AD NUMBER

AD303575

CLASSIFICATION CHANGES

TO

unclassified

FROM

confidential

AUTHORITY

DoDD 5200.10, 26 Jul 1962

THIS PAGE IS UNCLASSIFIED
CONFIDENTIAL

HEADQUARTERS
QUARTERMASTER RESEARCH & ENGINEERING COMMAND
U.S. ARMY

SUMMARY
of
PERSONNEL ARMOR MATERIALS SYMPOSIUM
9, 20 SEPTEMBER 1957

QUARTERMASTER RESEARCH & ENGINEERING CENTER
CHEMICALS AND PLASTICS DIVISION

SEPTEMBER 1958
NATICK, MASSACHUSETTS
This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address:
Armed Services Technical Information Agency, Arlington Hall Station, Arlington 12, Virginia

THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.
BEST AVAILABLE COPY
CONFIDENTIAL

HEADQUARTERS QUARTERMASTER RESEARCH AND ENGINEERING COMMAND, US ARMY
Quartermaster Research and Engineering Center
Natick, Massachusetts

CHEMICALS AND PLASTICS DIVISION

SUMMARY OF PERSONNEL ARMOR MATERIALS SYMPOSIUM

19, 20 September 1957

Compiled by
Anthony L. Alesi
Protective Material Branch

Project Reference: 7-80-05-001

September 1958

CONFIDENTIAL
The exchange of information among investigators working on different problems in the same broad area is unfortunately sometimes incomplete, often infrequent, and seldom prompt. Where the area involved is under a security classification, there is even less than the usual amount of information exchanged. When the investigators are in independent private laboratories and in quasi-independent government laboratories linked only through contractual and administrative relationships and separated physically, there is a great possibility that each investigator may conduct his work in comparative isolation from the others.

This report summarizes the proceedings of an attempt to facilitate the necessary and important exchange of information among a small group of investigators from the Quartermaster Research and Engineering Center and from private organizations under contract to the Quartermaster Research and Engineering Command concerned with the development of materials for personal armor. It was the consensus of those attending that the two-day informal symposium did result in the hoped-for exchange of information. Furthermore, there were other important results. Investigators working under contract became better aware of the broad outlines of the field of interest to the QM RAE Command, and of the specific problems now under study. Contacts were established between investigators from the various private laboratories represented. The meeting stimulated ideas to be brought back for consideration and testing. Finally, an opportunity for free discussion was provided for each representative to state, criticize, and defend his ideas and those of his colleagues; in short, this symposium provided the opportunity for subjecting information and ideas to the critical analysis of the group.

The success of the symposium, as evidenced by the participants' expressions of interest and requests for future meetings, leaves no doubt that meetings of this kind are both desirable and worthwhile. In the future, a symposium on personnel armor materials will be held periodically. A similar symposium is planned on helmet and body armor design and fabrication problems. It is further hoped that these meetings can be expanded to include participation by other interested government agencies.

GEORGE R. THOMAS, Ph.D.
Chief
Chemicals and Plastics Division

CARL L. WHITNEY, Lt. Col., QMC
Commanding Officer
QM RAE Center Laboratories

A. STUART HUNTER, Ph.D.
Scientific Director
QM Research & Engineering Command
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1v</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Symposium Agenda</td>
<td>2</td>
</tr>
<tr>
<td>Identification of Speakers, Laboratories and Contracts</td>
<td>5</td>
</tr>
<tr>
<td>Papers Presented</td>
<td>7</td>
</tr>
<tr>
<td>Recommendations</td>
<td>18</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>18</td>
</tr>
<tr>
<td>Distribution List</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACT

The proceedings of the Personnel Armor Materials Symposium held at the Quartermaster Research and Engineering Center on 19, 20 September 1957 are presented. Participants were those personnel of the Center and of organizations under contract to the QM RAE Command engaged in the development of materials for personnel armor. Summaries of the eleven papers delivered at the symposium are presented. Recommendations are made for the greater use of symposia for personnel in many government laboratories and government contractor laboratories, who are active in conducting investigations, to facilitate exchange of information and ideas.
INTRODUCTION

The Quartermaster Corps has Department of the Army responsibility for the development and procurement of personnel armor. The Quartermaster Research and Engineering Command is assigned the research and development activities under Project 7-30-05-001, Personnel Armor. At the QM R&E Center, work is conducted as a team project involving all five operating Divisions, with the Chemicals and Plastics Division as the project leader.

