NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Non-linear plasma waves in a streaming homogeneous, cold ionized medium

By
O. E. H. Rydbeck

Research Report No 33
1962

Report No US 32 Prepared under
US Air Force Contracts AF 61 (055) – 451 and
AF 61 (055) – 594

Research Laboratory of Electronics
Chalmers University of Technology
Gibraltarargatan 5 G
Gothenburg S. Sweden
DYNAMIC NON-LINEAR WAVE PROPAGATION
IN IONIZED MEDIA

7. Non-linear plasma waves in a streaming
homogeneous, cold ionized medium

by

O.E.H. Rydbeck

Gothenburg, 1962
The research reported in this communication deals with the properties of non-linear travelling and standing plasma waves in homogeneous, ionized cold streams.

For the travelling non-linear plasma waves it is possible to obtain direct and simple expressions (provided electronic overtaking does not occur), which relate the charge density to the true stream coordinate. This direct method is, unfortunately, not in general applicable to the practically important case of standing plasma waves - a symmetric space charge wave pair in the linear theory. There exists one exception, however, when the direct method can be applied to standing plasma waves, viz. the very special case of stream plasma resonance. In all other cases, provided there is no electronic overtaking, the indirect, but nevertheless exact, methods of Olving [1] will have to be used.

The non-linear maximum charge peaks, or charge bunches, are shown to be rather similar for the physically otherwise quite different travelling and standing non-linear waves. Both rapidly become very rich in harmonics as overtaking is approached. If such a stream runs through a multi-resonant system, for example the solar corona, an ionized anisotropic medium, or a series of cavities in a microwave device, high harmonics may be excited in the system. Whether a net harmonic radiation actually takes place or not from the interacting medium is a problem of its own, difficult and beyond the aims of the present investigation.

1. Summary.

The research reported in this communication deals with the properties of non-linear travelling and standing plasma waves in homogeneous, ionized cold streams.

For the travelling non-linear plasma waves it is possible to obtain direct and simple expressions (provided electronic overtaking does not occur), which relate the charge density to the true stream coordinate. This direct method is, unfortunately, not in general applicable to the practically important case of standing plasma waves - a symmetric space charge wave pair in the linear theory. There exists one exception, however, when the direct method can be applied to standing plasma waves, viz. the very special case of stream plasma resonance. In all other cases, provided there is no electronic overtaking, the indirect, but nevertheless exact, methods of Olving [1] will have to be used.

The non-linear maximum charge peaks, or charge bunches, are shown to be rather similar for the physically otherwise quite different travelling and standing non-linear waves. Both rapidly become very rich in harmonics as overtaking is approached. If such a stream runs through a multi-resonant system, for example the solar corona, an ionized anisotropic medium, or a series of cavities in a microwave device, high harmonics may be excited in the system. Whether a net harmonic radiation actually takes place or not from the interacting medium is a problem of its own, difficult and beyond the aims of the present investigation.
2. **Introduction.**

We assume that the ions and electrons of the infinitely wide, homogeneous and cold stream have a mean and equal density \(N_0 \) and a drift velocity \(v_o \), along the z-axis of the system. Furthermore, we neglect the oscillations of the ions and assume that the electrons make longitudinal oscillations only. This means that only electronic plasma oscillations are excited in the streaming medium.

We next introduce the following notations, viz.

\[
\omega_p = \left(\frac{N_0 e^2}{m \varepsilon_0} \right)^{1/2} = \text{the angular electronic plasma frequency},
\]

(1)

\[
\rho = -Ne = -(N_0 + N_\infty) e = \rho_0 + \rho_\infty,
\]

(2)

where \(N_\infty \) is the differential electron density and \(\rho_\infty \) the differential or ac - space charge density,

\[
v = v_o + v_\infty,
\]

(3)

where \(v_\infty \) is the differential or ac - velocity (in the z-direction),

\[
z = z_0 + z_\infty,
\]

(4)

where \(z_\infty \) is the displacement of the electron planes from the equilibrium position \(z_0 \) (= \(v_0 t \), if the unperturbed electron plane in question left the \(z_0 = 0 \) level at time \(t = 0 \), and finally

\[
E_z = E^0_z + E_\infty = E_\infty, \quad \text{since } E^0_z = 0,
\]

(5)

where \(E_\infty \) is the axial ac electric field strength.

