<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD300238</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASSIFICATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>confidential</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIMITATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>Approved for public release; distribution is unlimited.</td>
</tr>
</tbody>
</table>

| FROM: |
| Controlling Organization: The British Embassy, 3100 Massachusetts Avenue, NW, Washington, DC 20008. |

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
</table>

THIS PAGE IS UNCLASSIFIED
FOREIGN WEAPON EFFECTS REPORTS

SKIN TEMPERATURE RISE IN AN AIRCRAFT EXPOSED TO THERMAL RADIATION FROM A NUCLEAR EXPLOSION

TIS Issuance Date: June 30, 1959

This material contains information affecting the national defense of the United States within the meaning of the espionage laws Title 18, U. S. C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.
SKIN TEMPERATURE RISE IN AN AIRCRAFT EXPOSED TO THERMAL RADIATION FROM A NUCLEAR EXPLOSION

B. J. Brinkworth, M. Sc.

March 1958

This material contains information affecting the national defense of the United States within the meaning of the espionage laws Title 18, U. S. C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.
LIST OF CONTENTS

1 INTRODUCTION 5
2 RATE OF THERMAL INPUT 6
3 RATE OF HEAT LOSS 6
4 RATE OF TEMPERATURE RISE 7
5 DISCUSSION 11
6 ILLUSTRATIVE EXAMPLE 11
7 CONCLUSIONS 13

NOTATION 13

LIST OF REFERENCES 15

LIST OF ILLUSTRATIONS

Shape of generalised thermal pulse 16
Fraction of total energy emitted or received 17
Time history of temperature rise 18
Maximum temperature rise 19
Time to maximum temperature rise 20
Maximum temperature rise in DTD.54.6 skin 21

CONFIDENTIAL
SKIN TEMPERATURE RISE IN AN AIRCRAFT EXPOSED TO THERMAL RADIATION FROM A NUCLEAR EXPLOSION

SUMMARY

It is shown that, in many situations, aerodynamic cooling substantially reduces the temperature rise in thin skins of aircraft exposed in flight to thermal radiation from nuclear explosions. The maximum acceptable thermal dose, where this is determined by skin temperature rise, depends upon the time scale of the thermal input and thus upon the yield of the weapon involved.

The problem is attacked by a finite difference analysis, and the maximum temperature rise and the time at which it occurs are shown to depend on a single non-dimensional parameter. The results are presented for a range of this parameter corresponding to the majority of practical situations.

1 INTRODUCTION

In many situations, the maximum yield of weapon which an aircraft may safely deliver is governed by the thermal dose it can withstand. In particular, the temperature rise in the skin may be limited to some critical value determined by deterioration of the properties of the material or by unacceptably high thermal stresses. It is clear that the operational capabilities of an aircraft can only be determined realistically if both the critical temperature limits and the temperature rise in a given situation are known accurately. This Note considers the latter factor.

In previous British analyses of the effects of thermal radiation on aircraft, it has been assumed that the incident thermal dose, corrected for reflection at the surface and the obliquity of the skin to the direction of propagation, is thereafter totally absorbed by the skin and contributes in its entirety to the temperature rise. It was known that during the time in which the thermal radiation was received, some heat would be lost from the surface by forced convection to the airstream, but this effect had not been evaluated and had been considered to be a factor of safety. With the advent of thermonuclear weapons of high yield, it has now become necessary to examine this and other safety factors, in order to determine whether these weapons can be delivered at all by existing aircraft without damaging them seriously.
This Note considers the effect of aerodynamic cooling on the temperature rise of aircraft skins exposed to thermal radiation from nuclear weapons. The analysis is generalised and the range of variables chosen is believed to cover any likely situation.

2 RATE OF THERMAL INPUT

The thermal energy from a nuclear explosion is released in a pulse, the rate of output rising rapidly to a peak and decaying more slowly over a relatively long period of time. It is possible to represent the thermal pulse in a generalised form giving the rate of thermal energy release as a fraction of its peak value, in terms of a non-dimensional time whose units are the time t_{max} at which the energy release is a maximum, i.e.,

$$\frac{P(t)}{P_{\text{max}}} = f\left(\frac{t}{t_{\text{max}}}\right).$$

(1)

This function, which is independent of yield, is shown in Fig. 1; it also represents the shape of the pulse received by a surface exposed to the radiation.