At a monthly technical meeting of Center personnel engaged in this project, Mr. Theodore L. Bailey suggested that the Command's contractors working on personnel armor be invited to a meeting wherein both the contractor and Center personnel could exchange information and discuss ideas. This suggestion was enthusiastically endorsed by the group.

The nature of the meeting was determined by the realization that, in order to accomplish its objective of promoting the exchange of information and the discussion of ideas, the meeting should be kept small and quite informal. Accordingly, the first meeting was restricted to the subject of materials for personnel armor. A two-day meeting was believed desirable in order to allow sufficient discussion time. Further meetings are planned to discuss body armor design and fabrication problems.

The physical arrangements for the meeting were selected to enhance the informal atmosphere considered desirable for the success of the meeting. The QM R&E Officers Club lounge was selected rather than a large conference room or the Center auditorium.

Invitations were sent to Command contractors concerned with materials for personnel armor and all accepted.
SIMPOSIUM AGENDA

The prepared agenda was followed except for a change in the order of
the speakers for the afternoon of the first day and the elimination of
the tour scheduled for the second afternoon to allow additional discus-
sion time. The agenda followed is given herein.

HEADQUARTERS QUARTERMASTER RESEARCH AND ENGINEERING COMMAND, US ARMY
QUARTERMASTER RESEARCH AND ENGINEERING CENTER
NATICK, MASSACHUSETTS

ARMOR MATERIALS SYMPOSIUM
19, 20 September 1957

AGENDA

Thursday, 19 September 1957

Welcome (1000 - 1005) Dr. J. F. Csterling

QMBE Armor Program (1005 - 1020) Mr. M. I. Landsberg

(Chairman)

Presentations

1. QMBE Center (1020 - 1120)

 a. The development of multiphase armor
 constructions. Mr. A. L. Alese
 (Armor structures consisting of two or
 more dissimilar materials are discussed.
 A suggested method of selecting mater-
 rials to construct a multiphase structure
 is presented.)

 b. Energy absorption of single layer and
 composite armor structures. Mr. A. S. Tento
 (The variation in energy absorption of
 various armor materials, when impacted by
 two sizes of fragment signatures at various
 velocities, is discussed. The application
 of energy absorption studies on materials
 in composite panels is demonstrated.)

2. Polaroid Corporation (1120 - 1220)

 a. Scope of program. Dr. W. A. Shurcliff
b. Some ballistic properties of CR-39 plates. Mr. E. S. Emerson

c. Importance of type and extent of panel delamination among organic polymeric molecules comprising an armor panel. Dr. W. A. Shurelliff

d. Applicability of dynamic photoelastic analysis to the study of impact phenomena. Mr. E. S. Emerson

Lunch (1230)

3. Rutgers University (1330 - 1430)

Properties of technical ceramics. Dr. E. J. Smoke

(Discussion of the unique engineering properties of ceramics, for example, refractoriness and other thermal properties, mechanical strength, hardness, chemical durability.)

4. Bjorksten Research Labs., Inc. (1430 - 1530)

Measurement of the energy absorption characteristics of materials as a function of projectile velocity. Mr. E. A. Mayer

(Discussion of the cause and elimination of a major source of error in velocity measurements with luminal screens. Energy absorption measurements will also be presented on materials tested to date.)

Discussion (1530 - 1700)

New approaches to the development of armor materials and material systems.

Presentations Friday, 20 September 1957

1. U. S. Army Chemical Warfare Laboratories (0900 - 1100)

 a. Technique for determining strain history of yarns under high-speed impact. Mr. J. W. Jameson

 (Discussion of apparatus, techniques and instrumentation for obtaining on a photogram the complete history of the strain distribution in a single yarn when impacted transversely at high speeds. Photographs obtained with rotating mirror apparatus will be discussed.)
b. A new technique for determining transient deformation.