As long as \(z_\infty \) is a single valued function, i.e. when
there is no electronic overtaking, the electronic polarisation becomes

\[P_\sim = \rho_0 z_\sim = -N_0 e z_\sim. \] \hspace{1cm} (6)

The basic relation (6) holds for all non-linear oscillations, when \(z_\sim \) is single valued, which we assume to be the case in what follows.

Since we have an infinitely wide stream,

\[\varepsilon_0 E_\sim + P_\sim = 0, \] \hspace{1cm} (7)

and

\[z_\sim = -\varepsilon_0 E_\sim /\rho_0. \] \hspace{1cm} (8)

The equation of motion,

\[m \frac{d^2 z_\sim}{dt^2} = -e E_\sim, \] \hspace{1cm} (9)

therefore, by (8), immediately yields

\[(\frac{d^2}{dt^2} + \omega_p^2) z_\sim = 0. \] \hspace{1cm} (10)

The electrons thus, even in the non-linear case, oscillate harmonically around their undisturbed position \(z_0 (= v_0 t) \) with the plasma frequency \(\omega_p/2\pi \), a fact already pointed out and discussed by Olving [1].

By (4) rel. (10) can also be written

\[(\frac{d^2}{ds^2} + k_p^2) z_\sim = 0, \] \hspace{1cm} (10a)

where

\[k_p^2 = \omega_p^2/\nu_0^2 = (2\pi/\lambda_p)^2, \] \hspace{1cm} (11)

and \(\lambda_p \) is the plasma wavelength of the streaming medium.
The amplitude of the plasma oscillations obviously varies from plane to plane and can be regarded as a function of \(t = \frac{z}{v_0} \) [1], which is a constant for any given electron (or plane of electrons).

Rel. (7) immediately yields

\[
\varepsilon_0 \frac{\delta E^*}{\delta t} + \frac{\delta P^*}{\delta t} = \varepsilon_0 \frac{\delta E^*}{\delta t} + \rho_0 \frac{\delta z^*}{\delta t} = 0, \tag{12}
\]

as it should be (the total axial ac current must be zero), i.e.

\[
i_- = \frac{\delta P^*}{\delta t} = \rho_0 \frac{\delta z^*}{\delta t}, \tag{13}
\]

where \(i_- \) is the (axial) ac convection current density.

Finally the equation of continuity,

\[
\frac{\delta P^*}{\delta z} = - \frac{\delta i_-}{\delta z}, \tag{14}
\]

by (13) requires that

\[
\rho_- = - \rho_0 \frac{\delta z^*}{\delta z} = - \frac{\delta P^*}{\delta z}, \tag{15}
\]

which means that

\[
\frac{\rho}{\rho_0} = 1 - \frac{\delta z^*}{\delta z} = 1 + \frac{1}{\delta z^*/\delta z_0}. \tag{16}
\]

Since overtaking occurs when \(\delta z^*/\delta z_0 \leq 1 \), one notices that, as expected, \(\rho \rightarrow \infty \), when it begins.
3. The linear (small signal) oscillations.

In order to facilitate our discussion of the non-linear oscillations we will in this section briefly discuss two characteristic, and naturally well known [2], linear solutions, viz. the "standing" plasma waves and the "travelling" plasma waves.

I. The "standing" plasma (or space charge) waves.

If we assume that an ideal, gridded velocity modulation gap is inserted at \(z_0 = 0 \) (in the following we neglect \(z_\infty \) and thus write all solutions in terms of \(z \)), that the streaming electrons have not been subject to perturbations of any kind before reaching this gap, and that the ac velocity produced by the same is \(\left(v_\infty \right)_{z=0} = v_0 \sin \omega t \), we obtain

\[
v_\infty = v_0 \sin(\omega t - \alpha z) \cos(k_p z), \tag{17}\]

\[
E_\infty = \frac{\varepsilon \omega}{e} v_0 \sin(\omega t - \alpha z) \sin(k_p z) = \frac{\varepsilon \omega v_0}{e} k_p \sin(\omega t - \alpha z) \sin(k_p z), \tag{18}\]

which shows that \(\varepsilon_0 E_\infty \) close to the gap grows like

\[
N_0 = \frac{\varepsilon_0 v_\infty}{v_0}, \tag{19}\]

and

\[
\frac{\rho_\infty}{\rho_0} = \frac{v_\infty}{v_0} \left[\frac{\omega}{\omega_p} \cos(\omega t - \alpha z) \sin(k_p z) - \sin(\omega t - \alpha z) \cos(k_p z) \right], \tag{20}\]
where
\[\alpha = \omega / v_0. \]

We notice that the convection current is zero at the gap, but not so the differential space charge density. In the steady state, and relations (17) to (20) are steady state solutions, the velocity modulation produces an (normally small) ac space charge density in front of the gap. We furthermore notice from (20), that \(\rho / \rho_0 \) becomes large for a very underdense stream, i.e. when \(\omega / \omega_p \ll 1 \). Overtaking thus rapidly occurs, when the stream becomes underdense.

