>1630</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
<th>2100</th>
<th>2200</th>
<th>2300</th>
<th>0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ft Sam Houston</td>
<td>8/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td>8/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago</td>
<td>8/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>16/16</td>
<td></td>
</tr>
<tr>
<td>Anchorage</td>
<td>7/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tokyo</td>
<td>24/24</td>
<td></td>
</tr>
<tr>
<td>Manila</td>
<td>12/12</td>
<td></td>
</tr>
</tbody>
</table>

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON 0000Z

12 AUGUST 1958

FIGURE 73a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0000Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: -- -- -- --
30% to 60% of frequencies tried were useful: ----
60% to 100% of frequencies tried were useful: ""

\[
\frac{X}{4} = \text{Numerator of fraction is } 4 \times \text{number of usable frequency hours.}
\]
\[
\text{Denominator is } 4 \times \text{number of frequency hours attempted during hour interval depicted.}
\]
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0100Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK
2. ANCHORAGE
6. ASMARA
12. BANGKOK
19. CAMPUS 15.
40. HEIDELBERG

21. CHICAGO
30. KHIWETOK
32. FORMOSA
37. GUAM
39. HAWAII
53. LA GRANJA

41. HONGKONG
42. HOUSTON, FT. SAM
46. IWO JIMA
48. JOHNSTON IS.
51. KWAJALEIN
53. LA GRANJA

57. LOS ALAMOS
61. MANILA
62. MIDWAY
64. MENTORANZE
65. MANDI, FIJI IS.
69. OKINAWA

71. PALMYRA IS.
72. QUARRY HEIGHTS
81. SAIGON
80. SAN FRANCISCO
82. SEOUL
83. SHANGHAI

Figure 74a
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0100Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
89. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: ————
30% to 60% of frequencies tried were useful: ————
60% to 100% of frequencies tried were useful: ————

() — Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0200Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADAX
2. ANCHORAGE
6. ALMERA
12. BANGKOK
19. CANTON IS.
21. CHICAGO
30. HIWZENX
32. PORADSA
37. GUAM
39. HAWAI
40. HEIDELBERG
41. KIBUWON
42. HOUSTON, FT. SAM
43. KALALOK
44. KUJALOK
45. KUZILOK
46. KIYALOK
47. KUDALOK
48. JOHNSTON IS.
49. KUWALOK
50. KUTEFLOK
51. KWALOK
52. KUTEFLOK
53. LA OLANA
54. LAMIBLOK
55. LAMIBLOK
56. LAMIBLOK
57. LOS ALAMOS
58. MABANG
59. MABANG
60. MABANG
61. MANILA
62. MIDWAY
63. MONTFAVET
64. MONTFAVET
65. MONTFAVET
66. MONTFAVET
67. MONTFAVET
68. QUARRY HEIGHTS
69. OKINAWA
70. OKINAWA
71. PALMIRA IS.
72. QUARRY HEIGHTS
80. SAN FRANCISCO
81. SAIGON
82. SEOUL
83. SHANGHAI

Figure 75a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0200Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: --------
30% to 60% of frequencies tried were useful: --- ----
60% to 100% of frequencies tried were useful: ------

\(\frac{\text{Numerator of fraction is 4 x (number of usable frequency hours)}}{\text{Denominator is 4 x (number of frequency hours attempted during hour interval depicted.)}} \)

SECRET
179

Figure 73b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0300Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADAK 21. CHICAGO 41. HONGKONG 57. LOG ALAMOS 71. PALMIRA IS,
2. ANCHORAGE 30. ENTRÉTOK 42. HOUSTON, PT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ASAMA 32. FORMOSA 46. IWO JIMA 62. MIDWAY 81. SAIGON
12. BANDON 37. GUAM 48. JOHNSTON IS. 64. MONTIGRANDE 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. KUAJALEIN 65. NARU, FIJI IS. 82. SEOUL
19. CANTON IS. 40. HEIDELBERG 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

SECRET

Figure 76a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 0300Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
55. SINGAPORE 94. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY
0% to 10% of frequencies tried were useful: ------
30% to 60% of frequencies tried were useful: ----
60% to 100% of frequencies tried were useful:

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 0400Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ADAK 21. CHICAGO 41. HONGKONG 57. LAX ALAMOS 71. PALMYRA IS.
2. ANCHORAGE 30. ENTRACK 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
3. ASMARA 32. KISMIIM 46. TAIPEI JIMA 62. MIWAY 81. SAIDON
4. BAMANG 37. GUAM 48. JOHNSTON IS. 64. MONTICHELLE 80. SAN FRANCISCO
5. BANGKOK 39. HAWAII 49. NUKAELI 66. NADI, FIJI IS. 82. SEOUL
6. CANTON IS. 40. REIDELEND 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

Figure 77a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0400Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
86. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY

\[\frac{\text{Numerator of fraction in } 4 \times \text{(number of usable frequency hours)}}{\text{Denominator is } 4 \times \text{(number of frequency hours attempted during hour interval depicted.)}} \]

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0500Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAX 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS
2. ANCHORAGE 22. EMINENT 42. HOUSTON, PT. SAM 61. MANILA
3. ASHARA 23. FREEDOM 43. TAO JIMA 62. MIDWAY
4. BANGO 24. GUAM 44. JOHNSTON 13. 64. MONTGOMERY
5. BANGKOK 25. HAWAII 45. KWAJALEIN 65. NAURU, FIJI 13.
6. CANTON 13. 46. HEIDELBERG 52. LA GRANJA 69. OKINAWA

Figure 78a

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0500Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WARK IS.
87. SEATTLE 97. WASHINGTON, D.C.
65. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY

% of frequencies tried were useful: ---
30% to 60% of frequencies tried were useful: ———
60% to 100% of frequencies tried were useful: ————

\[\frac{\text{numerator of fraction in column}}{\text{frequency hours attempted}} \]

\[\frac{\text{number of usable frequency hours}}{\text{number of frequency hours attempted during hour interval depicted.}} \]
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0600Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
1. ABU C 21. CHICAGO 41. HAMBURG 57. LAG ALAMA
2. ANCHORAGE 30. ENIWETOK 42. BOSTON, MT. CAM 58. PAKPA 16.
6. ASABA 32. Fukuoka 46. TIO JIMA 61. MOMBAY
12. BANGKOK 37. GUAM 40. JOHNSTON IS. 62. MONTGOMERY
13. BANGKOK 39. HAWAII 41. NAJAFABAD 65. NAHU, FIJI IS.
19. CAYTON IS. 40. NEW DELHI 53. LA GRANJA

SECRET

Figure 79a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 0600Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE
86. SAIGON
87. SEATTLE
88. SYDNEY
91. TOKYO

KEY TO FREQUENCY UTILITY
1/4 to 1/2 of frequencies tried were useful: ————
1/2 to 3/4 of frequencies tried were useful: ————
3/4 to 1 of frequencies tried were useful: ————

() numerator of fraction is 4 x (number of usable frequency hours)
() denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0700Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ADAK 21. CHICAGO 41. HONGKONG 67. HOU ALASKA 71. PALMYRA IS.
2. ANCHORAGE 31. EMBASSY 42. HOUSTON, ST. SAM 68. MANILA 72. QUARRY HIGHL.
6. ASHARA 32. FLORENCIA 46. NGO JIMA 69. MIDWAY 81. CAYMAN
12. BANDUNG 37. GUAM 48. JOHNSTON IS. 72. MONTGOMERY
13. BANGKOK 39. HAWAII 51. SWAJAINT 65. NAGO, FIJI IS. 82. SEOUL.
19. CANTON IS. 40. SEPELENSI 57. LA GUANJA 60. OKINAWA
83. SHANGHAI
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0700Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
85. SINGAPORE 96.Wake Is.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
91. TOKYO

KEY TO FREQUENCY UTILITY:
0% to 10% of frequencies tried were useful; ————
10% to 30% of frequencies tried were useful; ————
30% to 80% of frequencies tried were useful; ————
80% to 100% of frequencies tried were useful; ————

\(\frac{N}{D} \) = Numerator of fraction is \(4 \times \) (number of usable frequency hours)
Denominator is \(4 \times \) (number of frequency hours attempted
during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 0800Z

12 AUGUST 1958
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0800Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE
86. WAKE IS.
87. SEATTLE
88. SYDNEY
93. TOKYO
91. WASHINGTON, D.C.

KEY TO FREQUENCY UTILITY
\[
\frac{N}{D} \quad \text{Numerator of fraction is } 4 \times \text{ (number of usable frequency hours)}
\]
\[
\text{Denominator is } 4 \times \text{ (number of frequency hours attempted during hour interval depicted.)}
\]

SECRET

Figure 61b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 0900Z

12 AUGUST 1958

KEY TO TERMINAL LOCATION:
1. ADAK 21. CHICAGO 41. HONG KONG 57. LAS ALAMOS
2. ANCHORAGE 30. ENTRE RIOS 42. HOUSTON, FT. SAM 61. MANILA
6. ASHLEA 32. MOROCCA 46. IWO JIMA 62. MIDWAY
12. BAMAKO 37. GUAM 48. JOHNSTON IS. 64. MONTIQUIANE
13. BANGKOK 39. HAWAII 51. KWALEIN 65. NADI, FIJI IS.
19. CANTON IS. 40. HEIDELBERG 55. LA GRANJA 69. OKINAWA
51. PALMYRA I.
52. QUARRY HEIGHTS
61. SAIPAN
83. SAN FRANCISCO
85. SEOUL
87. SHANGHAI

SECRET

Figure 82a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0900Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
83. SINGAPORE 96. MARE IS.
87. SEATTLE 97. WASHINGTON, D.C.
83. SYDNEY 98. WELLINGTON
93. TOKYO 99. CANDA IS.

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: - - - - -
30% to 50% of frequencies tried were useful: - - - -
60% to 100% of frequencies tried were useful: - - - - -

() Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hour attempts
during hour interval depicted.)

SECRET

Figure 82b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 1000Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ADAX 21. CHICAGO 41. HONGKONG 57. LAS ALAMOS 71. PALMYRA IS.
2. ANCHORAGE 30. ENIWETOK 42. BUSTOWN, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
3. ASAMA 32. POMPEYA 46. IWO JIMA 62. MIDWAY 81. SAIGON
4. BANDUNG 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY 83. SAN FRANCISCO
5. BANGKOK 39. HAWAII 51. KWAJALEIN 65. NADI, FIJI IS. 85. SEOUL
6. CANTON IS. 40. HEIDELBERG 53. LA GHANZA 69. OKINAWA 87. SHANGHAI

Figure 83a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 1000Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
91. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 10% of frequencies tried were useful:
10% to 30% of frequencies tried were useful:
30% to 80% of frequencies tried were useful:
80% to 100% of frequencies tried were useful:

\(\frac{N}{D} \) - Numerator of fraction is 4 x [number of usable frequency hours]
Denominator is 4 x [number of frequency hours attempted
during hour interval depicted.]
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 1030Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
1. ADAK
2. ANCHORAGE
6. ASMARA
12. BANGKOK
13. HANOI
19. CANTON IS.
21. CHICAGO
30. ENIWETOK
32. FORMOSA
37. GUAM
39. HAWAII
40. KUWAIT

41. HONGKONG
42. HOUSTON, FT. SAM
46. IWO JIMA
48. JOHNSTON IS.
51. KWAJALEIN
53. LA GUANJA
57. LOS ALAMOS
61. MANILA
62. MIDWAY
64. MONTGOMERY
65. NAGO, FII. IS.
69. OKINAWA
71. PALMIRA IS.
72. QUARRY HEIGHTS
81. SAIGON
82. SEOUL

SECRET

Figure 64a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1030Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
85. SINGAPORE
86. WAKE IS.
87. SEATTLE
97. WASHINGTON, D.C.
88. SYDNEY
98. WELLINGTON
93. TOKYO
99. SAMOA IS.

KEY TO FREQUENCY UTILITY:

\(\frac{\text{numerator of fraction}}{\text{denominator of fraction}} \)

- Numerator of fraction is 4 \(x \) (number of usable frequency hours)
- Denominator is 4 \(x \) (number of frequency hours attempted

during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1100Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. MIAMI 57. LOS ALAMOS 71. PALMIRA IS.
2. ANCHORAGE 30. MINNEAPOLIS 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
3. ASIBA 32. FORMOSA 46. TOKYO 62. MIDWAY 81. SAIDUN
4. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MONTIGRANDE 80. SAN FRANCISCO
5. BANGKOK 39. HAWAII 51. KWAJALEIN 65. Nandi, Fiji Is. 82. SEOUL
6. CANTON IS. 40. REIDELBERG 53. LA GRAJJA 69. OKINAWA 83. SHANGHAI
7. CANBERRA 41. MIAMI 57. LOS ALAMOS 71. PALMIRA IS.
8. CANBERRA 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
9. CANBERRA 46. TOKYO 62. MIDWAY 81. SAIDUN
10. CANBERRA 51. KWAJALEIN 65. Nandi, Fiji Is. 82. SEOUL
11. CANBERRA 53. LA GRAJJA 69. OKINAWA 83. SHANGHAI
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1100Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
85. SINGAPORE
87. SEATTLE
88. SYDNEY
93. TOKYO
96. WAKE IS.
97. WASHINGTON, D.C.
98. VINCENNES
99. SERA 15.