(A photographic study of the dynamics of body armor materials under high-speed impact using a multiflash unit for the light source. Results of studies of impacted helmet, cloth and yarn, and secondary missile effect from impacted protective lenses will be discussed.)

2. Battelle Memorial Institute (1100 - 1200)

Development of titanium alloys under Quartermaster contract.

Mr. A. M. Sabroff

Lunch (1230)

Discussion (1330 - 1500)

New approaches to the development of armor materials and material systems.

Tour (1500 - 1630)
GM RAE Command

Dr. J. Fred Oesterling, Deputy Scientific Director

GM RAE Center

Project 7-80-05-001, Personnel Armor

Participating Divisions:
- Chemicals & Plastics (Project Leader)
- Environmental Protection Research
- Mechanical Engineering
- Pioneering Research
- Textile, Clothing & Footwear

Speakers:
- Mr. M. I. Landisberg, Chief, Personnel Armor Section
- Chemicals & Plastics Division
- Mr. A. L. Alesi, Technologist (Plastics)
- Chemicals & Plastics Division
- Mr. A. S. Conte, Mechanical Engineer (Textiles)
- Textile, Clothing & Footwear Division

Contract DA19-129-QM-209 "Investigation of the Mechanism of Energy Absorption Characteristics of New Polymeric Materials" (Confidential)

Speakers:
- Dr. W. A. Shurell, Technical Coordinator
- Mr. E. S. Emerson, Physicist

Rutgers University, New Brunswick, N. J.

Contract DA19-129-QM-85 "Development of Rigid High Strength Ceramic Type Materials and Flexible Configurations Shaped to Minimize Brittle Tendencies" (Confidential)

Speaker: Dr. E. J. Sack, Professor, School of Ceramics

Bjorksten Research Labs., Inc., Madison, Wisconsin

Contract DA19-129-QM-909 "Investigation of Ballistic Properties of Personnel Armor Materials" (Confidential)

Speaker: M. E. A. Moyer, Project Leader
Cross-Servicing Order No. C50-58-6R.

Speakers: Mr. J. W. Jameson, Body Armor Branch, Biophysics Division
 Mr. G. M. Stewart, Deputy Chief, Body Armor Branch
 Biophysics Division

Battelle Memorial Institute, Columbus, O.

Contract DAJ2-172-DM-933 "Fabrication of Selected Titanium Alloys
for Personal Armor Applications" (Confidential)

Speaker: Mr. A. M. Sabroff, Research Metallurgist
 Light Metals Division
The Development of Multiphasic Armor Constructions1

A. L. Alesi2

The historical background of multiphasic armor was outlined and an explanation of the synergistic effect obtainable with such armor proposed in terms of combinations of missile stopping and missile-retarding effectiveness of the components.

The results of exploratory experiments were presented, demonstrating that composite armor consisting of two or more dissimilar materials is capable of producing substantially greater protection than an equivalent weight per unit area of any one component. Data were shown for three systems of two components each and tested with the 17 grain .22 caliber T37 fragment simulating projectile. Measures of the ability to defeat missiles (such as the V50 ballistic resistance limit) and to retard missiles were presented as guides for the selection and positioning of components within a composite. Data on residual velocity as a function of missile-striking velocity obtained with the 17 grain .22 caliber T37 fragment simulator for five materials (arilon cloth, titanium Al-1102T, aluminum 241-T3, glass and polyethylene methacrylate) were presented. By application of the synergistic effect obtainable with composite armor, significant advances are anticipated in providing protection for personnel, vehicles, shelters and equipment against battlefield missiles.

1Published in more complete form as Quartermaster Research & Engineering Command, Technical Report CP-5, Composite Personnel Armor, Dec. 1957 (C).

2Quartermaster Research & Engineering Center, Natick, Massachusetts.
The work carried out by the Quartermaster Research and Engineering Center ballistic test range on the ballistic energy absorption of personnel armor materials was presented.