In the subsequent analysis, the amount of energy received up to a given time is required, and this is obtained from an integral of equation (1) and takes the non-dimensional form

$$\frac{Q(t)}{Q_{\text{max}}} = f\left(\frac{t}{t_{\text{max}}}\right)$$

(2)

where Q is the total thermal energy received. A curve of equation (2), of American origin, has been widely published and is shown in Fig. 2. The data actually used in this study are very similar to those represented in Fig. 2, but were obtained in British trials with weapons in the megaton range. There appear to be no data for times longer than $10 t_{\text{max}}$, and it is of importance to note that only about 80% of the thermal energy is released up to this time. Since

$$t_{\text{max}} = 0.032 \, \text{W}^{1/2} \, \text{secs} \, \text{(Ref. 1)}$$

it may be seen that some 20% of the thermal energy is still to be released after a time $t = 0.32 \, \text{W}^{1/2}$, which for a 5 Mt weapon, for example, is 22.6 secs. The fact that most of the energy is released after the peak permits a significant amount of convective cooling to occur in most circumstances, as shown below.

3 RATE OF HEAT LOSS

It is assumed that the rate of loss of heat from an aircraft skin to the airstream can be represented by a heat transfer coefficient h such that when the temperature difference between the skin and the airstream is T, the rate of heat loss per unit area is hT. It is not proposed to enter into a detailed examination of means by which the heat transfer coefficient may be calculated in different circumstances, but a brief statement of relevant data is given below.

The heat transfer coefficient at any point depends upon the conditions in the boundary layer and the location of the point. It is usually
assumed that the development of the boundary layer is similar to that on a flat plate, for which considerable experimental data are available. A number of empirical formulae have been developed to represent these data, and those recommended for use in kinetic heating studies seem to be the most appropriate. At any point whose distance is x downstream from the leading edge, the local heat transfer coefficient is given by

$$h = 0.332 \rho V C_p Pr^{2/3} Re^{-1/2}$$

when the flow in the boundary layer is laminar, and by

$$h = 0.176 \rho V C_p (\log_{10} Re)^{-2.45}$$

when the flow in the boundary layer is turbulent. These equations may be modified by compressibility effects and chordwise pressure gradients and the heat transfer coefficient also varies somewhat with the temperature difference T when this becomes large. The effects of some of these factors are considered elsewhere, and appropriate specialist reports should be consulted. It will be seen later, however, that the maximum temperature rise in many situations is relatively insensitive to the heat transfer coefficient, to an extent which makes great accuracy in determining the latter unnecessary.

4. Rate of Temperature Rise

In attempting a general analysis of the rate of increase in skin temperature, it is necessary to make the following assumptions, all of which appear to be justified in the majority of situations:

(a) The heat transfer coefficient remains constant.

(b) The thermal properties of the skin material remain constant.

(c) The reflectivity of the surface remains constant.

(d) The skin and boundary layer temperatures are initially equal.

(e) There are no temperature gradients through the skin.

(f) Heat loss to adjacent structure is negligible.

(g) Heat loss by radiation is negligible.

Under these circumstances the temperature rise in the skin is governed by the differential equation

$$C_e \frac{dT}{dt} = P(t) - hT$$

where, in this context, $P(t)$ is the rate of heat input per unit area of skin at time t.

Clearly, equation (6) can only be evaluated if $P(t)$ is known as an analytic function of time. Since it is not, it is necessary to consider an
analysis using finite differences of the variables. Equation (6) then becomes

\[zc0 \ \frac{\Delta T}{\Delta t} = P(t) - hT \quad (7) \]

or

\[\Delta T = \frac{P(t) \Delta t}{zc0} - \frac{hT \Delta t}{zc0} \quad (8) \]

where \(T \) is taken as the temperature rise at the centre of the time interval \(\Delta t \). Now \(P(t) \Delta t \) is the amount of heat entering the skin during the interval \(\Delta t \), which is \(\Delta Q(t) \). Then

\[\Delta T = \frac{\Delta Q(t)}{zc0} - \frac{hT \Delta t}{zc0} \quad (9) \]

To effect a general solution, we may make the substitutions

\[\Delta Q(t) = \frac{\Delta Q(t)}{Q} \cdot Q \]

and

\[\Delta t = \frac{\Delta t}{t_{max}} \cdot t_{max} \]

Further, let

\[\frac{Q}{zc0} = T_i \quad (10) \]

where \(T_i \) is the "ideal" temperature rise which would result if no heat were lost, and let

\[\frac{ht_{max}}{zc0} = b \quad (11) \]

where \(b \) is a non-dimensional variable.