KEY TO FREQUENCY UTILITY:

60% to 80% of frequencies tried were useful:
80% to 100% of frequencies tried were useful:

\[
\frac{\text{Numerator of fraction is } 4 \times (\text{number of usable frequency hours})}{\text{Denominator is } 4 \times (\text{number of frequency hours attempted during hour interval depicted.})}
\]
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: UTC

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAM 21. CHICAGO 41. HONGKONG 97. LOS ALAMOS 71. PALMYRA IS.
2. ANCHORAGE 30. ENTWISTLE 42. HOUSTON, PT. SAM 61. MANILA 72. QUANTY HEIGHTS
6. ASIBABA 32. FORMOSA 46. IWO JIMA 62. MIDWAY 81. SAIDON
12. BANJEMI 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY 80. SAN FRANCISCO
13. BANGKOK 39. HAIKII 51. KOWAJAEN 65. NANOI, FIJI IS. 82. SEOUL
19. CANTON IS. 40. HEIDELBERG 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

Figure 86a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1130Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY

(\frac{X}{Y}) - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1200Z

12 AUGUST 1958

Fig. 37a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1200Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
83. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY

0% to 30% of frequencies tried were useful: ---
30% to 80% of frequencies tried were useful: ---
80% to 100% of frequencies tried were useful: ---

\[\frac{\text{Numerator of fraction is } 4 \times (\text{number of usable frequency hours})}{\text{Denominator is } 4 \times (\text{number of frequency hours attempted during hour interval depicted})} \]
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1230Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HOKKINDI 57. LOS ALAMOS
2. ANCHORAGE 30. ENWITOK 42. HOUSTON, PT. SAM 58. MANILA
6. ASABA 32. FUKUSHIMA 46. MIO JIMA
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY
13. BANGKOK 39. HAWAII 51. KWAJALEIN 65. NADI, FIJI IS.
19. CANTON IS. 40. HEIDELBERG 53. LA GUANJA 69. OKINAWA
81. PALMYRA IS.
72. QUARRY HIGHTS
81. SAIGON
80. SAN FRANCISCO
82. SEOUL
83. SHANGHAI

Figure 88a

SECRET
204
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1230Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY

0% to 30% of frequencies tried were useful: - - - -
30% to 50% of frequencies tried were useful: - - - -
50% to 100% of frequencies tried were useful:

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET

Figure 88b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1300Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK
2. ANCHORAGE
6. ASMARA
12. BANGKOK
19. CANTON IS.
21. CHICAGO
30. ENIWETOK
32. FORMOSA
39. HAWAII
40. HEIDELBERG
41. HONGKONG
42. HOUSTON, FT. SAM
46. IWO JIMA
48. JOHNSTON IS.
53. LA GUANIA
57. LOS ALAMOS
61. MANILA
62. MIDWAY
64. MONTGRANDE
65. NAVIDAD, FIJI IS.
69. OKINAWA
71. PALMYRA IS.
72. QUARRY HEIGHTS
81. SAIGON
82. SAN FRANCISCO
83. SEOUL

Figure 59a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1300Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE
86. WAKE IS.
87. SEATTLE
88. SYDNEY
93. TOKYO
99. NAHA IS.

KEY TO FREQUENCY UTILITY
0% to 50% of frequencies tried were useful: - - - -
30% to 80% of frequencies tried were useful: - -
80% to 100% of frequencies tried were useful:

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 1330Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADIAB 21. CHICAGO 41. HONGKONG 57. IGI ALAM 71. PALMA IS.
2. ANCHORAGE 30. ENTEPEK 42. HOUSTON, PT. SAM 61. MANILA 72. QUARRY HIGHTS
6. ASMARA 32. FORMOSA 46. IIO JIMA 62. MIHAY 81. RAFIN
12. BANGKOK 37. GUAM 48. JOHNSTON IG. 64. MONTGOMERY 80. SAN FRANCISCO
13. BANGKOK 39. HAWAI 51. KUJALEIN 65. NIKU, FIJI IG. 82. SEOUL
19. CLINTON IS. 40. HEIDELBERG 53. LA GUANA 69. OKINAWA 83. SHANGHAI

Figure 90a
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1330Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
97. SEATTLE 97. WASHINGTON, D.C.
98. SYDNEY 98. WELLINGTON
99. TOKYO 99. SANTA IS.

KEY TO FREQUENCY UTILITY
0% to 20% of frequencies tried were useful: - - - - - - -
20% to 40% of frequencies tried were useful: - - - - -
40% to 60% of frequencies tried were useful: - - - -
60% to 80% of frequencies tried were useful: - - -
80% to 100% of frequencies tried were useful: - -

() Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted during hour interval depicted.)

SECRET

299
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1400Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALMIRA IS.
2. ANCHORAGE 30. ENTERPRISE 42. HOUSTON, PT. SAM 61. MANILA 72. QUARRY HILLS
6. ASMARA 32. POMORUA 46. TAO JIMA 62. MIDWAY 81. ZADON
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MENTORABLE 80. SAN FRANCISCO
13. BANGKOK 39. HAWAI 51. KWAJALEIN 65. NANDI, FIJI IS. 82. SEOUL
19. CANTON IS. 40. HEIMBERG 53. LA GUANIA 69. OKINAWA 83. SHANDIAN

Figure 91a
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1400Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 10% of frequencies tried were useful: --------
10% to 50% of frequencies tried were useful: -----
50% to 90% of frequencies tried were useful: ---
90% to 100% of frequencies tried were useful:

\(\frac{X}{Y} \) - Numerator of fraction is \(X \) (number of usable frequency hours)
Denominator is \(Y \) (number of frequency hours attempted
during hour interval depicted.)

SECRET
211 Figure 91b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1430Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALMORA IS.
2. ANCHORAGE 30. ENIDETOK 42. HOUSTON, PT. SAM 61. MANILA 72. QUARRY HEIGHTS
3. ASMARA 32. FROZEA 46. PRO JIMA 62. MIDWAY 81. SAIPAN
4. BAKU 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY 80. SAN FRANCISCO
5. BANGKOK 39. HAWAII 51. N'GAGEI 65. NADI, FIJI IS. 82. SEOUL
6. CANTON 15. 40. HAMBURG 53. LA GUANJA 69. OKINAWA 83. SHANGHAI

Figure 92a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1430Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 20% of frequencies tried were useful: --------
20% to 40% of frequencies tried were useful: ------
40% to 100% of frequencies tried were useful: -------

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET
221 Figure 92b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1500Z

NIGHT

12 AUGUST 1958

DAY

SE2R

Figure 93a

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1500Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY

0% to 30% of frequencies tried were useful: ---
30% to 60% of frequencies tried were useful: ---
60% to 100% of frequencies tried were useful: ---

\(\frac{\text{Numerator of fraction}}{\text{Denominator}} \) = number of usable frequency hours

\(\frac{\text{number of usable frequency hours}}{\text{number of frequency hours attempted}} \)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1530Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADMX 21. CHICAGO 41. HONGKONG 67. LAG ALAMO
2. ANCHORAGE 30. ENIVETON 42. HOUSTON, FT. SAM 68. MANILA
6. ASMARA 32. FORMOSA 46. IWO JIMA 69. MIDWAY
12. BAHAURU 37. GUAM 48. JOHNSTON IS. 70. MONTGOMERY
13. BANGKOK 39. HAWAII 51. KJUJJEIEI 71. PALKSHA IS.
19. CAMTOM IS. 40. HEPHEIHEI 53. LA GHANJA 72. QUINNY HEIGHTS

Figure 91a

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1530Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. CAIRIA IS.

KEY TO FREQUENCY UTILITY
0% to 10% of frequencies tried were useful: -------
30% to 80% of frequencies tried were useful: ------
80% to 100% of frequencies tried were useful: ---------

\(\frac{N}{D} \) - Numerator of fraction is \(N \) (number of usable frequency hours)
Denominator is \(D \) (number of frequency hours attempted
during hour interval depicted.)
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1600Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS
2. ANCHORAGE 30. ENNIETOK 42. HOUSTON, PT. SAM 61. MANILA
6. ASMARA 32. FORMOSA 46. IWO JIMA
12. AUSTRALIA 37. GUAM 48. JOHNSTON IS.,
13. BANGKOK 39. HAWAII 51. KRAJALEIN
19. CANTON IS. 40. HEIDELBERG 53. LA HANZA

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1600Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
82. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMA IS.

KEY TO FREQUENCY UTILITY
% to 50% of frequencies tried were useful: ------
50% to 80% of frequencies tried were useful: ---------
80% to 100% of frequencies tried were useful: ---------------

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted during hour interval depicted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1630Z

12 AUGUST 1958

SECRET

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG
2. ANCHORAGE 30. ENIWETOK 42. HOUSTON, FT. SAM
3. ASHIVA 32. FUKUOKA 46. TAO JIMA
4. BANGKOK 37. GUAM 48. JOHNSTON IS.
5. BAHIA 39. HAWAII 51. KWAJALEIN
6. CANTON 35. HOLLANDIA 53. LA GUANJA
7. LONG ALASKA 57. LEG ASASTA
8. PALMA 32. NAGASAKI 59. NAHA, OKINAWA
9. PAGHAN 34. RIPOKU 61. MANILA
10. PHILIPPE 33. ROKKU 63. MANAMA, BAHRAIN
11. PORTER 36. SAIGON 64. NAGOYA
12. ROKUJIMA 38. SHIKOKU 65. NAGO, NAGASAKI
13. SHANGHAI 39. TAIPEI 66. NAPOLI, ITALY
14. TAIWAN 40. TSINGTAI 67. NARA, JAPAN
15. TAIWAN 41. TAIWAN 68. NINGBO, CHINA
16. TAIWAN 42. TAIWAN 69. VATANGU
17. TAIWAN 43. TAIWAN 70. WANGFANG
18. TAIWAN 44. TAIWAN 71. WANGFANG
19. TAIWAN 45. TAIPEI 72. WANGFANG
20. TAIWAN 46. TAIPEI 73. WANGFANG

Figure 92
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 1630Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

85. SINGAPORE
86. WAKE IS.
87. SEATTLE
88. SYDNEY
93. TOKYO
89. WASHINGTON, D.C.
98. WELLINGTON
99. CANADA IS.

KEY TO FREQUENCY UTILITY

0% to 30% of frequencies tried were useful: - - - - - - - -
30% to 80% of frequencies tried were useful: - - - - - - - -
80% to 100% of frequencies tried were useful: - - - - - - - -

\[\frac{\text{numerator of fraction in } 4 \times (\text{number of usable frequency hours})}{\text{denominator in } 4 \times (\text{number of frequency hours attempted during hour interval depicted})} \]

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1700Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1700Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 94. SAKA IS.

KEY TO FREQUENCY UTILITY

0% to 10% of frequencies tried were useful: ---
10% to 30% of frequencies tried were useful: ---
30% to 60% of frequencies tried were useful: ---
60% to 100% of frequencies tried were useful: ---

\(\frac{\text{Numerator of fraction}}{\text{Denominator of fraction}} = \frac{4 \times \text{(number of usable frequency hours)}}{4 \times \text{(number of frequency hours attempted during hour interval depicted)}} \)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1730Z

12 AUGUST 1958

NIGHT

DAY

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. BEIJING 57. LAG NAS
2. ANCHORAGE 30. ENIWETOK 42. HOUSTON, FT. SAM 61. MANILA
6. ASMARA 32. FORMOSA 46. TAI JIMA 62. MIDWAY
12. BANDUNG 37. GUAM 48. JUBILEE IS. 64. MONTGOMERY
13. BANGKOK 39. HAWAII 51. KWAJALEIN 65. NADI, FJ I.
19. CANTON IS. 40. HOBOKEN 53. LA GHANIA 69. OKINAWA
81. SHANGHAI

Figure 9a
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1730Z

12 AUGUST 1958

KEY TO TERMINAL LOCATION:
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SADDA IS.

KEY TO FREQUENCY UTILITY:
0% to 20% of frequencies tried were useful: ----
30% to 80% of frequencies tried were useful: ---
90% to 100% of frequencies tried were useful: ----

\[\frac{\text{Numerator of fraction in } 4 \times \text{ (number of usable frequency hours)}}{\text{Denominator in } 4 \times \text{ (number of frequency hours attempted during hour interval}} \text{ elapsed).} \]
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1800Z

12 AUGUST 1958

Figure 99a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1800Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. JAMAICA IS.

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: ————
30% to 60% of frequencies tried were useful: ————
60% to 100% of frequencies tried were useful: ————

\(\frac{\text{Numerator of fraction}}{\text{Denominator of fraction}} \) (number of usable frequency hours) during time interval depicted.

SECRET
227 Figure 97b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1830Z

12 AUGUST 1958
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1830Z

12 AUGUST 1958

KEY TO TERMINAL LOCATION:
93. SINGAPORE 96. WAKI IS.
87. SEATTLE 97. WASHINGTON, D.C.
86. SYDNEY 98. WELLINGTON
93. TOKYO 99. SANTA IS.