Generally, similar relationships were found for both the caliber .32 and .35 fragment simulating projectiles, viz. (a) materials differ markedly in their ability to retard projectiles, (b) the energy loss of penetrating projectiles divided by the areal (surface) density of the material was found to be velocity-dependent for all materials and (c) the relationship between materials changes with projectile striking velocity.

The kinetic energy loss of the caliber .35 projectile was approximately one half that of the caliber .32 projectile. Comparison on the basis of the projectile striking energy, however, shows that the percentage loss is greater for the caliber .35 projectile.

Limited energy absorption studies have been made on a few composite structures utilizing a rigid material in front and nylon armor fabric in back. Some combinations such as glass-nylon and polymethyl methacrylate-nylon were found to reduce the kinetic energy of the projectile (per unit areal density) to a greater extent than either component.

Published in part as Quartermaster Research & Engineering Center Report QMER-14, Investigation of Ballistic Protective Materials for Personnel Armor, Progress Report 1, Energy Absorption and Ballistic Resistance Limits (V60) of Armor Materials when Perforated by a Fragment Simulating Missile (.30 caliber T37), December 1957 (Confidential).

*Quartermaster Research & Engineering Center, Natick, Massachusetts
Perhaps in 10 or 20 years, science will be sufficiently advanced to permit man to arrive at a detailed understanding of the action of an armor panel in stopping a projectile. Today, we lack the scientific foundation on which to base such an understanding. The subject is further handicapped by lack of any textbook or any technical society devoted to the subject of personal armor. Also, the secrecy which shrouds the subject hinders stimulating discussions among scientists in different organizations.

Some Ballistic Properties of CR-39 Plates

E. S. Emerson

Because glass shows such great energy absorption from fast missiles (missiles whose striking speed exceeds the V50 value of the panels fired at), we tried to see what organic polymeric material might be enough like glass to exhibit correspondingly high energy absorption but might avoid glass bad features such as high density and tendency to shatter into sharp-edged pieces. The material known as CR-39 appeared to be a good prospect. Firing tests were made and our expectations were borne out. CR-39 plates that are thicker than 1/4 inch show outstanding ability to absorb energy from fast projectiles.

Importance of Type and Extent of Parallelism Among Organic Polymeric Materials Comprising an Armor Panel

W. A. Shurelff

The usual method of measuring the orientation (i.e., type and degree of parallelism of the long chain molecules) in polymeric plates that have been strengthened by stretching operations is to describe the stretching procedures used. This method is inadequate—specimens that have been stretched in apparently similar manner may end up with quite different actual type and degree of parallelism among the molecules. A scientifically rigorous method involving determination of the three principal refractive indices is recommended.

An almost ideal method of evaluating the high-speed, dynamic stresses produced in panels of organic polymeric materials by incident missiles is the method known as photoelastic analysis. Curiously enough, the method has been entirely overlooked by persons working in this field. One complication is that some of the formulas commonly used in static photoelastic analysis do not apply. However, several of the principal formulas still do apply, and from these we can derive a detailed account of how the stresses vary from instant to instant and from point to point.

The first objective of contract DA 19-129 QM 054 is to determine the ballistic properties of ceramic materials. Preliminary specimens of three types of crystalline ceramics have been submitted for test, namely alumina, zircon and steatite. They range in areal density from 57 to 117 oz./sq. ft. In the ballistic tests, the striking velocity ranged from 5,265 to 3,000 ft./sec., while the residual velocity ranged from 2,687 to 540 ft./sec. This results in the ceramic lowering the velocity in the range of 47 to 84%. In all cases, the ceramic shattered and splintered in the area of impact. It has been proved that, in some cases, the recorded residual velocity is that of a fragment of ceramic since the missile did not penetrate the ceramic. Specimens are being prepared in lower areal densities for further evaluation.

A general discussion of the engineering properties of ceramic materials was also presented. Information on glass, single crystals, polycrystalline, and crystal glass type ceramics was included. Physical strength of highly porous types of ceramics is quite low, in the range of several hundred pounds per square inch. The maximum value for tensile strength is 27,000 psi, transverse strength 60,000 psi, and compressive strength 60,000 psi. Other properties are:

- Hardness: 27 to 7000 (Mohs)
- Linear Thermal Expansion: \(8.6 \times 10^{-6} \) in./in./°C
(25 to 700°C)
- Thermal Conductivity: 0.05 to 125 Btu/(hr)(ft²)(°F)/ft.
- Impact Strength: 3 to 40 in.-lbs./sq. in.