If we have plasma resonance in the stream, i.e. when \(\omega = \omega_p \), relations (17) and (20) yield

\[(v_o)_{\omega = \omega_p} = \frac{1}{2} v_0 \left[\sin(\omega_p t) + \sin[\omega_p (t - 2z/v_0)] \right], \]

and

\[(\rho / \rho_0)_{\omega = \omega_p} = \frac{v_0}{\omega_p} \sin[\omega_p (t - 2z/v_0)]. \]

The ac velocity now has two characteristically different components, one a pure plasma oscillation independent of \(z \), and the other a travelling "plasma wave" with the phase velocity \(v_0 / 2 \). The ac charge density only appears in the form of such a plasma (or space charge) wave. The pure plasma oscillation, \(\sin(\omega_p t) \), as expected is not associated with any fluctuations in \(\rho \). In this respect there is little difference between the stream and the stationary medium. For a more detailed discussion of the transition from a moving to a stationary medium, which is outside the scope of the present communication, the reader is referred to an earlier paper by Rydbeck [2].

It is of interest to note, that \(\rho_o \) now appears in the form of a pure travelling wave, a fact we will later make
use of to obtain an exact, and direct, solution of the density variations.

Finally, if we locate the modulation plane at such a position, that \(\cos(k_p z) = 0 \), it now appears from (20), that a density modulation, \(\rho_\infty = \rho_\infty \cos \omega t \), at this plane (we tacitly assume that it is possible to perform such a modulation), produces a velocity modulation \(\frac{v_\infty}{v_0} = \frac{\rho_\infty}{\rho_0} \cos(k_p z) \sin(\omega t - \alpha z) \), \(k_p z \geq \pi/2 \). "Standing" plasma waves thus can be produced by pure velocity modulation, by pure density modulation or by a suitable combination of both. It should be noticed that the underdense beam \(\omega \gg \omega_p \) is much more sensitive to velocity than to density modulation. By properly combining velocity and density modulation it is also possible to produce a "travelling" plasma (or space charge) wave.

II. The "travelling" plasma (or space charge) wave.

If we produce the following velocity and density modulations at the modulation plane \(z = 0 \),

\[
\left(\begin{array}{c} \frac{v_\infty}{v_0} \\ \frac{v_\infty}{v_0} \end{array} \right) _{z=0} = \sin \omega t, \tag{24}\]

and

\[
\left(\begin{array}{c} \frac{\rho_\infty}{\rho_0} \\ \frac{\rho_\infty}{\rho_0} \end{array} \right) _{z=0} = \frac{v_\infty}{v_0} \frac{\omega}{\omega_p} \sin \omega t, \tag{25}\]

a "travelling" plasma wave is produced in the stream, viz.

\[
\frac{v_\infty}{v_0} = \sin[\omega t - (\alpha + k_p) z], \tag{26}\]

\[
\frac{\rho_\infty}{\rho_0} = \frac{\omega}{\omega_p} \frac{\alpha + k_p}{k_p} \sin[\omega t - (\alpha + k_p) z], \tag{27}\]
\[E_z = \pm \frac{m v_0 v}{\epsilon_0} k_p \cos[\omega t - (\alpha \pm k_p)z], \tag{28} \]

and

\[i_\omega = \pm \frac{m \epsilon_0 \omega}{\epsilon_0} v_{\omega_0} \sin[\omega t - (\alpha \pm k_p)z]. \tag{29} \]

If the velocity and density modulation are 180° out of phase, a slow plasma wave, \(\sin[\omega t - (\alpha + k_p)z] \), is produced, and when they are in phase, a fast plasma wave, \(\sin[\omega t - (\alpha - k_p)z] \). It is important to note, that (for \(z > 0 \)) \(\rho_\omega / \rho_0 = 0 \), when we have plasma resonance in the stream \([\alpha = k_p] \); compare also (22) and (23)). The travelling plasma wave is of special interest in this connection, since its non-linear properties can be obtained exactly and direct, when overtaking does not occur, as will be shown in the following chapter 4.
4. The non-linear travelling plasma wave.