Then equation (9) becomes

\[\Delta T = \frac{\Delta Q(t)}{Q} \cdot T_i - b \cdot \frac{\Delta t}{t_{max}} \cdot T \quad (12) \]

whence

\[\frac{\Delta T}{T_i} = \frac{\Delta Q(t)}{Q} - b \cdot \frac{\Delta t}{t_{max}} \cdot \frac{T}{T_i} \quad (13) \]

a non-dimensional equation.
Then during the nth interval of time the non-dimensional temperature rise increases by

\[
\frac{\Delta T_n}{T_i} = \frac{\Delta Q(t)_n}{Q} - b \cdot \frac{\Delta t}{t_{\text{max}}} \cdot \frac{T_n}{T_i}
\]

(14)

At the end of this interval, let the non-dimensional temperature rise be \(\frac{T_n}{T_i}\), where

\[
\frac{T_n}{T_i} = \frac{T_n}{T_i} + \frac{1}{2} \cdot \frac{\Delta T_n}{T_i}
\]

(15)

During the next interval, the non-dimensional temperature rise increases by

\[
\frac{\Delta T_{n+1}}{T_i} = \frac{\Delta Q(t)_{n+1}}{Q} - b \cdot \frac{\Delta t}{t_{\text{max}}} \cdot \frac{T_{n+1}}{T_i}
\]

(16)

But

\[
\frac{\Delta T_{n+1}}{T_i} = 2 \left\{ \frac{T_{n+1}}{T_i} - \frac{T_n}{T_i} \right\}.
\]

(17)

Then equation (16) gives

\[
\frac{T_{n+1}}{T_i} = \left(\frac{T_n}{T_i} + \frac{1}{2} \cdot \frac{\Delta Q(t)_{n+1}}{Q} \right) \left(1 + \frac{b}{2} \cdot \frac{\Delta t}{t_{\text{max}}} \right)^{-1}.
\]

(18)

Now the non-dimensional temperature rise at the end of the \((n+1)\)th interval is given by

\[
\frac{T_{n+1}}{T_i} = \frac{T_{n+1}}{T_i} + \frac{1}{2} \cdot \frac{\Delta T_{n+1}}{T_i}
\]

(19)

and substituting for \(\frac{\Delta T_{n+1}}{T_i}\) from equation (17)

\[
\frac{T_{n+1}}{T_i} = \frac{2}{T_i} \cdot \frac{T_{n+1}}{T_i} - \frac{T_n}{T_i}
\]

(20)

CONFIDENTIAL
It is now possible to erect a series from which the temperature rise at any time can be determined. During the first interval

\[\frac{\Delta T_i}{T_i} = \frac{2T_i}{T_i} \]

(21)

and thus, from equation (14)

\[\frac{T_i}{T_i} = \frac{1}{2} \frac{\Delta Q(t)}{Q} \left(1 + \frac{b}{2} \cdot \frac{\Delta t}{t_{max}} \right)^{-1} \]

(22)

and

\[\frac{T_i}{T_i} = \frac{2T_i}{T_i} \]

(23)

Subsequently

\[\frac{T_{n+1}}{T_i} = \left[\frac{T_n}{T_i} + \frac{1}{2} \frac{\Delta Q(t)}{Q} \right] \left(1 + \frac{b}{2} \cdot \frac{\Delta t}{t_{max}} \right)^{-1} \]

(18)

and

\[\frac{T_{n+1}}{T_i} = \frac{2T_{n+1}}{T_i} - \frac{T_n}{T_i} \]

(20)

Using equations (22), (23), (18) and (20) in turn, the variation of \(T/T_i \) with \(t/t_{max} \) may be determined for any value of the non-dimensional variable \(b \). Thus the temperature rise time-history for any situation may be presented in terms of one parameter. In using this method, it should be noted that the temperature rise \(T_n \) occurs at the centre of the \(n \)th interval, i.e. at a time \((n-\frac{1}{2}) \Delta t \). In order to produce a generalised solution, a large number of temperature-time series has been evaluated, using the basic assumptions given previously. It is worth noting however, that in any particular situation, the solutions may be obtained if all the assumptions except (e) are discarded, so long as the variation of all the relevant terms is known as a function of temperature or of time.