*Professor of Ceramics, School of Ceramics, Rutgers, The State University, New Brunswick, N. J.
Measurement of the Energy Absorption Characteristics of Materials as a Function of Projectile Velocity

E. A. Meyer*

A comparison check was made between the two velocity-measuring systems which are to be used for energy absorption measurements. Serious disagreement was noted only in the velocity interval between 1350 and 1280 ft./sec. The disagreement ranged from 23 to 55 ft./sec., whereas outside this interval they agreed within several ft./sec. Since even slight disagreement in velocity measurement can produce large errors in the measurement of energy absorption, it was imperative that the cause be understood and corrected. Tests showed that the problem which existed with the T37 projectile could be adequately simulated with bullets. Since about 10,000 rounds were fired in this investigation, the savings in cost and time were considerable.

High-speed flash photographs of bullets at various velocities were taken at the instant they triggered the lumiline screen. Relative bullet position were obtained by superimposing negatives. The results showed that bullets travelling at different velocities triggered the residual velocity lumiline screen all at the same position. This was also the case for the striking velocity screen at velocities below 1130 ft./sec. At 1130 ft./sec., the bullet position abruptly jumped back 1-1/2 inch (toward gun) at the instant this screen was triggered. As the bullet velocity was increased, this pre-triggering distance decreased until it was only 3/16 in. at 1350 ft./sec. This phenomenon alone could account for the velocity disagreement observed, which also showed an abrupt change at 1130 ft./sec. It is of interest to note that the velocity of sound under our test conditions is about 1140 ft./sec.

Additional tests suggested that the pre-triggering was caused by interaction between the shock wave which precedes the bullet at sound velocities and the light beam. There was no evidence that the pre-triggering was caused by mechanical interaction between the shock wave and the tubes of the lumiline screen (e.g., microphones).

Tests were conducted which showed that pre-triggering depended on light beam intensity, photomultiplier sensitivity and amplifier gain. If these variables are wisely controlled, they can prevent pulse saturation in the amplifier. This permits optimum use of the output thyatron as an amplitude discriminator to screen out the shock pulses, ordinarily far

*Bjorksten Research Labs., Madison, Wis.
smaller than the bullet pulse, and permit only the bullet pulse to pass. While it was possible to eliminate pre-triggering by this method, it did not allow a sufficient safety factor. It was, therefore, necessary to find some other means of reducing the shock pulse amplitude.

Further investigation revealed there were actually three distinct types of shock pulses preceding the bullet at sound velocities. All are due to the dense, compressed air of the shock wave front acting as a lens and refracting the light beam 0.2° toward the gun. This corresponds to a 1/32 in. shift in the light beam at the photomultiplier tube. The interface shock pulse and the normal shock pulse are of the same polarity as the bullet pulse and, therefore, could cause pre-triggering error. The inverse shock pulse is of the opposite polarity and therefore harmless.

The interface shock pulse, observed only on the striking velocity lumiline screens, was caused by the light beam being masked by the back side of the lower slit (toward gun) during refraction. This reduced the light striking the photocathode and produced the pulse. It was eliminated by moving the lower slit upward and firing below this slit.

The normal shock pulse can be caused either by a reduction in the light striking the photocathode or by the light beam shift to a less sensitive portion of the photocathode. The light level is reduced during refraction if the back portion of the photocathode is masked. The decrease in sensitivity results when the light beam is positioned on the back portion of the photocathode so that refraction moves it away from the much more sensitive center portion.

The inverse shock pulse can be caused either by an increase in the light striking the photocathode or by the light beam shift to a more sensitive portion of the photocathode. The light level is increased during refraction if the front portion of the photocathode is masked. The increase in sensitivity results when the light beam is positioned on the front portion of the photocathode so that refraction moves it toward the much more sensitive center portion.