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: — — — — — —
30% to 60% of frequencies tried were useful: — — — —
60% to 100% of frequencies tried were useful: — — — — — —

() — Numerator of fraction is 4 x (number of usable frequency hours)
Denominator in 4 x (number of frequency hours attempted
during hour interval denoted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1900Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADAK 21. CHICAGO 41. HONG KONG 57. LOS ALAMOS 71. PALAU IS.
2. ANCHORAGE 30. EMEMSTOK 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ASMARA 32. FORMOSA 46. IWO JIMA 62. MIDWAY 81. SAIGON
12. BANGLADESH 37. GUAM 48. JOHNSTON IS. 64. MENTORAH 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. KWAJALEIN 65. MANZ, FIJI IS. 82. SEOUL
19. CANTON IS. 40. HEIDELBERG 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

Figure 101a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1900Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY

\(\frac{X}{Y} \) - Numerator of fraction is \(4 \times \) (number of usable frequency hours)
Denominator is \(4 \times \) (number of frequency hours attempted
during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1930Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ADAM 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS
2. ANCHORAGE 30. ENIWETOK 42. HOUSTON, FT. SAM 61. MANILA
6. ASABA 32. FORMOSA 46. INO JIMA 62. MIDLAW
12. BAHAMAS 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY
13. BANGKOK 39. HAWAI 51. MAKALISH 65. NANGI, FIJI IS.
19. CANTON IS. 40. HEIDELBERG 52. LA OAHUA 66. OKINAWA

Figure 102a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1930Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
91. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY:

75 to 99% of frequencies tried were useful: ————
30 to 65% of frequencies tried were useful: ————
0 to 29% of frequencies tried were useful: ————

() numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET

Figure 102b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2000Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADAK 21. CHICAGO 41. HONGKONG 57. LONG BEACH 71. PALMIRA IS.
2. ANCHORAGE 30. KENNEWICK 42. HOUSTON, PT. SAM 61. MANILA 72. QUARRY HEIGHTS
3. ASMARA 32. PORTO ALEGRE 46. YOYO JIMA 62. MIDWAY 81. SAIGON
4. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MIDTOWN 80. SAN FRANCISCO
5. BANGKOK 39. HABANA 51. KWAJALEIN 65. NADI, FIJI IS. 82. SEOUL
6. CANTON IS. 40. HEIDELBERG 53. LA GRANJA 69. OKINAWA 83. SHANGHAI

Figure 103a
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2000Z

KEY TO TERMINAL LOCATIONS

85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY

0% to 30% of frequencies tried were useful: - - - - - -
30% to 60% of frequencies tried were useful: - - - -
60% to 100% of frequencies tried were useful:

\[
\frac{\text{Numerator of fraction}}{\text{Denominator of fraction}} = \frac{\text{number of usable frequency hours}}{\text{number of frequency hours attempted}}
\]

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2030Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADAK 21. CHICAGO 41. HONGKONG 57. LAG ALAMOS
2. ANCHORAGE 30. ENTERPRISE 42. HOUSTON, FT. SAM 64. MANILA
6. ASIARA 32. FORMOSA 46. TRU JIMA 62. MIDWAY
12. HANKKONG 37. OAHU 48. JOHNSTON IS. 65. PORTO RICANS
13. BANGKOK 39. HAWAII 51. KWAJALEIN 69. NAUKJAIS
19. CANTON IS. 40. REIDEBORG 53. LA GRANJA 81. SHANGHAI
83. SINGAPORE

Figure 1046
SECRET

SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2030Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: ————
30% to 60% of frequencies tried were useful: ————
60% to 100% of frequencies tried were useful: ————

() — Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2100Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALAHIKA IS.
2. ANCHORAGE 30. EMINET 42. HOUSTON, PT. SAM 61. MANILA 72. QUARRY HEIGHTS
3. ASHARA 32. FORMOSA 46. INO JIMA 62. MIWAY 81. SAIGON
4. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERIE 80. SAN FRANCISCO
5. BANGKOK 39. HAWAII 51. NAZAREN 65. NARU, FIJI IS. 82. SEOUL
6. CANTON IS. 40. HEIDELBERG 53. LA GHANIA 66. NABITAMA 83. SHANGHAI

Figure 105a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2100Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
85. SINGAPORE 96. WAKE IS.
86. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
91. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY

- 0% to 10% of frequencies tried were useful:
- 10% to 30% of frequencies tried were useful:
- 30% to 60% of frequencies tried were useful:
- 60% to 100% of frequencies tried were useful:

\(\frac{\text{numerator of fraction}}{\text{denominator of fraction}} \times \frac{4}{x} \) (number of usable frequency hours)

\(\frac{\text{numerator of fraction}}{\text{denominator of fraction}} \times \frac{4}{x} \) (number of frequency hours attempted during hour interval depicted.)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2130Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ADAK
2. ANCHORAGE
3. AUSMAMA
4. BANGKOK
5. CANTON IS.
6. CHICAGO
7. CHONGQING
8. CHONGQING
9. CHONGQING
10. CHONGQING
11. CHONGQING
12. CHONGQING
13. CHONGQING
14. CHONGQING
15. CHONGQING
16. CHONGQING
17. CHONGQING
18. CHONGQING
19. CHONGQING
20. CHONGQING
21. CHONGQING
22. CHONGQING
23. CHONGQING
24. CHONGQING
25. CHONGQING
26. CHONGQING
27. CHONGQING
28. CHONGQING
29. CHONGQING
30. CHONGQING
31. CHONGQING
32. CHONGQING
33. CHONGQING
34. CHONGQING
35. CHONGQING
36. CHONGQING
37. CHONGQING
38. CHONGQING
39. CHONGQING
40. CHONGQING
41. CHONGQING
42. CHONGQING
43. CHONGQING
44. CHONGQING
45. CHONGQING
46. CHONGQING
47. CHONGQING
48. CHONGQING
49. CHONGQING
50. CHONGQING
51. CHONGQING
52. CHONGQING
53. CHONGQING
54. CHONGQING
55. CHONGQING
56. CHONGQING
57. CHONGQING
58. CHONGQING
59. CHONGQING
60. CHONGQING
61. CHONGQING
62. CHONGQING
63. CHONGQING
64. CHONGQING
65. CHONGQING
66. CHONGQING
67. CHONGQING
68. CHONGQING
69. CHONGQING
70. CHONGQING
71. CHONGQING
72. CHONGQING
73. CHONGQING
74. CHONGQING
75. CHONGQING
76. CHONGQING
77. CHONGQING
78. CHONGQING
79. CHONGQING
80. CHONGQING
81. CHONGQING
82. CHONGQING
83. CHONGQING
84. CHONGQING
85. CHONGQING
86. CHONGQING
87. CHONGQING
88. CHONGQING
89. CHONGQING
90. CHONGQING
91. CHONGQING
92. CHONGQING
93. CHONGQING
94. CHONGQING
95. CHONGQING
96. CHONGQING
97. CHONGQING
98. CHONGQING
99. CHONGQING
100. CHONGQING
101. CHONGQING
102. CHONGQING
103. CHONGQING
104. CHONGQING
105. CHONGQING
106. CHONGQING
107. CHONGQING
108. CHONGQING
109. CHONGQING
110. CHONGQING
111. CHONGQING
112. CHONGQING
113. CHONGQING
114. CHONGQING
115. CHONGQING
116. CHONGQING
117. CHONGQING
118. CHONGQING
119. CHONGQING
120. CHONGQING
121. CHONGQING
122. CHONGQING
123. CHONGQING
124. CHONGQING
125. CHONGQING
126. CHONGQING
127. CHONGQING
128. CHONGQING
129. CHONGQING
130. CHONGQING
131. CHONGQING
132. CHONGQING
133. CHONGQING
134. CHONGQING
135. CHONGQING
136. CHONGQING
137. CHONGQING
138. CHONGQING
139. CHONGQING
140. CHONGQING
141. CHONGQING
142. CHONGQING
143. CHONGQING
144. CHONGQING
145. CHONGQING
146. CHONGQING
147. CHONGQING
148. CHONGQING
149. CHONGQING
150. CHONGQING
151. CHONGQING
152. CHONGQING
153. CHONGQING
154. CHONGQING
155. CHONGQING
156. CHONGQING
157. CHONGQING
158. CHONGQING
159. CHONGQING
160. CHONGQING
161. CHONGQING
162. CHONGQING
163. CHONGQING
164. CHONGQING
165. CHONGQING
166. CHONGQING
167. CHONGQING
168. CHONGQING
169. CHONGQING
170. CHONGQING
171. CHONGQING
172. CHONGQING
173. CHONGQING
174. CHONGQING
175. CHONGQING
176. CHONGQING
177. CHONGQING
178. CHONGQING
179. CHONGQING
180. CHONGQING
181. CHONGQING
182. CHONGQING
183. CHONGQING
184. CHONGQING
185. CHONGQING
186. CHONGQING
187. CHONGQING
188. CHONGQING
189. CHONGQING
190. CHONGQING
191. CHONGQING
192. CHONGQING
193. CHONGQING
194. CHONGQING
195. CHONGQING
196. CHONGQING
197. CHONGQING
198. CHONGQING
199. CHONGQING
200. CHONGQING
201. CHONGQING
202. CHONGQING
203. CHONGQING
204. CHONGQING
205. CHONGQING
206. CHONGQING
207. CHONGQING
208. CHONGQING
209. CHONGQING
210. CHONGQING
211. CHONGQING
212. CHONGQING
213. CHONGQING
214. CHONGQING
215. CHONGQING
216. CHONGQING
217. CHONGQING
218. CHONGQING
219. CHONGQING
220. CHONGQING
221. CHONGQING
222. CHONGQING
223. CHONGQING
224. CHONGQING
225. CHONGQING
226. CHONGQING
227. CHONGQING
228. CHONGQING
229. CHONGQING
230. CHONGQING
231. CHONGQING
232. CHONGQING
233. CHONGQING
234. CHONGQING
235. CHONGQING
236. CHONGQING
237. CHONGQING
238. CHONGQING
239. CHONGQING
240. CHONGQING

Figure 105a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2130Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: ————
30% to 60% of frequencies tried were useful: ————
60% to 100% of frequencies tried were useful: ————

() — Numerator of fraction is 4 x (number of usable frequency hours)
/ () — Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET

Figure 105b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 2200Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS
1. ADIK 21. CHICAGO 41. NAGASAKI 67. LOS ALAMOS 71. PALAPA IS.
2. ANCHORAGE 30. ENITOK 42. HOUSTON, PT. SAM 68. MANILA 72. QUARRY HEIGHTS
6. ASABA 32. FORMOSA 46. TWO JIMA 69. MIDWAY 81. SASEBO
12. BANDUNDU 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY 80. SAN FRANCISCO
13. BANGLADESH 39. HAWAII 51. KINJALIN 65. NAJDI, FIJI IS. 82. SEOUL
19. CAMTON IS. 40. HEIDELBERG 57. LAS CRUCES 69. OKINAWA 83. SHANGHAI

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2200Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
95. SINGAPORE 96. WAKE IS.
97. SEATTLE 97. WASHINGTON, D.C.
98. SYDNEY 98. WELLINGTON
99. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 10% of frequencies tried were useful: ————
10% to 30% of frequencies tried were useful: ————
30% to 80% of frequencies tried were useful: ————
80% to 100% of frequencies tried were useful: ————

Numerator of fraction is 4 x [number of usable frequency hours]
Denominator is 4 x [number of frequency hours attempted
during hour interval depicted.]
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 2230Z

12 AUGUST 1958
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2230Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
83. SINGAPORE
87. SEATTLE
88. SYDNEY
93. TOKYO
96. WAKE IS.
97. WASHINGTON, D.C.
98. WELLINGTON
99. SAMOA IS.

KEY TO FREQUENCY UTILITY:
\(\frac{\text{Numerator of fraction}}{\text{Denominator of fraction}} \) (number of usable frequency hours attempted
during hour interval depicted)

0% to 30% of frequencies tried were useful:
30% to 60% of frequencies tried were useful:
60% to 90% of frequencies tried were useful:
90% to 100% of frequencies tried were useful:

\(\text{Numerator of fraction} \quad \text{Denominator of fraction} \)

(\(\text{number of usable frequency hours attempted} \))
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2300Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS
2. ANCHORAGE 30. ENTEDOK 42. HOUSTON, PT. SAM 61. MANILA
6. ASMARA 32. PORTMESA 46. TWO JIMA 62. MIDWAY
12. BANGKOK 37. guam 48. JOHNSTON IS. 64. montebello
13. BANGKOK 39. hAWAII 51. SWAJALBIN 65. Nandi, fIJI IS.
19. CANTON IS. 40. HEIDELBERG 53. LA GRANJA 69. OKINAWA

Figure 109a
SECRET

SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2300Z

12 AUGUST 1958

SECRET

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLYNGTON
93. TOKYO 99. SAMOA IS.

KEY TO FREQUENCY UTILITY
0% to 10% of frequencies tried were useful: ————
10% to 80% of frequencies tried were useful: ————
80% to 100% of frequencies tried were useful: ————

() / () - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2330Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ADAK 21. CHICAGO 41. HONGKONG 57. LUG ALAMG 71. PALOMA IS.
2. ANCHORAGE 30. ENTWISTLE 42. HOUSTON, FT. SAM 61. MANILA 72. QUANTMER HEIGHTS
6. ASHARA 32. FORMOSA 46. TOK JOHA 62. MIDWAY 81. SADON
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MONTORGUE 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. KUJALEIN 65. NADI, FIJI IS. 82. SEOUL
19. CAYTON IS. 40. HEIDELBERG 53. LA GUANJA 69. OKINAWA 84. SHANGHAI

Figure 110a

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 2330Z

12 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY:
0% to 30% of frequencies tried were useful: ————
30% to 60% of frequencies tried were useful: ————
60% to 100% of frequencies tried were useful: ————

\(\frac{\text{numerator of fraction}}{\text{denominator of fraction}} \) = numerator of fraction is 4 x (number of usable frequency hours),

\(\frac{\text{numerator of fraction}}{\text{denominator of fraction}} \) = denominator of fraction is 4 x (number of frequency hours attempted during hour interval depicted.)

SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0000Z

13 AUGUST 1958

1. ADAK 21. CHICAGO 41. HONOLULU 67. LOS ALAMOS 71. PALMIRA BN.
2. ANCHORAGE 30. KHIJEURUK 42. HUTSON, FT. CAN 61. MANILA 77. QUARRY HEIGHTS
6. AGANA 32. NORTHERN 46. IWO JIMA 62. MIDWAY 81. SAIGON
12. BANGKOK 37. GUAM 48. JOHNSTON I. 64. MENTHORNE 84. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. KOWALEIN 65. NADI, FIJI IS. 82. SEOUL
19. CAMPO IN. 40. BEIJING 53. LAGOSHA 69. OHRADA 83. SHANGHAI

Figure 111a

SECRET

250
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0000Z

13 AUGUST 1958

KEY TO TERMINAL LOCATION:
85. SINGAPORE 86. WAK 16.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY
0% to 3% of frequencies tried were useful: -- -- -- --
3% to 50% of frequencies tried were useful: -- -- -- --
50% to 100% of frequencies tried were useful: -- -- -- --

\[\left(\frac{\text{Numerator of fraction is } 4 \times \text{(number of usable frequency hours)}}{\text{Denominator is } 4 \times \text{(number of frequency hours attempted during hour interval depicted)}} \right) \]

SECRET

Figure IIIib
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0100Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ADAK 21. CHICAGO 41. HONGKONG 57. LOS ALAMOS 71. PALMIRA IS.
2. ANCHORAGE 30. ENTRIPUK 42. HOUSTON, FT. CUFF 61. MANILA 72. QUARRY HEIGHTS
3. ASMARA 32. FORTY-WA 46. IWO JIMA 62. MIDWAY 73. SAIGON
4. BANGKOK 37. GUAM 48. JUBONION IS. 64. MONTREAL 74. SAN FRANCISCO
5. BANGKOK 39. HAWAII 51. KUALA LUMPUR 65. NAGO, FUKI IS. 81. SEOUL
9. CANTON IS. 40. HEIDELBERG 53. LA GUANIA 69. OKINAWA 83. SHANGHAI

SECRET

Figure 112a

292
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0100Z

13 AUGUST 1958

KEY TO TERMINAL LOCATION:
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY:
\(\frac{\text{numerator of fraction} \times 4}{\text{denominator of fraction}} \times \text{number of usable frequency hours} \)
\(\text{denominator in } 4 \times \text{number of frequency hours attempted during hour interval depleted} \)

SECRET
Figure 112b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0200Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
1. ADAK 21. CHICAGO 41. HONGKONG 97. LOS ALAMOS
2. ANCHORAGE 30. ENTREKIN 42. HOUSTON, FT. SAM 98. QUARRY HIGHTS
6. ASABA 32. FORMOSA 46. IWO JIMA 62. MIDWAY
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY
13. BUKHAROS 39. HAWAII 51. KUJAKIN 65. NADI, FIJI IS.
19. CANTON IS. 40. KURILS 53. LA CORUNA 69. OKINAWA
71. PALMYRA IS.
72. QUARRY HIGHTS
81. SAIGON
80. SAN FRANCISCO
82. SEOUL
83. SHANGHAI

Figure 113a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0200Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: - - - - -
30% to 60% of frequencies tried were useful: -- -- --
60% to 100% of frequencies tried were useful: ---- ----

(/) - Numerator of fraction in 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0300Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HOMESTEAD 57. LOS ALAMOS 71. PALMIRA IS.
2. ANCHORAGE 30. EINDETOK 42. HOUSTON, FT. SAM 61. MANILA 72. QUARRY HEIGHTS
6. ASMARA 32. FORMOSA 46. TAO JIMA 62. MIDWAY 81. SAIGON
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY 80. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. KWAJALEIN 65. NADI, FIJI IS. 82. SEOUL
19. CANTON 48. HEIDELBERG 53. LA GUANJA 69. OKINAWA 83. SHANGHAI

Figure 114a
SECRET

SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0300Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

85. SINGAPORE
87. SEATTLE
88. SYDNEY
93. TOKYO
96. WAKE IS.
97. WASHINGTON, D.C.
98. WELLINGTON

KEY TO FREQUENCY UTILITY

0% to 30% of frequencies tried were useful: ----------
30% to 80% of frequencies tried were useful: ---------
80% to 100% of frequencies tried were useful: ---------

\(\frac{N}{F} \) = Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET

Figure 114b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 0400Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ARAK 21. CHICAGO 41. HONOLULU 57. LAGA ALAMG 71. PALAPA LD.
2. ANCHORAGE 30. ENTREKOU 42. HUNSON, PT. SAB 61. MANILA 72. QUARRY HEIGHTS
6. ACAPULCO 32. FOGARDA 46. IWO JIMA 62. MIKAT 81. SAN JUAN
12. BANGKOK 37. GUAM 49. JOINTON IS. 64. MONTGOMERY 86. SAN FRANCISCO
13. BANGKOK 39. HAWAII 51. NAJALEIN 65. NADI, FIJI IS. 82. SUVA
19. CANTON 15. 40. HEBERDEIN 53. LA OAHANA 67. OAHANA 83. SHANGHAI

Figure 115a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 0400Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS:
86. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY:

- 0% to 30% of frequencies tried were useful: ————-
- 30% to 80% of frequencies tried were useful: ————
- 80% to 100% of frequencies tried were useful: ————

\(\frac{\text{Numerator of fraction in } 4 \times \text{(number of usable frequency hours)}}{\text{Denominator in } 4 \times \text{(number of frequency hours attempted during hour interval depicted)}} \)

SECRET

Figure 135b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0500Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ADAK 21. CHICAGO 41. HONGKONG 57. LAX ALASKA 71. PALMIRA IS.
2. ANCHORAGE 30. KONOWIS 42. HANSON, ST. GAB 61. MANILA 72. QUARRY HILLS
6. ASAHARA 32. FRESNO 46. TAI JIN 62. MIWAY 81. SATURN
12. BANGKOK 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY 80. SAN FRANCISCO
13. BANDUNG 39. HAWAII 51. KAIFALEIN 65. NAJDI, FIJI IS. 82. SEOUL
19. CAMPO IS. 40. KELLEDOM 53. LAGANZA 69. OKINAWA 83. SHANGHAI

Figure 116a
SECRETS
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0500Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 90. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY
0% to 30% of frequencies tried were useful: - - - - - -
30% to 40% of frequencies tried were useful: - - - - -
50% to 100% of frequencies tried were useful: - - - - -
\(\frac{N}{D} \) - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

SECRET
261
Figure 116b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 0600Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS

1. ADAK 21. CHICAGO 41. HONOLULU 57. LOS ALAMOS
2. ANCHORAGE 30. ENIWETOK 42. HOUSTON, PT. SAM 61. MANILA
6. ASHAK 32. FUKUOKA 46. INO JIMA 62. MIDWAY
12. BANGKOK 37. GUAM 48. JOHNSON IS. 64. MINTOINAGE
13. BANGKOK 39. HAWAII 51. IWAJAZIN 65. NAHOI, PIJII IS.
19. CANTON IS. 40. HEIDELBERG 53. LA GRANJA 69. OKIWA
71. PAMPA IS.
72. QUANTY REPORTS
81. SATO
82. SAN FRANCISCO
83. SHANGHAI

Figure 117a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0600Z

13 AUGUST 1958

KEY TO TERMINAL LOCATION:
65. SINGAPORE
87. SEATTLE
88. SYDNEY
93. TOKYO

KEY TO FREQUENCY UTILITY
0% to 20% of frequencies tried were useful: ---------------
20% to 60% of frequencies tried were useful: ---------------
60% to 100% of frequencies tried were useful: ---------------

() - Numerator of fraction is 4 x (number of usable frequency hours)
Denominator is 4 x (number of frequency hours attempted
during hour interval depicted.)

Figure 117b
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0700Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ADAK
2. ANCHORAGE
6. ADEN
12. BANDUNDU
13. BANDOEC
19. CAPE ST. JAMES

21. CHICAGO
30. EMBASSY
36. KHARJAH
40. HELIOPOLIS

41. BASRA
42. EGYPT, PT. SAM
46. TOKYO JIMA
50. HUE HUNG
51. JERUSALEM
58. LA GUANAJ

59. LAG ALEH
60. MADAGASCA
61. MADOU, FIJI IS.
67. MASHU
68. MONTGOMERY
71. PARAGUA IN.
72. QUARRY HEIGHTS
73. SAITAM
79. SAN FRANCISCO
80. SEOUL
88. SHANGHAI
89. SHANGHAI

Figure 116a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 0700Z

13 AUGUST 1958

KEY TO TERMINAL LOCATION:
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY

\(\frac{a}{b} \) - Numerator of fraction is \(a \times (\text{number of usable frequency hours}) \)
\(\frac{c}{d} \) - Denominator of fraction is \(d \times (\text{number of frequency hours attempted during hour interval depicted}) \)
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0800Z

13 AUGUST 1958

KEY TO TERMINAL LOCATION:

1. ADAK 21. CHICAGO 41. HONGKONG 57. LAS ALAMOS
2. ANCHORAGE 30. KNOXVIL 42. HOUSTON, FT. SAM 61. MANILA
6. ASIBA 32. FUKUSHIMA 46. FUKUJI 62. MIWAY
12. BANDUNG 37. GUAM 48. JOHNSTON IS. 64. MONTGOMERY
13. BANGKOK 39. HAWAII 51. KAJALEN 65. NAGOI, FIJI INS.
19. CANTON IS. 40. HELMSTEAD 53. LA GRANJA 66. OKINAWA
71. PALMYRA IS.
72. QUARRY HEIGHTS
81. SAIGON
86. SAN FRANCISCO
82. SEOUL
83. SHANGHAI
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0800Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS
85. SINGAPORE 96. WAKE IS.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY

% to 30% of frequencies tried were useful: ------------
30% to 60% of frequencies tried were useful: ------
60% to 100% of frequencies tried were useful: ----

\(\frac{xy}{yz} \) = Numerator of fraction \(x \) (number of usable frequency hours)

Denominator in \(\frac{xy}{yz} \) (number of frequency hours attempted
during hour interval depicted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0900Z

13 AUGUST 1958

Figure 120a

268
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE DURING TIME INTERVAL OF ONE HOUR ALONG SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 0900Z

13 AUGUST 1958

KEY TO TERMINAL LOCATION:

85. SINGAPORE
86. WAKE IS.
87. SEATTLE
88. SYDNEY
89. TOKYO

KEY TO FREQUENCY UTILITY:

- Denominator is 4 x (number of usable frequency hours)
- Numerator is 4 x (number of frequency hours attempted during hour interval depicted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS
TIME INTERVAL CENTERED ON: 1000Z

13 AUGUST 1958

Figure 121a
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1000Z

13 AUGUST 1958

KEY TO TERMINAL LOCATION:
85. SINGAPORE 96. WAKE I.
87. SEATTLE 97. WASHINGTON, D.C.
88. SYDNEY 98. WELLINGTON
93. TOKYO

KEY TO FREQUENCY UTILITY:
\[\frac{a}{b} = \frac{a}{100} \times \frac{b}{4} \] (number of usable frequency hours)
\[\frac{c}{d} = \frac{c}{4} \times \frac{d}{100} \] (number of frequency hours attempted

(during hour interval depicted.)

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1100Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS:

1. ADAK
2. ANCHORAGE
3. ASIBA
12. KHALDEH
13. BANGKOK
19. CANTON

21. CHICAGO
30. KNOXVILLE
36. PORT DEPA
43. JAPAN
59. HAWAII
83. CHENGHUA

41. HONOLULU
42. HOUSTON, TX, SAM
66. TOKYO
74. BANGKOK
95. LA SANZA
96. OKINAWA

57. LAG ALAMO
61. PALMIRA TQ
72. WINDY HEIGHTS
81. SARDIN
88. SAN FRANCISCO
84. SYDNEY

SECRET
SECRET
SYNOPTIC MAP OF REPORTED CIRCUIT EXPERIENCE
DURING TIME INTERVAL OF ONE HOUR ALONG
SELECTED GLOBAL COMMUNICATION PATHS

TIME INTERVAL CENTERED ON: 1100Z

13 AUGUST 1958

KEY TO TERMINAL LOCATIONS
95. SINGAPORE 96. WAKE IS.
97. SEATTLE 97. WASHINGTON, D.C.
98. SYDNEY 98. WELLINGTON
99. TOKYO

KEY TO FREQUENCY UTILITY
60% to 90% of frequencies tried were useful: - - - - -
30% to 60% of frequencies tried were useful: - - - -
0% to 30% of frequencies tried were useful: - - -

() - Numerator of fraction is 4 x (number of usable frequency hours)
() - Denominator is 4 x (number of frequency hours attempted
during hour interval depicted)
Circuits between
Honolulu and...