Since we are dealing with travelling waves, we now assume that all quantities can be expressed as functions of the same drift variable,

\[y = \omega t - y z, \quad [E_\infty = E_\infty(y), \text{ etc.}] \] \hspace{1cm} (30)

where \(y = \alpha + k_p \) for the slow plasma wave, and \(y = \alpha - k_p \) for the fast plasma wave. It should be added, that it can be shown from our previous relations in chapter 2, that \(y \) actually is a constant (the electrons according to (10) always oscillate harmonically with the angular frequency \(\omega_p \) around their undisturbed position). The phase velocity of the travelling plasma wave thus becomes

\[v_{\text{phase}} = v_\infty \frac{\alpha}{\alpha \pm k_p} = v_{\text{ph}} \] \hspace{1cm} (31)

By (30) we next obtain

\[(\omega - y v) \frac{dE}{dy} = - \frac{e}{m} E_\infty, \quad \text{(Eq. of motion)} \] \hspace{1cm} (32)

\[\rho_\infty = - y e_0 \frac{dE_\infty}{dy}, \quad \text{(Poisson's Eq.)} \] \hspace{1cm} (33)

and

\[(\omega - y v) \frac{d\rho}{dy} = y \rho \frac{dv}{dy}, \quad \text{(Eq. of continuity)} \] \hspace{1cm} (34)

If we introduce the "reduced" velocity wave function

\[v = \omega - y v, \] \hspace{1cm} (35)

where it is to be noted that

\[v_\infty = \omega - (\alpha \pm k_p) v_\infty = \pm \omega_p, \] \hspace{1cm} (35a)
(the upper sign stands for the slow wave), relation (34) immediately yields
\[\frac{\rho}{\rho_0} = \frac{w_0}{w}, \quad (36) \]
i.e.
\[\frac{\rho}{\rho_0} = -(1 - \frac{w_0}{w}), \quad (36a) \]
which can be written under the alternate form
\[\omega \rho = \gamma (\nu - 1) \rho_0. \quad (37) \]
The Eq. of motion, (32), by (35) can be written
\[\frac{1}{2} \frac{d}{dy} (w^2) = \frac{\gamma b}{m} E_w, \quad (38) \]
which yields
\[\frac{1}{2} \frac{d}{dy} (w^2) = \frac{1}{2} \frac{d^2}{dy^2} (w^2), \quad (39) \]
or, finally by (36a), the non-linear wave equation
\[\frac{1}{2} \frac{d^2}{dy^2} (w^2) + \omega^2_p (1 - \frac{w_0}{w}) = 0. \quad (40) \]
The linearized (i.e. small signal) form of (40) becomes
\[\left(\frac{d^2}{dy^2} + 1 \right) v = 0, \quad (1 \rho / \rho_0 << 1). \quad (41) \]
which has the solution
\[v = A \sin(\omega t - \gamma y) + B \cos(\omega t - \gamma y), \]
i.e. travelling waves only.
The non-linear wave equation for E_w can easily be deduced from the previous relations. It becomes
\[
\left[\frac{d^2}{dy^2} + \left(\frac{d}{p_0} \right)^2 \right] E_y - \frac{d^2 E_y}{dy^2} + \left(1 - \frac{p_o}{p_{\text{max}}} \right)^3 E_y = 0. \tag{42}
\]

Fortunately (40) can be solved exactly. Multiplication by \(dy/dy \) and integration twice yields

\[
y - y_1 = \varphi + \left(1 - \frac{p_o}{p_{\text{max}}} \right) \cos \varphi, \tag{43}
\]

for the slow plasma wave, and

\[
y - y_1 = - \varphi - \left(1 - \frac{p_o}{p_{\text{max}}} \right) \cos \varphi, \tag{44}
\]

for the fast plasma wave. Since \(y - y_1 \) must everywhere be real, \(\varphi \) assumes the form

\[
\varphi = \arcsin \left(\frac{1 - \frac{p_o}{p}}{1 - \frac{p_o}{p_{\text{max}}}} \right) = \arcsin \left(\frac{p_{\text{min}}}{p} - 1 \right) = \arcsin(\xi),
\]

i.e.

\[
\frac{p_o}{p_{\text{min}}} = 2 - \frac{p_o}{p_{\text{max}}}, \tag{46}
\]

or

\[
\frac{1}{2} \left(\frac{p_o}{p_{\text{min}}} + \frac{p_o}{p_{\text{max}}} \right) = 1. \tag{47}
\]

Relations (43) and (44) can now be written

\[
y - y_1 = \pm \left[\arcsin(\xi) + \left(1 - \frac{p_o}{p_{\text{max}}} \right) \sqrt{1 - \xi^2} \right], \tag{43a}
\]

from which \(y \) direct can be plotted as a function of \(p/p_0 \).