The normal shock pulse was eliminated by making certain that the back side of the light beam was not masked and by positioning the beam on the front portion of the photocathode surface. Then, only an inverse shock pulse results which cannot trigger the thyatron and cause pre-triggering error.

The results of this investigation apply specifically to our modified lumiline screens with the 0.024-in. slits. However, normal shock pulses of sufficient amplitude to cause pre-triggering error were observed on the standard, unmodified high velocity lumiline screens.
Chronograph agreement tests were conducted by connecting all four chronographs in parallel to a set of luminescent screens. One of the chronographs was consistently low by 0.02 millisecond. Pickup from the start circuit distorted the oscillator wave form for the first few cycles and these counts were missed.

The interaction was eliminated by shielding the wires which originated in the start circuit and which passed behind the oscillator condensers. The same interaction was noted in the other chronographs but to lesser degrees. Since it represents a potential source of error, they were all shielded. All four chronographs then agreed within 0.01 millisecond.

A final comparison check was made between the two velocity-measuring systems. They agreed within experimental error and no anomaly was observed in the velocity of sound region. The velocity difference between systems ranged from -3 to 8 ft./sec. as compared to -23 to 55 ft./sec. at the start of this investigation. Of the 11 ft./sec. spread observed, 8 ft./sec. can be attributed to the minimum chronograph resolution of ± 4 ft./sec. at these velocities. The remaining 3 ft./sec. variation could easily be due to changes in drag, since both clipped and uncropped bullets were fired. Tests with T37 projectiles also showed agreement within experimental error over the complete velocity range from 360 to 2100 ft./sec.

The important requirement on the proper choice of drag coefficient is that the projectile striking velocity (V_s) and the residual velocity (V_r) agree closely at the target plane in the absence of a target. Any appreciable difference can introduce serious error on energy absorption measurements. Using this condition, the drag coefficient for T37 projectiles was determined experimentally over the velocity range from 100 to 2200 ft./sec.

The values of the drag coefficient determined by Aberdeen Proving Ground and Watertown Arsenal were compared with that measured at our laboratory. Comparison was made of the computed values of ($V_s - V_r$) without a target using the three different values of drag coefficient on 21 rounds covering the velocity range. The least error was obtained using the Bjorksten drag coefficient.

Energy absorption measurements were started on both plastic and metallic target materials. High-speed flash photographs showed that the residual velocity screens were pre-triggered by target fragments from both targets. Correction must therefore be made for the pre-triggering to avoid serious error in energy absorption measurements. This correction can be obtained from the projectile-to-slit distance measured from a photograph taken at the instant each residual velocity screen is triggered.

The energy absorption efficiency of 1/32 in. Micarta 259-2 for T37 projectiles at various striking velocities was presented. Correction for pre-triggering by target fragments was made by the photographic technique for each round fired.
Technique for Determining Strain History
of Yarns under High Speed Impact

J. W. Jameson

To assist in the study of energy absorption in armor materials, an apparatus has been developed for obtaining on a single photograph the complete history of the strain distribution in a single yarn impacted by a projectile. The camera, set for time exposure, sees the object in a rotating mirror and several pictures of the yarn in successive states of deformation are made by flashes of light, each of microsecond duration. Data can now be obtained directly to describe the strain at a point on the impacted yarn as a function of time. The method can also be applied to other subjects.

A New Technique for Determining Transient Deformation

G. M. Stewart

A new photographic technique for determining the amount of transient deformation of a material at a known time after impact is now in use at Biophysics Division, Army Chemical Center, Md. This technique involves the use of a multiple microflash unit, type 2518, developed for Biophysics Division by Edgerton, Gerstemhausen and Grier, Inc. The unit consists of a power supply, a triggering pulser, and 20 flash units which are set off in rapid sequence. The light source is a single flash tube, with a reflector assembly and each of the 20 flashes is of approximately one microsecond duration. The interval between flashes may be set at 10, 20, 40, 80 or 160 microseconds.