Typical solutions have been worked out in the range \(0.01 < b < 1.0 \), within which most practical situations are believed to lie. Some of these are shown in Fig.3, the working having been concluded just after the maxima had been reached. For these solutions, the time intervals used were \(\Delta t/t_{max} = 0.25 \).

In Figs.4 and 5, the maximum non-dimensional temperature rise \(T_m/T_i \) and the non-dimensional time \(t_m/t_{max} \) at which it occurs are plotted against
the parameter b. A difficulty was encountered in determining these values when they occurred after 10 t_{max}, since there are no input data beyond this point, which corresponds approximately to $b = 0.01$. In Fig.4, the extrapolation down to $b = 0.005$ has been dotted to emphasise its hypothetical nature. This extrapolation is made since situations involving low-yield weapons and little cooling have been found to involve values of b somewhat below 0.01.

5 DISCUSSION

It may be seen from Fig.4 that the maximum temperature rise in an aircraft skin in the presence of aerodynamic cooling is substantially less than has been assumed hitherto when no allowance for cooling has been made. The variation of maximum temperature rise with the parameter b is not rapid over the range $0.01 < b < 0.1$, which is believed to be the most important range. It therefore appears that the values of the properties which compose b need not be known with extreme accuracy in order to determine the maximum temperature rise with some confidence.

In using Fig.4, it must be remembered that although high values of h and t_{max} invariably favour low temperature rises, small values of $(z\sigma c)$ not only increase the value of b, but also that of T_i, since

$$T_i = \frac{Q}{z\sigma c}$$ \hspace{1cm} (10)

Thus, thin skins always suffer greater temperature rises than thicker ones, even though they favour lower values of T_m/T_i. This is illustrated in Fig.6, for example, where the actual maximum temperature rise is plotted against $h t_{\text{max}}$ for skins of various thicknesses in DTD 546 material. Fig.6 also demonstrates more clearly than does Fig.4 how the relative insensitivity of the maximum temperature rise to the heat transfer coefficient. Even in the thinnest material, a change in h by a factor of two changes T_m by about 10-20%.

When the skin is very thin, the reflective paint applied to the surfaces may contribute significantly to the heat capacity. If the same assumptions are made as in Section 4, the subsequent analysis is applicable when the product $(z\sigma c)$ is replaced by the total heat capacity per unit area of the skin together with its paint.

It is important to note that, when aerodynamic cooling is taken into account, it is no longer possible to state a maximum thermal dose which a given aircraft will withstand, when this is limited by the rise in skin temperature. Any such critical dose must be associated with the yield of the weapon from which it emanates. In general, a greater total thermal dose may be accepted from a weapon with a high yield than from one with a low yield, because of the increase in the time scale for the former weapon.

6 ILLUSTRATIVE EXAMPLE

An example involving a hypothetical situation is worked out below as an illustration of the use of the results.

The maximum temperature rise in the aileron skin of a bomber is required when a total thermal dose, corrected for reflectivity and obliquity
of the surface, of 10 cals cm\(^{-2}\) is received from a 2 Mt. explosion. The skin is 26 gauge light alloy to DTD 546 and the point of interest is 12 ft downstream from the leading edge. The aircraft is flying straight and level at \(M = 0.8\) at 45,000 ft.

It will be assumed, in this example, that the temperature rise is small enough for the properties of the air to be evaluated at ambient conditions, i.e.,

\[
\rho = 4.6 \times 10^{-4} \text{ slugs} \times \text{ft}^{-3}
\]
\[
\mu = 2.94 \times 10^{-8} \text{ slugs} \times \text{ft}^{-1} \text{sec}^{-1}
\]
\[
x = 12 \text{ ft}
\]
\[
V = 795 \text{ ft sec}^{-1}
\]