One immediately infers from (43a), that

\[
\mp (y - y_1) = 1 - \frac{p_0}{p_{\text{max}}} (+ n 2\pi), \text{ when } \rho = p_0. \tag{48}
\]
which demonstrates how the $\rho_0 = 0$ positions is displaced, when the stream is heavily modulated. Furthermore one notes, that

$$\pm (y - y_1) = \pi/2 (+ n \cdot 2\pi), \text{ when } \rho = \rho_{\text{max}}; \quad (49)$$

and

$$\pm (y - y_1) = -\pi/2 (+ n \cdot 2\pi), \text{ when } \rho = \rho_{\text{min}}; \quad (50)$$

i.e. the distance between the space charge maximum and minimum is independent of ρ_0/ρ_{max}, as it should be.

One easily proves from our previous relations, that

$$E_\gamma = \pm \frac{\mu^2}{\sigma \gamma} (1 - \frac{\rho_0}{\rho_{\text{max}}}) \sqrt{1 - \xi^2}, \quad (51)$$

and by (36) that

$$\frac{v_\gamma}{v_0} = \pm \left(\frac{\rho_0}{\rho_{\text{max}}} - 1\right) \frac{\omega_p}{\omega \pm \omega_p} \xi =$$

$$= \pm \left(\frac{\rho_0}{\rho} - 1\right) \frac{\omega_p}{\omega \pm \omega_p} \quad (52)$$

Relations (51) and (52) show that the positive and negative peak values of E_γ, respectively v_γ are equal even in the non-linear case.

When overtaking occurs $\rho \to \infty$, which thus takes place when

$$v_\gamma \to v_{\gamma \text{crit}} = \pm \frac{\omega_p}{\omega \pm \omega_p} v_0 = \pm \frac{\omega_p}{\omega} v_{\text{ph2}}.$$

It thus appears that $\frac{\omega_p}{\omega} v_{\text{ph2}}/v_0$ can be regarded as a measure of the non-linearity. Furthermore one notices, as has already been pointed out in a previous section, that the critical ac velocity, $v_{\gamma \text{crit}}$, is extremely small for a very underdense stream.
It is especially interesting to note, that for the resonant stream ($\omega = \omega_p$), v_{crit} is equal to $-v_o/2$ for the slow plasma wave and infinitely large for the fast plasma wave, which now transforms into a stationary plasma oscillation (see also chapter 3).

Furthermore it should be pointed out, that

$$v_{\text{crit}} + v_o = v_{\text{ph}},$$

(condition for overtaking)

(53)

as might be expected.

Finally it should be mentioned that, according to (8), the displacement of the oscillating electron planes becomes

$$z_\sim = \pm \frac{1}{\gamma} \left(1 - \frac{\rho_0}{\rho_{\text{max}}} \right) \sqrt{1 - \frac{v_o^2}{c^2}}.$$

(54)

The maximum displacements at overtaking thus are

$$z_\sim = z_{\text{crit}} = \pm \frac{1}{\gamma} = \pm \frac{\lambda_z}{\omega} = \pm \frac{\lambda_{\text{ph}}}{\omega} = \frac{v_{\text{ph}}}{\omega} = \pm \frac{\lambda_{\text{ph}}}{2\pi},$$

(54a)

where $\lambda_z = v_o \lambda_o/c_o$, and λ_o is the vacuum wavelength.

It is worth noting from (52) that, even in the non-linear case, $\rho_\sim = 0$ for the fast plasma wave, when $\omega = \omega_p$. The corresponding value of $|z_{\text{crit}}|$ then by (54a) $\rightarrow \infty$.

Finally one direct infers that, as it should be, (43a), (51) and (52) reduce to the linear expressions (27), (28), and (26), when $\rho_{\sim \text{max}}/\rho_o << 1$.