During a test, a photograph is taken of the impacted target. From this negative, one can determine by measurement the maximum transient deformation. This is done as follows: the distance from the back of the target to the farthest displaced image is measured on the negative. The number of flashes that occurred before impact is known and the number of flashes after impact is determined by counting the images of the displaced portion. If the total is less than 20, it can be assumed that the missing flashes occurred after the maximum transient deformation was reached.

Using the above techniques, it is possible to determine with accuracy the maximum transient deformation for impacted targets such as helmets, fabrics, metals, tissue and protective lenses.

*Chemical Corps Research & Development Command, Army Chemical Center, Md.
Development of Titanium Alloys under Quartermaster Contract

A. M. Sabroff

The desirable combination of high strength and low density which titanium and its alloys possess has interested a number of agencies in the possibility of using these materials in armor application. Ballistic studies conducted by Watertown Arsenal, Bureau of Aeronautics and Naval Proving Ground as far back as 1951 have shown that certain titanium alloys exhibit ballistic performance against fragments and armor-piercing projectiles equal to or better than that of many of the metallic armor materials now in use. In research on titanium alloys for aircraft armor applications conducted by Battelle for the Bureau of Aeronautics, for example, an alloy having the nominal composition Ti-3Mo-1Cr-1Fe-1Mo-IV, when properly fabricated and heat-treated, showed better resistance to fragment simulators than the presently used aluminum alloys on an equivalent weight basis.

Most of the armor programs on titanium, however, have been concerned with applications requiring areal densities in the range 2.5 to 7.5 lb./sq. ft. Comparatively little work has been done on titanium alloys in sheet sizes of interest for personal armor, namely, those with areal densities below 2.5 lb./sq. ft. Recent studies at the Quartermaster Research & Engineering Center on various titanium alloys, however, have shown highly promising results.

The objective of the Quartermaster Corps program at Battelle is to establish the conditions under which the most promising alloys developed thus far may be processed for personal armor applications. Although considerable data are available on heavier gages, ballistic performance cannot be extrapolated to lighter gages because of differences in various metallurgical characteristics, for example (1) grain size, (2) tolerances for impurities and (3) notch sensitivity. This is probably true from the mechanical standpoint as well, considering only the differences in geometry.

Initially, six alloys exhibiting alpha, alpha-beta or beta microstructures will be studied:

- Ti-3Mo-1Cr-1Fe-1Mo-IV
- Ti-3Mo-1Cr-1Fe-1Mo-IV-4Al
- Ti-6Al-4V
- Ti-5Al-2.5Sn
- Ti-16V-2.5Al
- Ti-6Al-3Mo

*Battelle Memorial Institute, Columbus, O.
CONFIDENTIAL

Except for the all-alpha Ti-5Al-2.5Sn alloy, which is not heat-treatable, the alloys will be tested in the following conditions:

1. Fully annealed.
2. Heat treated to about 20,000 to 25,000 psi higher in ultimate tensile strength than the annealed condition.
3. Heat treated to about 40,000 to 50,000 psi higher in ultimate tensile strength than the annealed condition.

In addition, the Ti-6Al-4V alloy and possibly one other alloy will be heat-treated to produce a range of yield strength/ultimate strength ratios. This material will be used to study the effect of the spread between yield and ultimate strengths on ballistic performance.

The alloys will be studied in two sizes covering an areal density range of 1 to 2.5 lb./sq. ft. The materials will be evaluated in the G-2 ballistic test for both V50 and energy absorption characteristics. The most promising alloys will be studied over a wider range of conditions in an attempt to establish the optimum condition for armor applications.

On completion of the studies outlined, the most promising alloys will be studied in a wide range of sheet sizes covering a range of areal densities from about 0.5 to 2.5 lb./sq. ft., to obtain data for use in developing not only titanium armors, but also composites of titanium with "*" materials.
RECOMMENDATIONS

Many of the participants and those in attendance volunteered highly favorable comments on the worth of the armor materials symposium in contributing to their knowledge and in stimulating ideas. On the basis of these comments, the following recommendations are made:

1. For each broad area of a project wherein there are many groups, command contractors, division laboratories or others involved, annual meetings of all interested groups be held to promote communication between the working groups.