Then \(Re = \frac{\rho V x}{\mu} = 1.49 \times 10^7\). The boundary layer would thus be turbulent, and from equation (5),

\[
h = 0.176 \times \rho V c_p (\log_{10} Re)^{-2.45}
\]
\[
h = 3.29 \times 10^{-3} \text{ CHU ft}^{-2} \text{ sec}^{-1} \text{ °C}^{-1}
\]
\[
= 1.61 \times 10^{-3} \text{ cals} \text{ cm}^{-2} \text{ sec}^{-1} \text{ °C}^{-1}
\]

From equation (3)

\[
t_{\text{max}} = 0.032 \frac{W}{W^2} \text{ secs}
\]
\[
= 1.43 \text{ secs}.
\]

For 26 gauge DTD, 546

\[
(zc\ell) = 0.0262 \text{ cals cm}^{-2} \text{ °C}^{-1}.
\]

Then from equation (11)

\[
b = \frac{h t_{\text{max}}}{zc\ell}
\]
\[
b = 0.088
\]

From Fig. 4

\[
\frac{T_m}{T_i} = 0.56
\]
From equation (10)

\[T_i = \frac{Q}{zo'} \]

\[= 381^\circ C \]

Then

\[T_m = 213^\circ C. \]

From Fig. 5

\[\frac{t_m}{t_{\max}} = 3.75. \]

Then

\[t_m = 5.36 \text{ secs.} \]

Thus, the maximum temperature rise is 213°C occurring 5.36 secs after burst.

7 CONCLUSIONS

A simplified analysis has been made of the effects of aerodynamic cooling on the temperature rise of thin skins exposed to thermal radiation from nuclear weapons.

It is shown that the maximum temperature rise, expressed as a fraction of the value which would result without cooling, is a function of a single non-dimensional parameter. A curve is given of this function together with a curve showing the time at which the maximum temperature rise occurs, also in non-dimensional form.

The results indicate that the maximum temperature rise is substantially reduced by aerodynamic cooling in many practical situations. Attention is drawn to the fact that the maximum thermal dose which a structure may withstand depends upon the yield of the weapon from which it emanates.

NOTATION

The symbols used are defined as follows:

- \(b \) parameter \(\frac{ht_{\max}}{zo'} \)
- \(c \) specific heat of skin material
- \(Cp \) specific heat of air at constant pressure
- \(h \) heat transfer coefficient
- \(k \) thermal conductivity of air
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ</td>
<td>skin thickness</td>
</tr>
<tr>
<td>t</td>
<td>time after burst</td>
</tr>
<tr>
<td>t_{max}</td>
<td>time at which $P(t) = P_{\text{max}}$</td>
</tr>
<tr>
<td>t_{m}</td>
<td>time at which $T = T_{m}$</td>
</tr>
<tr>
<td>Δt</td>
<td>interval of time</td>
</tr>
<tr>
<td>x</td>
<td>distance of point from leading edge</td>
</tr>
<tr>
<td>z</td>
<td>density of skin material</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number $\frac{Cp \mu}{k}$</td>
</tr>
<tr>
<td>$P(t)$</td>
<td>rate of emission or reception of thermal energy at time t</td>
</tr>
<tr>
<td>P_{max}</td>
<td>maximum value of $P(t)$</td>
</tr>
<tr>
<td>$Q(t)$</td>
<td>thermal energy emitted or received up to time t</td>
</tr>
<tr>
<td>$\Delta Q(t)$</td>
<td>increment of $Q(t)$ in time interval Δt</td>
</tr>
<tr>
<td>Q</td>
<td>total thermal energy emitted or received</td>
</tr>
<tr>
<td>Re_x</td>
<td>Reynolds number $\frac{\rho V x}{\mu}$</td>
</tr>
<tr>
<td>T</td>
<td>temperature rise</td>
</tr>
<tr>
<td>T_i</td>
<td>"ideal" temperature rise $\frac{Q}{z \ell}$</td>
</tr>
<tr>
<td>T_{m}</td>
<td>maximum temperature rise</td>
</tr>
<tr>
<td>T_n</td>
<td>temperature rise at centre of nth time interval</td>
</tr>
<tr>
<td>ΔT_n</td>
<td>temperature rise during nth interval</td>
</tr>
<tr>
<td>$\overline{T_n}$</td>
<td>temperature rise at end of nth interval</td>
</tr>
<tr>
<td>W</td>
<td>weapon yield in kilotons</td>
</tr>
<tr>
<td>ρ</td>
<td>density of air</td>
</tr>
<tr>
<td>μ</td>
<td>viscosity of air</td>
</tr>
<tr>
<td>Ref. No.</td>
<td>Author</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Dept. of Defense</td>
</tr>
<tr>
<td>2</td>
<td>R. J. Monaghan</td>
</tr>
<tr>
<td>3</td>
<td>R. J. Monaghan</td>
</tr>
<tr>
<td>4</td>
<td>R. J. Monaghan</td>
</tr>
<tr>
<td>5</td>
<td>R. J. Monaghan</td>
</tr>
</tbody>
</table>
Fig. 1—Shape of generalised thermal pulse.
Fig. 2—Fraction of total energy emitted or received.
Fig. 3--Time-history of temperature rise.
Fig. 6—Maximum temperature rise in DTD 546 skin.
DISTRIBUTION