In order to demonstrate the nature of the non-linear travelling plasma waves, we have in Figs. 1, 2 and 3 plotted ρ/ρ_o, $E_\sim/(E_\sim)_{\rho = 0}$, and $v_\sim/|v_{\sim \text{max}}|$ as functions of $y = y_1$ for $\rho_{\text{max}}/\rho_o = 1.1$, 2.0, 10 and 100. If we, to take a typical example, assume that $\omega/\omega_p = 5$ (a relatively underdense stream), these values, by (52), correspond to $|v_{\sim \text{max}}|/v_o = 0.0275$.
Fig. 1. ρ / ρ_0 as function of $y - y_1$ for the non-linear traveling plasma wave.
Fig. 2. $E_\infty/(E_\infty)_{\rho=\rho_0}$ as function of $y - y_1$ for the non-linear travelling plasma wave.
Fig. 3. $\frac{v_n}{|v_{n,\text{max}}|}$ as function of $y - y_1$ for the non-linear travelling plasma wave.
0.1250, 0.2250, and 0.2475 for the fast plasma wave

\(\rho_{max}/\rho_o = \infty \) would correspond to \(|v_{\text{max}}|/v_o = 0.2500 \), at which velocity overtaking begins. It appears from the three curves that the non-linear waves rapidly become very rich in higher harmonics. It is especially interesting to note the very intense charge bunching which becomes possible when \(v_\infty \) approaches its critical value (in the present numerical case \(v_o/4 \)). If such a stream runs through a multi-resonant system, for example the solar corona, an ionised medium in a plasma amplifier, or a series of cavities in a microwave device, very high harmonics may be excited. Whether a net harmonic radiation actually takes place or not from the interacting medium is a problem of its own, difficult and beyond the aims of the present report.
5. **A comparison with Olving's method of non-linear analysis.**

I. **The non-linear travelling plasma wave.**

Following Olving's approach [1], we now write down the electronic displacement for the fast plasma wave, viz.

\[z' = -\frac{V_{\infty}}{V_0} \frac{k_p}{k} \cos(\omega t - (\alpha - k_p)z_0). \]

(55)

By (16) this yields [see also (27)]

\[\frac{\rho}{\rho_0} = \frac{1}{1 - \frac{V_{\infty}}{V_0} \frac{\alpha - k_p}{k_p} \sin(\omega t - (\alpha - k_p)z_0)}. \]

(56)

where it has to be remembered, that \(z = z_0 + z' \). By these two relations \(\rho/\rho_0 \) can successively be plotted as function of \(z \), or of \(y = \omega t - (\alpha - k_p)z \) for that matter.

In this special case of a travelling plasma wave, one can, however, proceed in the following manner to obtain the same direct relations as in the previous chapter 4. If we introduce

\[y = \omega t - (\alpha - k_p)z_0 = \omega t - (\alpha - k_p)(z - z_0). \]

(57)

relation (56) can be written

\[\sin \varphi = \frac{1 - \rho_0/\rho}{1 - \rho_0/\rho_{\text{max}}} = \zeta, \]

(58)

i.e.

\[\varphi = \arcsin(\zeta) (\pm \pi 2n) \]

(59)

or

\[y = \omega t - (\alpha - k_p)z = \arcsin(\zeta) - z_0(\alpha - k_p). \]
By (55) and (52) one obtains

\[s_\infty(x - k_p) = \left(1 - \frac{\rho_0}{\rho_{\text{max}}} \right) \sqrt{1 - \xi^2}, \]

(60)

which immediately yields

\[y = \text{arcsin}(\xi) + \left(1 - \frac{\rho_0}{\rho_{\text{max}}} \right) \sqrt{1 - \xi^2}, \]

which is identical with our previous relation (43a).

When we have standing plasma waves in the system this simple transformation is not possible, except when \(\omega = \omega_p \), as will be shown in the next section.

II. The non-linear standing plasma wave.

Again following Olving we write

\[s_\infty = \frac{\nu_0}{\nu_p} \frac{1}{k_p} \sin(\omega t - \alpha x_0) \sin(k_p z_0). \]

(61)

By (16) this yields [see also (20)]

\[\frac{\rho}{\rho_0} = \frac{1}{1 - \frac{v_0}{\nu_p} \left[\frac{\omega \cos(\omega t - \alpha x_0) \sin(k_p z_0) - \sin(\omega t - \alpha x_0) \cos(k_p z_0)}{\sin(k_p z_0)} \right]} \]

(62)

where it again is to be remembered that \(z = z_0 + z_\infty \). We furthermore have [see also (18) and (17)]

\[E_\infty = \frac{\nu_0}{\nu_p} k_p \sin(\omega t - \alpha x_0) \sin(k_p z_0), \]

(63)

and

\[v_\infty = \nu_0 \sin(\omega t - \alpha x_0) \cos(k_p z_0). \]