<table>
<thead>
<tr>
<th>Time</th>
<th>0000</th>
<th>0100</th>
<th>0200</th>
<th>0300</th>
<th>0400</th>
<th>0500</th>
<th>0600</th>
<th>0700</th>
<th>0800</th>
<th>0900</th>
<th>1000</th>
<th>1100</th>
<th>1130</th>
<th>1200</th>
<th>1230</th>
<th>1300</th>
</tr>
</thead>
</table>

Communication Capability for the day of and part of the day after the Orange nuclear shot of Circuit Paths which have one terminal in Honolulu.

Numerator is in units of quarter-hours of successful circuit communications over a period of one hour.

Denominator is in units of circuit quarter-hours of transmitter radiations over a period of one hour.

Z time is given for center of hourly period.
Table III Continued

<table>
<thead>
<tr>
<th></th>
<th>1330</th>
<th>1400</th>
<th>1430</th>
<th>1500</th>
<th>1530</th>
<th>1600</th>
<th>1630</th>
<th>1700</th>
<th>1730</th>
<th>1800</th>
<th>1830</th>
<th>1900</th>
<th>1930</th>
<th>2000</th>
<th>2030</th>
<th>2100</th>
<th>2130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Alamos</td>
<td>2/</td>
<td>5/</td>
<td>6/</td>
<td>3/</td>
<td>0/</td>
<td>6/</td>
</tr>
<tr>
<td>San Francisco</td>
<td>51/</td>
<td>49/</td>
<td>47/</td>
<td>44/</td>
<td>48/</td>
<td>38/</td>
<td>28/</td>
<td>33/</td>
<td>44/</td>
<td>38/</td>
<td>35/</td>
<td>40/</td>
<td>44/</td>
<td>52/</td>
<td>52/</td>
<td>58/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/8</td>
<td>/8</td>
<td>/8</td>
<td>/8</td>
<td>/8</td>
<td>/8</td>
<td>/10</td>
<td>/9</td>
<td>/9</td>
<td>/7</td>
<td>/6</td>
<td>/6</td>
<td>/6</td>
<td>/6</td>
<td>/6</td>
<td>/6</td>
<td>/6</td>
</tr>
<tr>
<td>Adak</td>
<td>9/</td>
<td>12/</td>
<td>16/</td>
</tr>
<tr>
<td></td>
<td>/16</td>
</tr>
<tr>
<td>Midway</td>
<td>0/</td>
<td>2/</td>
<td>1/</td>
<td>0/</td>
</tr>
<tr>
<td></td>
<td>/12</td>
</tr>
<tr>
<td>Tokyo</td>
<td>44/</td>
<td>33/</td>
<td>47/</td>
<td>48/</td>
<td>51/</td>
<td>50/</td>
<td>36/</td>
<td>32/</td>
<td>27/</td>
<td>16/</td>
<td>8/</td>
<td>2/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
</tr>
<tr>
<td></td>
<td>/48</td>
<td>/42</td>
<td>/52</td>
<td>/52</td>
<td>/56</td>
<td>/58</td>
<td>/59</td>
<td>/69</td>
<td>/83</td>
<td>/97</td>
<td>/75</td>
<td>/74</td>
<td>/71</td>
<td>/72</td>
<td>/71</td>
<td>/71</td>
<td>/68</td>
</tr>
<tr>
<td>Okinawa</td>
<td>13/</td>
<td>15/</td>
<td>16/</td>
<td>15/</td>
<td>15/</td>
<td>13/</td>
<td>13/</td>
<td>14/</td>
<td>11/</td>
<td>7/</td>
<td>6/</td>
<td>4/</td>
<td>3/</td>
<td>2/</td>
<td>2/</td>
<td>2/</td>
<td>2/</td>
</tr>
<tr>
<td></td>
<td>/16</td>
</tr>
<tr>
<td>Formosa</td>
<td>0/</td>
</tr>
<tr>
<td></td>
<td>/40</td>
</tr>
<tr>
<td>Manus</td>
<td>12/</td>
<td>12/</td>
<td>14/</td>
<td>12/</td>
<td>12/</td>
<td>14/</td>
<td>12/</td>
</tr>
<tr>
<td></td>
<td>/12</td>
</tr>
<tr>
<td>Wake</td>
<td>12/</td>
<td>12/</td>
<td>12/</td>
<td>12/</td>
<td>6/</td>
<td>2/</td>
<td>4/</td>
<td>2/</td>
<td>0/</td>
<td>2/</td>
<td>4/</td>
<td>2/</td>
<td>1/</td>
<td>3/</td>
<td>7/</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>/12</td>
<td>/12</td>
<td>/12</td>
<td>/12</td>
<td>/6</td>
<td>/2</td>
<td>/4</td>
<td>/2</td>
<td>/2</td>
<td>/2</td>
<td>/4</td>
<td>/8</td>
<td>/12</td>
<td>/12</td>
<td>/12</td>
<td>/12</td>
<td>/12</td>
</tr>
<tr>
<td>Guam</td>
<td>15/</td>
<td>11/</td>
<td>16/</td>
<td>16/</td>
<td>16/</td>
<td>16/</td>
<td>17/</td>
<td>16/</td>
<td>14/</td>
<td>12/</td>
<td>8/</td>
<td>4/</td>
<td>0/</td>
<td>2/</td>
<td>3/</td>
<td>9/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/16</td>
<td>/16</td>
<td>/16</td>
<td>/16</td>
<td>/16</td>
<td>/16</td>
<td>/19</td>
<td>/20</td>
<td>/17</td>
<td>/16</td>
<td>/16</td>
<td>/16</td>
<td>/16</td>
<td>/14</td>
<td>/17</td>
<td>/17</td>
<td>/17</td>
</tr>
<tr>
<td>Eniwetok</td>
<td>8/</td>
<td>8/</td>
<td>8/</td>
<td>8/</td>
<td>8/</td>
<td>8/</td>
<td>7/</td>
<td>8/</td>
<td>5/</td>
<td>3/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>3/</td>
</tr>
<tr>
<td>Kwajalein</td>
<td>24/</td>
<td>16/</td>
<td>8/</td>
<td>2/</td>
<td>2/</td>
<td>1/</td>
<td>5/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/24</td>
<td>/19</td>
<td>/12</td>
<td>/8</td>
<td>/8</td>
<td>/8</td>
<td>/8</td>
<td>/12</td>
</tr>
<tr>
<td>Johnston Is.</td>
<td>0/</td>
</tr>
<tr>
<td></td>
<td>/16</td>
</tr>
<tr>
<td>Sidney</td>
<td>0/</td>
</tr>
<tr>
<td></td>
<td>/12</td>
</tr>
<tr>
<td>Canton Is.</td>
<td>6/</td>
<td>14/</td>
<td>12/</td>
<td>11/</td>
<td>9/</td>
<td>4/</td>
<td>0/</td>
</tr>
<tr>
<td></td>
<td>/8</td>
<td>/10</td>
</tr>
<tr>
<td>Nandi, Fiji Is.</td>
<td>0/</td>
</tr>
<tr>
<td></td>
<td>/6</td>
<td>/12</td>
<td>/12</td>
<td>/12</td>
<td>/16</td>
<td>/20</td>
</tr>
<tr>
<td>Table III Continued</td>
<td>12 August 1958</td>
<td>13 August 1958</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Circuits between Honolulu and</td>
<td></td>
</tr>
<tr>
<td>Los Alamos</td>
<td>6/</td>
<td>6/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7/</td>
<td>6/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td>8/</td>
<td>7/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>6/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>7/</td>
<td></td>
</tr>
<tr>
<td>San Francisco</td>
<td>56/</td>
<td>60/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60/</td>
<td>76/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62/</td>
<td>52/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40/</td>
<td>52/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44/</td>
<td>30/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31/</td>
<td>31/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48/</td>
<td>48/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32/</td>
<td>33/</td>
<td></td>
</tr>
<tr>
<td>Anchorage</td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/</td>
<td>9/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6/</td>
<td>7/</td>
<td></td>
</tr>
<tr>
<td>Alak</td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td>Midway</td>
<td>1/</td>
<td>2/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2/</td>
<td>3/</td>
<td></td>
</tr>
<tr>
<td>Tokyo</td>
<td>11/</td>
<td>11/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/</td>
<td>12/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14/</td>
<td>15/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14/</td>
<td>15/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14/</td>
<td>15/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14/</td>
<td>15/</td>
<td></td>
</tr>
<tr>
<td>Okinawa</td>
<td>5/</td>
<td>3/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/</td>
<td>3/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2/</td>
<td>4/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2/</td>
<td>4/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/</td>
<td>10/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/</td>
<td>10/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td>Formosa</td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/</td>
<td>12/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/</td>
<td>12/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td>Manila</td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td>Wake</td>
<td>12/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>3/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td>Guam</td>
<td>12/</td>
<td>11/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/</td>
<td>4/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/</td>
<td>4/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/</td>
<td>4/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/</td>
<td>5/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6/</td>
<td>6/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td>Eniwetok</td>
<td>5/</td>
<td>4/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/</td>
<td>2/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2/</td>
<td>4/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td>Kwajalein</td>
<td>5/</td>
<td>4/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/</td>
<td>3/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/</td>
<td>3/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/</td>
<td>3/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td>Johnston Is.</td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6/</td>
<td>6/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/</td>
<td>11/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/</td>
<td>8/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/</td>
<td>16/</td>
<td></td>
</tr>
<tr>
<td>Sidney</td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td>Canton Is.</td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td>Nandi, Fiji Is.</td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/</td>
<td>0/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22/</td>
<td>20/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20/</td>
<td>20/</td>
<td></td>
</tr>
</tbody>
</table>
Table IV

Circuits between San Francisco and

<table>
<thead>
<tr>
<th>Time (Z)</th>
<th>Ft Sam</th>
<th>Houston</th>
<th>Washington, D.C.</th>
<th>Chicago</th>
<th>Seattle</th>
<th>Anchorage</th>
<th>Koren</th>
<th>Hongkong</th>
<th>Formosa</th>
<th>Tokyo</th>
<th>China</th>
<th>Manila</th>
<th>Bandung</th>
<th>Guam</th>
<th>Shanghai</th>
<th>Sidney</th>
<th>Singapore</th>
</tr>
</thead>
</table>

Communication Capability for the day of and part of the day after the Orange nuclear shot of Circuit Paths which have one terminal in San Francisco.

Numerator is in units of quarter-hours of successful circuit communications over a period of one hour.

Denominator is in units of circuit quarter-hours of transmitter radiations over a period of one hour.

Z time is given for center of hourly period.
Table IV Continued

<table>
<thead>
<tr>
<th></th>
<th>1330</th>
<th>1400</th>
<th>1430</th>
<th>1500</th>
<th>1530</th>
<th>1600</th>
<th>1630</th>
<th>1700</th>
<th>1730</th>
<th>1800</th>
<th>1830</th>
<th>1900</th>
<th>1930</th>
<th>2000</th>
<th>2030</th>
<th>2100</th>
<th>2130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt. Sam</td>
<td>6/8</td>
<td>8/6</td>
<td>8/6</td>
<td>8/6</td>
<td>7/5</td>
<td>6/8</td>
<td>8/6</td>
<td>6/8</td>
<td>6/8</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td></td>
</tr>
<tr>
<td>Houston</td>
<td>8/6</td>
<td>6/6</td>
<td></td>
</tr>
<tr>
<td>Chicago</td>
<td>8/7</td>
<td>8/6</td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>8/6</td>
<td></td>
</tr>
<tr>
<td>Anchorage</td>
<td>20/16</td>
<td>15/16</td>
<td>15/16</td>
<td>16/16</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>8/6</td>
<td>6/6</td>
<td></td>
</tr>
<tr>
<td>Hongkong</td>
<td>8/4</td>
<td>8/6</td>
<td></td>
</tr>
<tr>
<td>Bandung</td>
<td>8/6</td>
<td></td>
</tr>
</tbody>
</table>
Table IV Continued
Circuits between
San Francisco and

<table>
<thead>
<tr>
<th>City</th>
<th>2200</th>
<th>2300</th>
<th>2330</th>
<th>0300</th>
<th>0330</th>
<th>0400</th>
<th>0430</th>
<th>0500</th>
<th>0600</th>
<th>0700</th>
<th>0800</th>
<th>0900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle</td>
<td>16/16</td>
</tr>
<tr>
<td>Anchorage</td>
<td>/20</td>
</tr>
<tr>
<td>Tokyo</td>
<td>32/32</td>
<td>32/32</td>
<td>34/34</td>
</tr>
</tbody>
</table>
KEYS TO FREQUENCY UTILIZATION BAR CHARTS OF COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Circuit Experience:

- Passed
- Failed

Bars are plotted only for periods of successful reception or for outages definitely attributed to propagation conditions. All other types of interruptions or a lack of reported data result in the omission of the bar. Length of the bar corresponds to the duration of circuit condition. Arrowheads on bars indicate direction of traffic flow; for example, arrows directed to the left signify reception by the first terminal mentioned on the chart heading.