Military Distribution Categories 52 and 54

<table>
<thead>
<tr>
<th>ARMY ACTIVITIES</th>
<th>NAVY ACTIVITIES</th>
<th>AIR FORCE ACTIVITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-27. Commanding General, Aberdeen Proving Grounds, Md. ATTN: Director, Ballistics Research Laboratory</td>
<td>71. Commanding, U.S. Naval Ordnance Test Station, Inyokern, China Lake, Calif.</td>
<td></td>
</tr>
<tr>
<td>32. Commander, Army Rocket and Guided Missile Agency, Redstone Arsenal, Ala. ATTN: Tech Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. Commanding General, White Sands Proving Ground, Las Cruces, N. Mex. ATTN: ORBS-G-OM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34. Commander, Army Ballistic Missile Agency, Redstone Arsenal, Ala. ATTN: GEARM-RE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35. Commanding General, Ordnance Ammunition Command, Joliet, Ill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38. Commanding Officer, USA Transportation Combat Development Group, Ft. Ruestis, Va.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39. Director, Operations Research Office, Johns Hopkins University, 625 S. 20th St., Bethesda, Md.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONFIDENTIAL
CONFIDENTIAL

83 Commander-in-Chief, Strategic Air Command, Offutt AFB, Neb. ATTN: GMG
84 Commander, Tactical Air Command, Langley AFB, Va. ATTN: Doc. Security Branch
85 Commander, Air Defense Command, Ent AFB, Colorado. ATTN: Atomic Energy Div., ADLAN-A
86 Commandr, Bq, Air Research and Development Command, Andrews AFB, Washington 25, D.C. ATTN: RSDM
87 Commander, Western Development Division (WDD) P.O. Box 262, Inglewood, Calif. ATTN: WDDOT
88-89 Commander, AF Cambridge Research Center, L. G. Hanscom Field, Bedford, Mass. ATTN: CWRP-0
95-96 Director, Air University Library, Maxwell AFB, Ala. ATTN: Dept. of Sp. Waps. Tech.
98 Commandr, School of Aviation Medicine, USAF, Randolph AFB, Tex. ATTN: Tech. Info. and Intel. Div.
100-102 Commander, Wright Air Development Center, Wright-Patterson AFB, Dayton, Ohio. ATTN: WDEI
103-104 Director, USAF Project RAND, P.O. Box 516, Stanford Research Institute, Menlo Park, Calif. ATTN: RAND Div.
106 Chief, Ballistic Missile Early Warning Project Office, 220 Church St., New York 13, N.Y. ATTN: Col. Leo V. Skinner, USAF
107 Assistant Chief of Staff, Intelligence, HQ. USAFE,APO 533, New York, N.Y. ATTN: Directorate of Air Targets
108 Commander-in-Chief, Pacific Air Forces, APO 533, San Francisco, Calif. ATTN: FPEC-MG, Base Recovery

OTHER DEPARTMENT OF DEFENSE ACTIVITIES
110 Director, Weapons Systems Evaluation Group, Room 1E880, Wright Air Development Center, Dayton, Ohio. ATTN: WCOSI
111-118 Chief, Armed Forces Special Weapons Project, Washington 25, D.C.
119 Commander, Field Command, APFWP, Sandia Base, Albuquerque, N. Mex.
120 Commander, Field Command, APFWP, Sandia Base, Albuquerque, N. Mex. ATTN: FCW
121-122 Commander, Field Command, APFWP, Sandia Base, Albuquerque, N. Mex. ATTN: FCW
123 Administrator, National Aeronautics and Space Administration, 1500 "H" St., N.W., Washington 25, D.C. ATTN: Mr. R. W. Hyde
124 U.S. Documents Officer, Office of the United States National Military Representative - BNAPE, APO 534, New York, N.Y.