(64)

It appears from (62) and (61) that \(\nu_0 \) and \(v_\infty \) can not
now be eliminated from (63), that can be written in the following form, viz.

\[
\frac{\rho}{\rho_0} = \frac{1}{1 + \frac{\omega_0}{2\nu_0} \sin[\omega t - (\alpha + k_p) z_o] - \frac{\omega_0}{\omega_p} \sin[\omega t - (\alpha - k_p) z_o]}
\]

(63)

If \(\omega = \omega_p \), however, \(\rho/\rho_0 \) becomes [see also (23)]

\[
\frac{\rho}{\rho_0} = \frac{1}{1 + \frac{\omega_0}{\nu_0} \sin(\omega t - 2\alpha z_o)}
\]

(66)

and we are left with one travelling wave only, since, as has been pointed out before, the stationary plasma oscillation does not produce any variations in \(\rho \).

Following the same procedure as in section 1, we obtain

\[
\omega t - 2\alpha z = \arcsin(\xi) = 2\alpha z_\omega.
\]

(67)

Since \(z_\omega \) can be written

\[
z_\omega \approx \frac{\nu_0}{2k_p} \left\{ \cos[\omega t - (\alpha + k_p) z_o] - \cos[\omega t - (\alpha - k_p) z_o] \right\}
\]

(68)

we obtain, in the case of plasma resonance,

\[
(s_\omega)_\omega = \frac{\nu_0}{2\alpha} \left[\cos(\omega t - 2\alpha z_o) - \cos \omega t \right].
\]

(69)

i.e.

\[
(2\alpha s_\omega)_\omega = (1 - \frac{\rho_0}{\rho_{\text{max}}})(\sqrt{1 - \zeta^2} - \cos \omega t).
\]

(69a)

Relation (67) now yields the final result, viz.
\[y = \omega t - 2\alpha z = \]
\[= \arcsin(\xi) - (1 - \frac{\rho_0}{\rho_{\text{max}}}) \sqrt{1 - \xi^2} + (1 - \frac{\rho_0}{\rho_{\text{max}}}) \cos \omega t. \]

(70)

We notice, that for any given time, \(\rho/\rho_0 \) now varies (we neglect the space phase difference) with \(z \) exactly as the non-linear pure travelling plasma wave. As a function of time, for a given position \(z \), the variation is different however. This is due to the fact, that there is a pure plasma oscillation superimposed on the electronic displacement, \(\omega t \). The actual time variation, for fixed \(z \), is easily obtained from Fig. 1, since one only has to correct \(y \) for the sinusoidal displacement \((1 - \rho_0/\rho_{\text{max}}) \cos \omega t \). Methods of this type might be applicable to the theory of non-linear frequency mixing in streaming, ionized media.

* * *

In order to compare the physical properties of the non-linear travelling and standing plasma waves, we have in Figs. 4, 5, 6, 7, 8, and 9 depicted the variation of \(\rho/\rho_0 \), \(E_\omega/E_\omega \), where \(E_\omega = m v_\omega^2 k_p/e \), and \(v_\omega/v_\omega \) as functions of \(z \) for \(\omega t = n \ 2\pi \), and \(\omega t = n \ 2\pi + \pi/2 \). Furthermore, to demonstrate the importance and the effect of the electronic displacement, \(z_\omega \), we have also, in the same Figs., plotted the former quantities (dashed curves) uncorrected for \(z_\omega \), i.e. as functions of \(k_p z_\omega \). It is interesting to note, that the displacement corrections tend to sharpen the peaks, when \(\omega t = n \ 2\pi \), and broaden them when \(\omega t = n \ 2\pi + \pi/2 \). All curves have been
Fig. 4. φ/ρ_0 as function of z for non-linear travelling and standing plasma waves.
Fig. 5. ρ/ρ_0 as function of z for a non-linear standing plasma wave ($\omega t = n2\pi + \frac{\pi}{2}$).
Fig. 6. E_x/E_0 as function of n for the non-linear standing plasma wave ($wt = n2\pi$).
Fig. 7. E_n/E_0 as function of s for the non-linear standing plasma wave ($\omega t = m\pi + \pi/2$).
Fig. 8. ν_∞/ν_0 as function of z for the non-linear standing plasma wave ($\omega t = n2\pi$).
Fig. 9. \(n_n/n_0 \) as function of \(n \) for the non-linear standing plasma wave (\(\omega t = n2\pi + \pi/2 \)).
plotted for \(v_n/v_o = 0.10 \) and \(\omega/\omega_p = 5 \), i.e. for a fairly underdense stream. This yields a maximum \(\rho/\rho_o \)-value of almost two.