Data Identification Code:

<table>
<thead>
<tr>
<th>Receiving Agency</th>
<th>Type of Service</th>
<th>User's Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = ACAN</td>
<td>1 = Single Side Band</td>
<td>(1) = Circuit #1</td>
</tr>
<tr>
<td>B = AT&T</td>
<td>2 = Speech</td>
<td>(2) = Circuit #2</td>
</tr>
<tr>
<td>C = US NAVY</td>
<td>3 = CS RTT</td>
<td>(3) = Circuit #3</td>
</tr>
<tr>
<td>D = CAA</td>
<td>4 = MUX 4-ch</td>
<td>(4) = Circuit #4</td>
</tr>
<tr>
<td>E = AACS</td>
<td>7 = 2ch RTT</td>
<td></td>
</tr>
<tr>
<td>F = CIA (monitoring)</td>
<td>8 = Aggregate Signal</td>
<td>Strength Recording</td>
</tr>
<tr>
<td>G = RCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H = Mackay Radio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I = Globe Radio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J = AVCO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: B 2 (3) = AT&T Radiotelephone Circuit Number 3

Frequency Limitations:

- Predicted Monthly Median of (undisturbed) Daily Values
- Observed F_2 MUF from Vertical Incidence Data
- Observed E_s MUF from Vertical Incidence Data
- Observed F_{min} from Vertical Incidence Data

Notes:

- Predicted Monthly Median Values apply to 30 day period centered on test
- Observed Values apply to Date of chart
- Observed Values based on Vertical Incidence Data taken at the Maui Ionosphere Station located in the Hawaiian Islands communication Area
KEY TO FREQUENCY BAR CHARTS DEPICTING COMPARISON OF CIRCUIT EXPERIENCE, ENGINEERING FACTORS AND FREQUENCY LIMITATIONS

Circuit Experience:

Circuit
\[
\begin{cases}
\text{Passed} & \ldots \ldots \ldots \\
\text{Failed} & \underline{\text{____}}
\end{cases}
\]

Bars plotted only for periods of successful reception or of outages definitely attributed to propagation conditions. All other interruptions or a lack of reported data result in omission of the bar. Length of bar corresponds to duration of circuit condition. Arrowheads on bars indicate direction of the traffic flow.

Data Identification Code:

<table>
<thead>
<tr>
<th>Receiving Agency</th>
<th>Type of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = ACAN</td>
<td>1 = Single Side Band</td>
</tr>
<tr>
<td>E = AACS</td>
<td>3 = CS RTT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Xmtr Output Power in Kw</th>
<th>Xmtg Ant</th>
<th>Revg Ant</th>
<th>Engineering Factors</th>
<th>Xmtr Output Power in Kw</th>
<th>Xmtg Ant</th>
<th>Revg Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 4.0</td>
<td>B</td>
<td>C</td>
<td></td>
<td>g 18.0</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>b 2.0</td>
<td>B</td>
<td>C</td>
<td>h 10.0</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>c 2.0</td>
<td>B</td>
<td>A</td>
<td>i 2.4</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>d 4.0</td>
<td>A</td>
<td>A</td>
<td>j 9.0</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>e 18.0</td>
<td>A</td>
<td>C</td>
<td>k 1.6</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>f 10.0</td>
<td>A</td>
<td>C</td>
<td>m 2.0</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

All antennas are standard type Rhombics.
Example: IUF Jk = ACAN circuit, CSB service, 18.0 Kw xmtr output power, xmtg antenna, type A Rhombic, receiving antenna, type C Rhombic

Frequency Limitations:

- Predicted Monthly Median of (undisturbed) Daily Values
- Observed F2 MUF from Vertical Incidence Data
- Observed F2 MUF from Vertical Incidence Data
- Predicted Monthly Median of (undisturbed) Daily Values
- Observed F-min from Vertical Incidence Data

Notes: Predicted Monthly Median Values apply to 30 day period centered on test.
Observed Values apply to data of chart.
Observed values based on Vertical Incidence data taken at Maui Ionosphere Station located in the Hawaiian Islands communication area.
Predicted and Observed MUF limitations apply to all circuit bars.
Predicted IUF limitations apply to circuit bars using identical Identification Code.
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

For Various Circuit Paths Between
Honolulu Area — Arrowheads Indicate — San Francisco Area
Direction of Transmission
Distance 2395 Miles 3855 Km
Path Illumination See Key B, Page 280

1 August 1958

Figure 123

SECRET
COMPARISON OF CIRCUIT EXPERIENCE, ENGINEERING FACTORS AND FREQUENCY LIMITATIONS

Honolulu Area Transmitting to San Francisco Area

Distance 2305 Miles 3885 Km

1 August 1958

See Key C, Page 281

Figure 125
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

For Various Circuit Paths Between
Honolulu Area → San Francisco Area

Arrowheads Indicate Direction of Transmission
Distance 2395 Miles 3855 Km
Path Illumination

12 August 1958

See Key B, Page 280

Figure 126
COMPARISON OF CIRCUIT EXPERIENCE, ENGINEERING FACTORS AND FREQUENCY LIMITATIONS
Honolulu Area Receiving San Francisco Area
Distance 2395 Miles 3855 Km

12 August 1958 See Key C, Page 281

Figure 127 286
COMPARISON OF CIRCUIT EXPERIENCE, ENGINEERING FACTORS AND FREQUENCY LIMITATIONS

Honolulu Area Transmitting to San Francisco Area

Distance 2395 Miles 3855 Km

12 August 1928

See Key C, Page 281

Figure 128

SECRET
TABLE V

Summation of Successes and Failures

Before and After Shot Time

San Francisco - Honolulu

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Recvr</th>
<th>Service</th>
<th>Before Shot Successes</th>
<th>Successes Hrs Min</th>
<th>Failures Hrs Min</th>
<th>Freq Changes</th>
<th>After Shot Successes</th>
<th>Successes Hrs Min</th>
<th>Failures Hrs Min</th>
<th>Freq Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TEST TEAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco</td>
<td>Honolulu</td>
<td>AACS-SSB</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>30</td>
<td>1</td>
<td>8</td>
<td>55</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-CSRTT</td>
<td>10</td>
<td>35</td>
<td>0</td>
<td>15</td>
<td>1</td>
<td>13</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-SSB</td>
<td>10</td>
<td>35</td>
<td>0</td>
<td>15</td>
<td>2</td>
<td>13</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Honolulu</td>
<td>San Francisco</td>
<td>AACS-SSB</td>
<td>10</td>
<td>50</td>
<td>0</td>
<td>00</td>
<td>1</td>
<td>9</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-CSRTT</td>
<td>10</td>
<td>50</td>
<td>0</td>
<td>00</td>
<td>0</td>
<td>12</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-SSB</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>30</td>
<td>1</td>
<td>12</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEST ORANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco</td>
<td>Honolulu</td>
<td>AACS-SSB</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>1</td>
<td>9</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-CSRTT</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>00</td>
<td>1</td>
<td>10</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-SSB</td>
<td>10</td>
<td>30</td>
<td>0</td>
<td>00</td>
<td>1</td>
<td>12</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Honolulu</td>
<td>San Francisco</td>
<td>AACS-SSB</td>
<td>10</td>
<td>30</td>
<td>0</td>
<td>00</td>
<td>0</td>
<td>9</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-CSRTT</td>
<td>8</td>
<td>30</td>
<td>0</td>
<td>00</td>
<td>1</td>
<td>12</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-SSB</td>
<td>8</td>
<td>30</td>
<td>0</td>
<td>00</td>
<td>1</td>
<td>12</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>
COMPARISON OF CIRCUIT EXPERIENCE, ENGINEERING FACTORS AND FREQUENCY LIMITATIONS

Honolulu Area Receiving Islands of Japan

Distance 3835 Miles 6170 Km

1 August 1958

Figure 130

See Key C, Page 281
COMPARISON OF CIRCUIT EXPERIENCE, ENGINEERING FACTORS AND FREQUENCY LIMITATIONS

Honolulu Area Transmitting to Islands of Japan

Distance 3835 Miles 6170 Km

1 August 1958

See Key C, Page 281

Figure 131
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS
For Various Circuit Paths Between Honolulu Area — Arrowheads Indicate Islands of Japan
Direction of Transmission
Distance 3835 Miles 6170 Km
12 August 1958
Path Illumination
See Key B, Page 280

Figure 132
COMPARISON OF CIRCUIT EXPERIENCE, ENGINEERING FACTORS AND FREQUENCY LIMITATIONS
Honolulu Area Receiving Islands of Japan
Distance 3835 Miles 6170 Km
12 August 1958

See Key C, Page 281

Figure 133
COMPARISON OF CIRCUIT EXPERIENCE, ENGINEERING FACTORS AND FREQUENCY LIMITATIONS

Honolulu Area Transmitting to Islands of Japan

Distance 3835 Miles 6170 Km

12 August 1958

See Key C, Page 281

Figure 134
TABLE VI

Summation of Successes and Failures
Before and After Shot Time
Tokyo - Honolulu

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Recvr</th>
<th>Service</th>
<th>Before Shot</th>
<th>After Shot</th>
<th>Freq Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hrs Min</td>
<td>Hrs Min</td>
<td></td>
</tr>
<tr>
<td>Tokyo</td>
<td>Honolulu</td>
<td>AACS-SSE</td>
<td>9 20</td>
<td>7 15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-CSRTT</td>
<td>10 50</td>
<td>13 10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-SSB</td>
<td>10 50</td>
<td>11 25</td>
<td>0</td>
</tr>
<tr>
<td>Honolulu</td>
<td>Tokyo</td>
<td>AACS-SSE</td>
<td>10 50</td>
<td>5 0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-CSRTT</td>
<td>10 50</td>
<td>13 10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-SSB</td>
<td>10 35</td>
<td>7 40</td>
<td>7</td>
</tr>
</tbody>
</table>

TEST ORANGE

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Recvr</th>
<th>Service</th>
<th>Before Shot</th>
<th>After Shot</th>
<th>Freq Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hrs Min</td>
<td>Hrs Min</td>
<td></td>
</tr>
<tr>
<td>Tokyo</td>
<td>Honolulu</td>
<td>AACS-SSE</td>
<td>10 15</td>
<td>7 30</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-SSB</td>
<td>8 15</td>
<td>10 15</td>
<td>3</td>
</tr>
<tr>
<td>Honolulu</td>
<td>Tokyo</td>
<td>AACS-SSE</td>
<td>10 30</td>
<td>5 15</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAN-SSB</td>
<td>10 30</td>
<td>10 45</td>
<td>5</td>
</tr>
</tbody>
</table>
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS
For Various Circuit Paths Between
Okinawa - Honolulu Area
Direction of Transmission
Distance 4655 Miles 7490 Km
Path Illumination

1 August 1958

See Key B, Page 280
COMPARISON OF CIRCUIT EXPERIENCE, ENGINEERING FACTORS AND FREQUENCY LIMITATIONS

Okinawa Transmitting to Honolulu Area

Distance 4635 Miles 7490 Km

1 August 1958

See Key C, Page 281

Figure 136
COMPARISON OF CIRCUIT EXPERIENCE, ENGINEERING FACTORS AND FREQUENCY LIMITATIONS

Okinawa Receiving Honolulu Area

Distance 4655 Miles 7490 Km

1 August 1958

See Key C, Page 281
COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS
For Various Circuit Paths Between
Okinawa – Honolulu Area
Direction of Transmission
Distance 4655 Miles 7490 Km
Path Illumination
12 August 1958
See Key B, Page 280

Figure 138
COMPARISON OF CIRCUIT EXPERIENCE, ENGINEERING FACTORS AND FREQUENCY LIMITATIONS

Okinawa Transmitting to Honolulu Area

Distance 4655 Miles 7490 Km

12 August 1958

See Key C, Page 281
COMPARISON OF CIRCUIT EXPERIENCE, ENGINEERING FACTORS AND FREQUENCY LIMITATIONS

Okinawa Receiving Honolulu Area

Distance 4685 Miles 7490 Km

12 August 1958

See Key C, Page 281

Figure 140
TABLE VII

Summation of Successes and Failures
Before and After Shot Time
Okinawa - Honolulu

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Service</th>
<th>Before Shot</th>
<th>After Shot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Successes</td>
<td>Failures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hrs Min</td>
<td>Hrs Min</td>
</tr>
<tr>
<td>Okinawa</td>
<td>AACS-SSB</td>
<td>10 00</td>
<td>0 45</td>
</tr>
<tr>
<td></td>
<td>ACAN-SSB</td>
<td>10 50</td>
<td>0 00</td>
</tr>
<tr>
<td>Honolulu</td>
<td>AACS-SSB</td>
<td>8 50</td>
<td>1 00</td>
</tr>
<tr>
<td></td>
<td>ACAN-SSB</td>
<td>10 50</td>
<td>0 00</td>
</tr>
</tbody>
</table>

TEST ORANGE

Okinawa	AACS-SSB	9 45	0 45	2	3 30	9 00	7
	ACAN-SSB	9 45	0 45	1	10 30	3 00	2
Honolulu	AACS-SSB	10 00	0 30	1	6 15	7 15	4
	ACAN-SSB	10 30	0 0	0	7 00	6 30	2
KEY TO COMBINED CIRCUIT EXPERIENCE CHART

Entry of satisfactory refers to periods of reported successful reception. Entry of unsatisfactory refers to periods of reported outage definitely attributed to propagation conditions. All other interruptions or reported periods result in omission of entry.

Arrows on circuit bars indicate direction of traffic flow. Arrow directed to left signifies reception by the first terminal mentioned on chart heading.

Length of bar corresponds to duration of circuit condition.