ATOMIC ENERGY COMMISSION ACTIVITIES
128-129 Los Alamos Scientific Laboratory, Report Library, P.O. Box 1563, Los Alamos, N. Mex. ATTN: Helen Redman
135-137 University of California Lawrence Radiation Laboratory, P.O. Box 808, Livermore, Calif. ATTN: Cleo G. Craig

ATOMIC ENERGY COMMISSION ACTIVITIES
138 Argonne National Laboratory, P.O. Box 299, Lemont, Ill. ATTN: Dr. Eylande D. Young
139-140 Bettis Plant, U.S. Atomic Energy Commission, Bettis Field, P.O. Box 1460, Pittsburgh 30, Penn. ATTN: V. Sternberg
141-142 E. I. du Pont de Nemours and Co., Savannah River Laboratory, Document Transfer Station 703-A, Aiken, S.C.
143-144 General Electric Co., Aircraft Nuclear Propulsion Department, P.O. Box 139, Cincinnati 15, Ohio. ATTN: J. Jr. Stephens
145-147 General Electric Co., P.O. Box 100, Richland, Wash. ATTN: M. G. Freibank
149 Holmes and Narver, Inc., 265 S. Figueroa St., Los Angeles 17, Calif. ATTN: Sherwood B. Smith, Chief Project Engineer
150 Knolls Atomic Power Laboratory, P.O. Box 1072, Schenectady, N.Y. ATTN: Document Librarian
151 Lovelace Foundation, 4500 Gibson Boulevard, Albuquerque, N. Mex. ATTN: Dr. Clayton S. White, Director of Research
152 National Lead Company, P.O. Box 135, Mt. Healthy Station, Cincinnati 31, Ohio. ATTN: Reports Library
154-155 Phillips Petroleum Co., Kerns Technical Library, P.O. Box 1259, Idaho Falls, Idaho
158 Union Carbide Nuclear Co., X-10 Laboratory Records Department, P.O. Box 7, Oak Ridge, Tenn.
159 Union Carbide Nuclear Co., X-10 Laboratory Records Department, P.O. Box F, Oak Ridge, Tenn.
160-162 University of California at Los Angeles, Atomic Energy Project, P.O. Box 2414, West Los Angeles 24, Calif. ATTN: Thomas G. Hennegay, M.D.
163 University of California at Los Angeles, Atomic Energy Project, P.O. Box 2414, West Los Angeles 24, Calif. ATTN: Thomas G. Hennegay, M.D.
164-165 University of California Lawrence Radiation Laboratory, Technical Information Div., Room 1C8, Building 50, Berkeley 4, Calif. ATTN: Dr. R. R. Waterman
166 University of Rochester, Atomic Energy Projects, P.O. Box 287, Station 3, Rochester 20, N.Y. ATTN: Technical Report Control Unit
167 Reynolds Electrical & Engineering Co., Inc., P.O. Box 352, Las Vegas, Nev. ATTN: Mrs. Elizabeth E. Eyer and Mrs. Gertrude M. Schroer
168 Weapon Data Section, Technical Information Service Extension, Oak Ridge, Tenn. (surplus)
Defense Technical Information Center (DTIC)
8725 John J. Kingman Road, Suite 0944
Fort Belvoir, VA 22060-6218
U.S.A.

AD#: AD300238
Date of Search: 25 February 2009

Record Summary: AVIA 6/20558
Title: Skin Temperature Rise in an Aircraft Exposed to Thermal Radiation from a Nuclear Explosion
Availability: Open Document, Open Description, Normal Closure before FOI Act: 30 years
Former reference (Department): Technical Note ME 251
Held by: The National Archives, Kew

This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (http://www.nationalarchives.gov.uk) and found the document is available and releasable to the public.

Access to UK public records is governed by statute, namely the Public Records Act, 1958, and the Public Records Act, 1967. The document has been released under the 30 year rule. (The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as UNLIMITED.