2. The meetings be conducted on an informal basis with ample time allowed for discussion.

ACKNOWLEDGEMENTS

The contributions of Mr. A. L. Lastnik of the Chemicals and Plastics Division and of Mr. Hugh H. McRaven of the Technical Services Office in making arrangements for the meeting are gratefully acknowledged.
Office, Chief of Research and Development
Department of the Army
Washington 25, D. C.

Copy Number
1-2

Deputy Chief of Staff for Logistics
Department of the Army
Washington 25, D. C.

3-4

Deputy Chief of Staff for Operations
Department of the Army
Washington 25, D. C.

5-6

Deputy Chief of Staff for Personnel
Department of the Army
Washington 25, D. C.

7-8

Asst. Chief of Staff for Intelligence
Department of the Army
Washington 25, D. C.

9-10

Commanding General
Eq. US Continental Army Command
Fort Monroe, Virginia

11-12

Operations Research Office
Johns Hopkins University
Chevy Chase, Maryland

13

Office, Chief of Ordnance
Department of the Army
Washington 25, D. C.

14-15

Office of The Surgeon General
Department of the Army
Washington 25, D. C.

16-17

Office of Chief of Transportation
Department of the Army
Temp Bldg., T-7, Gravelly Point
Washington 25, D. C.

18-19

Attn: Aviation Systems Branch
Army Aviation Division

The Quartermaster General
Department of the Army
Washington 25, D. C.

Attn: Office of Research and Engineering

20-24
Office of Chief of Engineers
Department of the Army
Washington 25, D. C.

Commanding Officer
Watertown Arsenal
Watertown, Massachusetts
Attn: OMRO

Commanding Officer
Watertown Arsenal
Watertown, Massachusetts
Attn: Materials Engineering Division

Office of the Chief Chemical Officer
Department of the Army
Washington 25, D. C.

Commanding Officer
Chemical Warfare Laboratory
Edgewood, Maryland
Attn: Biophysics Division
Directorate of Medical Research

Commanding Officer
USA Transportation Research & Engineering Command
Fort Eustis, Virginia
Attn: Army Aviation Division

Office of Chief Signal Officer
Department of the Army
Washington 25, D. C.

Armed Forces Institute of Pathology
Washington 25, D. C.

US Marine Corps Liaison Officer, QM RAE Center
for Transmittal to:

1 - Commandant
Marine Corps, Code ADAS
Headquarters, Marine Corps
Washington 25, D. C.

1 - Commandant
Marine Corps, Code AO4D
Headquarters, Marine Corps
Washington 25, D. C.
1 - Director
Trench & Field Construction Center
Alexandria, Virginia

1 - Director
Compact Field Medical Research Lab.
Marine Corps
Camp Lejeune, N. C.

Department of the Air Force
HQs., USAF Air Forces
Washington 25, D. C.

Commanding Officer
Army Medical Research Lab.
Fort Knox, Kentucky

Commanding General
QM Research and Engineering Command, US Army
QM Research and Engineering Center
Natick, Massachusetts

Mechanical Engineering Division
Textile, Clothing, and Footwear Division
Pioneering Research Division
Chemicals and Plastics Division
Technical Services Office
Military Liaison Office
Patent Advisor
Technical Plans and Operations Office
Scientific Director
QM R&D Center Laboratories

Armed Services Technical Information Agency
Arlington Hall Station
Arlington 22, Virginia
Attn: TIFDE
Polaroid Corporation
Cambridge, Mass.
Attn: Dr. W. A. Shurcliff
Mr. E. S. Emerson

Rutgers University
New Brunswick, N. J.
Attn: Prof. E. J. Smuck
School of Ceramics

Bjorksten Research Labs., Inc.
Madison, Wisconsin
Attn: Mr. N. A. Meyer

Chemical Corps RADC Command
Army Chemical Center, Md.
Attn: Mr. J. W. Jamison
Biophysics Division
Directorate of Medical Research
Attn: Mr. G. M. Stewart
Biophysics Division
Directorate of Medical Research

Battelle Memorial Institute
Columbus, Ohio
Attn: Mr. A. M. Sabroff
Light Metals Division