Data Identification Code:
- **Receiving Agency**
 - A: AGC
 - B: ATC
 - C: US Navy
- **Type of Service**
 - 1 = OCS
 - 2 =peech
 - 3 = CC MTT
- **User's Designation**
 - (1) = Circuit #1
 - (2) = Circuit #2
 - (3) = Circuit #3

Frequency Limitation: Predicted Monthly Median MIF: (30 day period centered on test)

KEY TO CIRCUIT CAPABILITY CHART

- **Upper Solid Curve:** Capability of circuit under conditions of multiple parallel relaying in frequency-hours per hour
- **Lower Solid Curve:** Capability of circuit with no parallel relaying in frequency-hours per hour
- **Dotted Curve:** Total frequency-hours attempted per hour

MULTIPLE PARALLEL RELAYING AT NODE BETWEEN HAWAII AND SAN FRANCISCO ON 1 AUGUST 1954

Location and performance of relay network links.

KEY TO TERMINAL LOCATIONS
- A. ANCHORAGE
- B. POMARLA
- C. SAN FRANCISCO
- D. COPENHAGEN
- E. TAMBOUR
- F. MONTREAL
- G. MAINZ
- H. HANOI
- I. CHICAGO
- J. MEXICO CITY
- K. LONDON
- L. NEW YORK
- M. SAN FRANCISCO
- N. TOKYO

Relay network diagram showing contribution of individual links.

Numbered arrows indicate direction and magnitude of individual contributions to relaying when all traffic is assumed to originate at Hawaii. All capabilities and contributions are in frequency hours.

SECRET
INCREASED CIRCUIT CAPABILITIES FROM ASSUMPTION OF MULTIPLE RELAYING

1 August 1958

Hawaii----San Francisco

Compared Circuit Experience vs Frequency Limitations

Circuit Capability

Successful Direct plus Relayed

Attempted Direct

Successful Direct

Figure 142
KEY TO CUMULATED CIRCUIT EXPERIENCE CHART

Circuit Experience:
Satisfactory
Unsatisfactory

Entry of Satisfactory refers to periods of reported successful reception. Entry of Unsatisfactory refers to periods of reported outage definitely attributed to propagation conditions. All other interruptions or unreported periods result in omission of entry.

Arrowheads on circuit bars indicate direction of traffic flow. Arrows directed to left signify reception by the first terminal mentioned on chart heading.

Length of bar corresponds to duration of circuit condition.

Data Identification Code:

<table>
<thead>
<tr>
<th>Agency</th>
<th>Type of Service</th>
<th>User's Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AT&T</td>
<td>(1) Circuit #1</td>
</tr>
<tr>
<td>B</td>
<td>ANS</td>
<td>(2) Circuit #2</td>
</tr>
<tr>
<td>C</td>
<td>U.S. Navy</td>
<td>(3) Circuit #3</td>
</tr>
<tr>
<td>D</td>
<td>GA</td>
<td>(4) Circuit #4</td>
</tr>
</tbody>
</table>

Frequency Limitation: Predicted Monthly Median MIP (applies to undisturbed days within a 30-day period centered on test)

KEY TO CIRCUIT CAPABILITY CHART

Upper Solid Curve: Capability of circuit under conditions of multiple parallel relay in frequency-hours per hour

Lower Solid Curve: Capability of circuit with no parallel relay in frequency-hours per hour

Dotted Curve: Total frequency-hours attempted per hour

MULTIPLE PARALLEL RELAYING AT 3000 KILOMETERS MANILA AND SAN FRANCISCO ON 1 AUGUST 1944

Location and performance of relay network links.

KEY TO TERMINAL LOCATIONS

1. Anchorage
2. Bangkok
3. Honolulu
4. Guam
5. Hawaii
6. Manila
7. Okinawa
8. San Francisco
9. Seoul
10. Seattle
11. Tokyo

Relay network diagram showing contributions of individual links.

Numbered arrows indicate direction and magnitude of individual contributions to relaying when all traffic is assumed to originate at Manila. All capabilities and contributions are in frequency hours.
SECRET
INCREASED CIRCUIT CAPABILITIES
FROM
ASSUMPTION OF MULTIPLE RELAYING
1 August 1958
Manila----San Francisco
Key on Page 305

COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Circuit Capability

Successful Direct plus Relayed

Successful Direct

Attempted Direct

Figure 144

SECRET

306
SECRET

KEY TO COMBINED CIRCUIT EXPERIENCE CHART

Circuit Experience:
Satisfactory
Unsatisfactory

Entry of Satisfactory refers to periods of reported successful reception. Entry of Unsatisfactory refers to periods of reported outage definitely attributed to propagation conditions. All other interruptions or unreported periods result in omission of entry.

Arrowheads on circuit bars indicate direction of traffic flow. Arrow directed to left signifies reception by the first terminal mentioned on chart heading.

Length of bar corresponds to duration of circuit condition.

Data Identification Code:

Receiving Agency Type of Service Deep's Designation

A = AGAC E = AUTO 1 = SC
B = AT&T C = NAV 2 = CB
C = US Navy H = Landy Radio 3 = O H RT
D = CAA I = Globe Radio 4 = CR 4-CH

Example: B: (1) = AT&T Radiotelephone Circuit Number 3

Frequency Limitation: Predicted Monthly Median MDF: (applies to undisturbed days within a 10 day period centered on test)

KEY TO CIRCUIT CAPABILITY CHART

Upper Solid Curve: Capability of circuit under conditions of multiple parallel relaying in frequency-hours per hour

Lower Solid Curve: Capability of circuit with no parallel relaying in frequency-hours per hour

Dotted Curve: Total frequency-hours attempted per hour

MULTIPLE PARALLEL RELAYING AT 18000 BETWEEN GUAM AND HAWAII IN 1 AUGUST 1963

Location and performance of relay network links.

KEY TO TERMINAL LOCATIONS

1. ANCHORAGE
2. FUKUSHIMA
3. GUAM
4. HAWAII
5. MANILA
6. OKINAWA
7. SAN FRANCISCO
8. SEOUL
9. SEATTLE
10. TOKYO

Relay network diagram showing contribution of individual links. Numbered arrows indicate direction and magnitude of individual contributions to relaying when all traffic is assumed to originate at Guam. All capabilities and contributions are in frequency hours.
INCREASED CIRCUIT CAPABILITIES
FROM ASSUMPTION OF MULTIPLE RELAYING

1 August 1958

Guam----Hawaii

COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Successful Direct plus Relayed
Attempted Direct
Successful Direct

Figure 146
KEY TO COMBINED CIRCUIT EXPERIENCE CHART

Circuit Experience:
Reception
Satisfactory

Entry of Satisfactory refers to periods of reported successful reception. Entry of Unsatisfactory refers to periods of reported outage definitely attributed to propagation conditions. All other interruptions or unreported periods result in omission of entry.

Arrowhead on circuit bars indicate direction of traffic flow. Arrow directed to left signifies reception by the first terminal mentioned on chart heading.

Length of bar corresponds to duration of circuit condition.

Data Identification Code:
Receiving Agency
A = AT&T
D = AMT
C = US Navy
D = CAAA

Type of Service
K = ANCS
G = RCA
H = Marine Radio
I = Globe Radio

User's Designation
1 = CB
2 = Speech
1 = CB
4 = MTX 200

Frequency Limitation: Predicted Monthly Median $.97$ (applies to unfiltered days within a 30-day period centered on test)

KEY TO CIRCUIT CAPABILITY CHART

Upper Solid Curve: Capability of circuit under condition of multiple parallel relay in frequency-hours per hour

Lower Solid Curve: Capability of circuit with no parallel relay in frequency-hours per hour

Dotted Curve: Total frequency-hours attempted per hour

MULTIPLE PARALLEL RELAYS AT SPEED BETWEEN HAWAII AND SAN FRANCISCO ON 12 AUGUST 1956
Location and performance of relay network link.

RELAY NETWORK DIAGRAM SHOWING CONTRIBUTIONS OF INDIVIDUAL LINKS
Numbered arrows indicate direction and magnitude of individual contributions to relaying when all traffic is assumed to originate at Manila. All capabilities and contributions are in frequency hours.
INCREASED CIRCUIT CAPABILITIES FROM ASSUMPTION OF MULTIPLE RELAYING

17 August 1958
Hawaii----San Francisco
Key on Page 309

COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Circuit Capability

Successful Direct plus Relayed

Attempted Direct

Successful Direct

Figure 148

SECRET
SECRET

KEY TO COMBINED CIRCUIT EXPERIENCE CHART

Circuit Experience: Satisfactory.............
Reception Un satisfactory

Entry of Satisfactory refers to periods of reported successful reception. Entry of Unsatisfactory refers to periods of reported outage definitely attributed to propagation conditions. All other interruptions or unreported periods result in omission of entry.

Arrows on circuit bars indicate direction of traffic flow. Arrow directed to left signifies reception by the first terminal mentioned on chart heading.

Length of bar corresponds to duration of circuit condition.

Data Identification Code:

Receiving Agency
A = ACAN B = ANS
C = AT&T D = RCA

Type of Service
1 = SD 2 = SDT

User's Designation
(1) = Circuit #1 (2) = Circuit #2
Example: H : (1) = AT&T Manila telephone

(3) = Circuit #3
(4) = Circuit #4
Circuit Number

Frequency Limitation: Predicted Monthly Median WUF: ~ (applies to undisturbed days within a 10 day period centered on test)

KEY TO CIRCUIT CAPABILITY CHART

Upper Solid Curve: Capability of circuit under conditions of multiple parallel relay in frequency-hours per hour
Lower Solid Curve: Capability of circuit with no parallel relay in frequency-hours per hour
Dotted Curve: Total frequency-hours attempted per hour

MULTIPLE PARALLEL RELAYING AT PEAK BETWEEN MANILA AND SAN FRANCISCO ON 12 AUGUST 1956

KEY TO TERMINAL LOCATIONS:

1. ANCHORAGE
2. FOGALTA
9. SHAK
19. HAWAII
3. MANILA
5. OKINAWA
6. SAN FRANCISCO
7. SEATTLE
91. TOKYO
97. WASHINGTON

Relay network diagram showing contributions of individual links.
Numbered arrows indicate direction and magnitude of individual contributions to relaying when all traffic is assumed to originate at Manila. All capabilities and contributions are in frequency hours.
INCREASED CIRCUIT CAPABILITIES FROM ASSUMPTION OF MULTIPLE RELAYING

12 August 1958
Manila----San Francisco

Key on Page 311

COMBINED CIRCUIT EXPERIENCE VS FREQUENCY LIMITATIONS

Circuit Capability

Figure 130

SECRET

312
KEY TO COMBINED CIRCUIT EXPERIENCE CHART

Circuit Experience:
- Satisfactory
- Unsatisfactory

Entry of Satisfactory refers to periods of reported successful reception. Entry of Unsatisfactory refers to periods of reported failure definitely attributed to propagation conditions. All other interruptions or unexpected periods result in omission of entry.

Arrowheads on circuits here indicate direction of traffic flow. Arrow directed to left signifies reception by the first terminal mentioned on chart heading.

Length of bar corresponds to duration of circuit condition.

Data Identification Code:
- Pattern
- Code
- Type
- Service
- Use in Designation

A = AGM
B = ART
C = USN
D = CDA
E = AAG
G = PIA
H = NAV
J = OCG
K = WRA
L = USA
M = WR
Q = CR
R = LM
S = AN
T = WC

Frequency Limitations:
- Predicted Monthly Median MED: (applied to undisturbed days within a 10 day period centered on test)

KEY TO CIRCUIT CAPABILITY CHART

Upper Solid Curve: Capability of circuit under conditions of multiple parallel relay in frequency-hours per hour

Lower Solid Curve: Capability of circuit without parallel relay in frequency-hours per hour

Dotted Curve: Total frequency-hours attempted per hour

MULTIPLE PARALLEL RELAYING AT POINT BETWEEN OCEAN AND HAWAII ON 10 AUGUST 1961

Location and performance of relay network links.

Figure 171
SECRET
INCREASED CIRCUIT CAPABILITIES FROM ASSUMPTION OF MULTIPLE RELAYING

12 August 1958

Combined Circuit Experience vs Frequency Limitations

Greenwich Mean Time

Circuit Capability

Frequency-hr/hr

Successful Direct plus Relayed

Successful Direct

Attempted Direct

Figure 152

SECRET
SECRET

DISTRIBUTION LIST

Secretary, Joint Chiefs of Staff (8 cys)
FOR: Cy 1A - Lt General Thomas F. Hickey, USA
 Cy 2A - Brig General Willard W. Smith, USAF
 Cy 3A - Colonel Lloyd D. Chapman, USAF
 Cy 4A - Mr. E. M. Risley
 Cy 5A - Colonel R. A. House
 Cy 6A - Colonel E. H. Haywood, Jr.
 Cy 7A - Colonel J. C. Bayne
 Cy 8A - Colonel A. M. Ricciardelli

Director of Defense Research & Engineering, Washington 25, D. C. (4 cys)
FOR: Cy 9A - Mr. John Jackson
 Cy 10A - Lt Colonel Francis T. Bradley
 Cy 11A - Dr. Wm W. Hammerschmidt
 Cy 12A - Dr. H. R. Skifter

Director, Weapons Systems Evaluation Group, Washington 25, D. C. (4 cys)
FOR: Cy 13A - Mr. Loren A. Benson
 Cy 14A - Dr. Erwin H. Bramhall
 Cy 15A - Dr. Robert Schwartz
 Cy 16A - Dr. Joseph M. Clifford

Assistant Chief of Staff, Intelligence, Department of the Army, Washington 25, D. C., ATTN: Lt Colonel Dale L. Morgan (Cy 17A)

Chief of Research and Development, Department of the Army, Washington 25, D. C., ATTN: Lt Colonel J. D. Servis (Cy 18A)

Chief of Research and Development, Department of the Army, Washington 25, D. C., ATTN: Major J. F. Johnson (Cy 19A)

Deputy Chief of Staff, Operations, Department of the Army, Washington 25, D. C., ATTN: Lt Colonel Watson (Cy 20A)

Chief of Ordnance, Department of the Army, Washington 25, D. C., ATTN: Mr. Ray Thorndike (Cy 21A)

Chief of Ordnance, Department of the Army, Washington 25, D. C., ATTN: ORDTU-AMM (Cy 22A)

Chief Signal Officer, Department of the Army, Washington 25, D.C., ATTN: Mr. J. R. Burke (Cy 23A)

Chief Signal Officer, Department of the Army, Washington 25, D.C., ATTN: Lt Colonel Earl J. Holliman (Cy 24A)

Commandant, U. S. Army Ordnance School, Aberdeen Proving Ground, Maryland (Cy 25A)

Commandant, U. S. Army Ordnance and Guided Missile School, Redstone Arsenal, Alabama (Cy 26A)

Commandant, U. S. Army Signal School, Fort Monmouth, New Jersey (Cy 27A)
SECRET

Deputy Chief of Staff for Military Operations, Department of the Army, Washington 25, D. C., ATTN: Dir of SW&R (Cy 23A)
Chief of Research and Development, Department of the Army, Washington 25, D. C., ATTN: Atomic Division (Cy 29A)
Assistant Chief of Staff, Intelligence, Department of the Army, Washington 25, D. C. (Cy 30A)
Chief Chemical Officer, Department of the Army, Washington 25, D. C. (Cys 31A&32A)
Chief of Engineers, Department of the Army, Washington 25, D. C., ATTN: ENGBH (Cy 33A)
Chief of Engineers, Department of the Army, Washington 25, D. C., ATTN: ENGTH (Cy 34A)
Chief of Ordnance, Department of the Army, Washington 25, D. C., ATTN: ORDTN (Cy 35A)
Chief Signal Officer, Department of the Army, Washington 25, D. C., ATTN: SIGCO-4 (Cy 36A)
Commander-in-Chief, U. S. Army Europe APO L03, New York, New York, ATTN: OPOT Div, Weapons Branch (Cy 37A)
Commandant, C&GS College, Fort Leavenworth, Kansas, ATTN: ARCHIVES (Cy 38A)
Commandant, U. S. Army Air Defense School, Fort Bliss, Texas, ATTN: Dept of Tactics and Combined Arms (Cy 39A)
Commandant, U. S. Army Armored School, Fort Knox, Kentucky (Cy 40A)
Commandant, U. S. Army Artillery & Missile School, Fort Sill, Oklahoma, ATTN: Combat Dev Dept (Cy 41A)
Commandant, U. S. Army Aviation School, Fort Rucker, Alabama (Cy 42A)
Commanding General, U. S. Continental Army Command, Fort Monroe, Virginia (Cy 43A)
Director, Special Weapons Development, Headquarters CONARC, Fort Bliss, Texas, ATTN: Capt Chester I. Peterson (Cy 44A)
President, U. S. Army Artillery Board, Fort Sill, Oklahoma (Cy 45A)
President, U. S. Army Air Defense Board, U. S. Continental Army Command, Fort Bliss, Texas (Cy 46A)
President, U. S. Army Aviation Board, Fort Rucker, Alabama, ATTN: ATB3-DG (Cy 47A)
Commandant, U. S. Army Infantry School, Fort Benning, Georgia (Cy 48A)
Commandant, Chemical Corps School, Chemical Corps Training Command Fort McClellan, Alabama (Cy 49A)
Commanding General, U. S. Army Chemical Corps, Research and Development Command, Washington 25, D. C. (Cy 50A)
Commanding Officer, Chemical Warfare Laboratories, Army Chemical Center, Maryland, ATTN: Mr. David Rigotti (Cy 51A)
Commanding Officer, Chemical Warfare Laboratories, Army Chemical Center, Maryland, ATTN: Technical Library (Cy 52A)
Commanding Officer, Diamond Ordnance Fuze Laboratories, Washington 25, D. C., ATTN: Chief, Nuclear Vulnerability Branch (230) (Cy 53A)

SECRET
SECRET

Headquarters United States Air Force (AFTAC), Washington 25, D. C.,
ATTN: Lt Col Leies (Cy 114A)
Assistant for Operations Analysis, Headquarters United States Air
Force, Washington 25, D. C., ATTN: Mr. Frederick R. Gracely (Cy 115A)
Commander-in-Chief, Strategic Air Command, Offutt Air Force Base,
Nebraska, ATTN: OAWS (Cy 116A)
Commander, Tactical Air Command, Langley Air Force Base, Virginia,
ATTN: Doc Security Branch (Cy 117A)
Commander, Air Defense Command, Ent Air Force Base, Colorado, ATTN:
Atomic Energy Division, AELAN-A (Cy 118A)
Commander, Air Research and Development Command, Washington 25, D. C.,
ATTN: Mr. John J. Hobson (Cy 119A)
Commander, Air Research and Development Command, Washington 25, D. C.,
ATTN: Lt Colonel R. E. Fontana (Cy 120A)
Commander, Air Research and Development Command, Washington 25, D. C.,
ATTN: RDRN/A (Cy 121A)
Commander, Air Force Ballistic Missile Division, Headquarters AFMD, Air
Force Unit Post Office, Los Angeles 45, California, ATTN: WOSOT (Cy 122A)
Commander, Air Force Cambridge Research Center, L. G. Hanscom Field,
Bedford, Massachusetts, ATTN: Dr. Philip Newman (Cy 123A)
Commander, Air Force Cambridge Research Center, L. G. Hanscom Field,
Bedford, Massachusetts, ATTN: CRQST-2 (Cys 124A&125A)
Commander, Air Force Cambridge Research Center, L. G. Hanscom Field,
Bedford, Massachusetts, ATTN: Dr. Oliver (Cy 126A)
Commander, Air Force Cambridge Research Center, L. G. Hanscom Field,
Bedford, Massachusetts, ATTN: Mr. Samuel Horowitz (Cy 127A)
Commander, Air Force Special Weapons Center, Kirtland Air Force Base,
New Mexico, ATTN: Lt H. K. Lonsdale (Cy 128A)
Commander, Air Force Special Weapons Center, Kirtland Air Force Base,
New Mexico, ATTN: Technical Info and Intelligence Division
(Cys 129A-131A)
Director, Air University Library, Maxwell Air Force Base, Alabama
(Cys 132A&133A)
Commander, Air Force Special Weapons Center, Kirtland Air Force Base,
New Mexico, ATTN: Lt Roland F. Prater (Cy 134A)
Commander, Lowry Air Force Base, Denver, Colorado, ATTN: Dept of Special
Weapons Training (Cy 135A)
Commander, 1009th Special Weapons Squadron, Headquarters United States
Air Force, Washington 25, D. C. (Cy 136A)
Commander, Wright Air Development Center, Wright-Patterson Air Force
Base, Ohio, ATTN: Mr. Ludlow B. Hallman, Jr. (Cy 137A)
Commander, Wright Air Development Center, Wright-Patterson Air Force
Base, Ohio, ATTN: WCOsI (Cys 138A-140A)
Director, USAF Project RAND via Air Force Liaison Office, 1700 Main
Street, Santa Monica, California (Cys 141A-143A)
Deputy Chief of Staff, Operations, Headquarters United States Air Force,
Washington 25, D. C., ATTN: Ops Analysis (Cy 144A)

SECRET
SECRET

Commander, Air Defense Systems Integration Division, L. G. Hanscom Field, Bedford, Massachusetts, ATTN: SIDE J (Cy 145A)
Chief, Ballistic Missile Early Warning Project Office, 220 Church Street, New York 13, New York, ATTN: Colonel Leo V. Skinner, USAF (Cy 146A)
Director of Defense Research & Engineering, Washington 25, D. C., ATTN:
Technical Library (Cy 147A)
Director, Weapons Systems Evaluation Group, OSD, Room 2E1006, The Pentagon, Washington 25, D. C. (Cy 148A)
U. S. Documents Officer, Office of the United States National Military Rep, SHAPE, APO 55, New York, New York (Cy 149A)
Commander, Field Command, Defense Atomic Support Agency, Sandia Base, Albuquerque, New Mexico (Cy 171A-180A) also (Cy 353A-400A, surplus cys)
Commander, Field Command, Defense Atomic Support Agency, Sandia Base, Albuquerque, New Mexico, ATTN: FCTG (Cy 181A-185A)
Commander, Field Command, Defense Atomic Support Agency, Sandia Base, Albuquerque, New Mexico, ATTN: FCTG (Cy 186A)
Commander, Field Command, Defense Atomic Support Agency, Sandia Base, Albuquerque, New Mexico, ATTN: 470 (Cy 187A)
Army Security Agency, Arlington Hall Station, Arlington 12, Virginia, ATTN: Mr. A. A. Small, Mr. Richard Neil, Capt Russell Jones, LtColonel Philip Finney and Mr. William Moran (Cy 188A-192A)
Commander, USAF Security Service, San Antonio, Texas, FOR: SIE; SCP; SIE; ODC; EFC; 6900th Sec Wing; 6920th Sec Wing; 6981st Sec Wing, RGM; 6901st Sec Wing, SG; 6902d Sec Wing, SCG (Cy 193A-202A)
Army Security Agency Training Center, Fort Devens, Massachusetts, ATTN: Colonel Fairchild (Cy 203A-207A)
Chief of Naval Operations, Navy Department, Washington 25, D. C., ATTN: OF 30A, ODO (Cy 208A-217A)
National Security Agency, Fort George G. Meade, Maryland, ATTN: REMP (Cy 218A-237A)
Commander-in-Chief, U. S. Pacific Fleet, Navy No. 128, Fleet Post Office San Francisco, California, ATTN: Brig Gen Edward A. Montgomery, USMC (Cy 238A)
Deputy Chief of Staff, Operations, Headquarters USAF, Washington 25, D. C., ATTN: OA (Cy 250A)
Assistant Secretary (Supply & Logistics), Washington 25, D. C., ATTN: Mr. M. R. Dunaj, OSD S&L (Cy 251A-252A)
Commander, U. S. Army Communications Agency, Washington 25, D. C., ATTN: SIGCA-J (Cy 253A)
SECRET

Deputy Chief of Staff, Operations, Headquarters USAF, D.C., ATTN: Air Traffic Control (Cy 254A)
Commander, Air Force Cambridge Research Center, Bedford, Mass., ATTN: SIGE (Cys 255A & 256A)
Commander, Eighth Air Force, USAF, Westover Air Force Base, ATTN: OA (Cy 257A)
Commander-in-Chief, Strategic Air Command, Offutt Air Force Base, Nebraska, ATTN: DING (Cy 259A)
Assistant to the Secretary of Defense (Atomic Energy), Washington D.C. (Cy 259A)
Commanding General, U.S. Army Electronic Proving Ground, Arizona, ATTN: SIGEO-DEA (Cy 260A)
Chief Signal Officer, Department of the Army, Washington D.C., ATTN: SIGEO-3-b (Cy 261A)
Commander-in-Chief, U.S. Air Force in Europe, Stuttgart, ATTN: OA (Cy 262A)
Commander, ASTIA, Arlington Hall Station, Arlington, Va., ATTN: TIPDR (Cys 263A-312A)
MEMORANDUM TO DEFENSE TECHNICAL INFORMATION CENTER
ATTN: OCQ/MR WILLIAM BUSH

SUBJECT: DOCUMENT REVIEW

The Defense Threat Reduction Agency's security office has reviewed and declassified the following documents:

AFSWP-1104, AD-313420 (DOD DIST. NOT CHG)
DASA-1444, AD-347629
DASA-1460, AD-362824 (S-FRD)
DASA-1240-CH-9-SEC-9.5, AD-354626
DASA-1240-CH-9-P-2-SEC-9.3, AD-346387 (S-FRD)
DASA-1240-CH-3-P-2-SEC-3.2, AD-367872 (C-FRD)
DASA-1240-CH-5-P-2-SEC-5.2, AD-365500 (C-FRD)
DASA-1240-CH-9-P-2-SEC-9.4, AD-346603 (S-FRD)
DASA-1504-3, AD-355637
DNA-3051F-2, AD-528106
DNA-2790F, AD-519052
DNA-3069F, AD-525446
DNA-3291F-2, AD-530064

The following distribution statement applies:

DISTRIBUTION LIMITED TO DOD AND DOD CONTRACTORS ONLY; ADMINISTRATIVE OR OPERATIONAL USE, 24 APRIL 1999. OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED TO THE DEFENSE THREAT REDUCTION AGENCY.

These documents were reviewed under the Executive Order 12958.

ARDITH JARRETT
Chief, Technical Resource Center