Finally, in order to make a more direct comparison between the charge bunchings associated with the travelling and standing plasma waves, we have, in Fig. 4, replotted also the \(\rho/\rho_o \)-curve, for \(\rho_{\text{max}}/\rho_o = 2 \) (and \(\omega/\omega_p = 5 \)), of Fig. 1. It is particularly interesting to note, that the peak bunching regions have almost the same shape for the two waves (which are modulated nearly equally much), in spite of their physically quite different nature.
6. Acknowledgements.

The research reported in this communication has been made possible by support from the European Office of Aerospace Research and from the Ionosphere Research Laboratory, Pennsylvania State University. The Author is indebted to Jan Askne, M.Sc., who prepared the graphs of this report.
References.

2. O. E. H. Rydbeck: Electromagnetic and space charge waves in inhomogeneous structures (with applications to ionized media and microwave tubes), Research Report No 8, 1960, Research Laboratory of Electronics, Chalmers University of Technology.
Table of contents

1. **Summary** ... 1
2. **Introduction** .. 2
3. The linear (small signal) oscillations 5
 I. The "standing" plasma (or space charge) waves ... 5
 II. The "travelling" plasma (or space charge) wave ... 7
4. The non-linear travelling plasma wave 9
5. A comparison with Olving's method of non-linear analysis 18
 I. The non-linear travelling plasma wave 18
 II. The non-linear standing plasma wave 19
6. **Acknowledgements** .. 29
References .. 30
Earlier publications from the Research Laboratory of Electronics:

O.E.H. Rydbeck: A theoretical survey of the possibilities of determining the distribution of the free electrons in the upper atmosphere; Trans. Chalmers Univ. of Techn., No. 3, 1942.

O.E.H. Rydbeck: On the propagation of radio waves; Trans. Chalmers Univ. of Techn., No. 24, 1944.

O.E.H. Rydbeck: On the spherical and spheroidal wave functions; Trans. Chalmers Univ. of Techn., No. 43, 1945.

Reports from the Research Laboratory of Electronics:

*) Not published in the Chalmers Transactions.

9. O.E.H. Rydbeck: On the forced electro-magnetic oscillations in spherical resonators. 1948.*)

11. O.E.H. Rydbeck: The ionospheric and radio wave propagation observatory at Kiruna, 67° 50' N, 20° 14,5' E. 1949. *)

12. R. Lindquist: The panoramic ionospheric recorder. 1949. *)

16. R. Lindquist: Polar blackouts recorded at the Kiruna Observatory; Trans. Chalmers Univ. of Techn., No. 103, 1951.

*) Not published in the Chalmers Transactions.

22. R. Lindquist: A survey of recent ionospheric measurements at the ionospheric and radio wave propagation observatory at Kiruna. 1951. *)

25. G. Hellgren: The propagation of electromagnetic waves along a conical helix with variable pitch; Trans. Chalmers Univ. of Techn., No. 130, 1953.

26. G. Hellgren and J. Meos: Localization of aurorae with 10 m high power radar technique, using a rotating antenna. 1952. *)

*) Not published in the Chalmers Transactions.
27. O.E.H. Rydbeck: On the excitation of different space charge wave modes in traveling wave tubes; Trans. Chalmers Univ. of Techn., No. 131, 1953.

31. O.E.H. Rydbeck and H. Wilhelmsson: A theoretical investigation of the ionospheric electron density variation during a solar eclipse; Trans. Chalmers Univ. of Techn., No. 149, 1954.

32. H. Wilhelmsson: The interaction between an obliquely incident plane electromagnetic wave and an electron beam. Part I; Trans. Chalmers Univ. of Techn., No. 155, 1954.

38. V. Westberg: Measurements of noise radiation at 10 cm from glow lamps; Trans. Chalmers Univ. of Techn., No. 180, 1956.

40. N. Wax: A note on design considerations for a proposed auroral radar; Trans. Chalmers Univ. of Techn., No. 182, 1957.

41. N. Wax: On the ring current hypothesis; Trans. Chalmers Univ. of Techn., No. 171, 1956.

42. G.H. Joshi: The electromagnetic interaction between two crossing electron streams. Part I; Trans. Chalmers Univ. of Techn., No. 183, 1957.

44. G.H. Joshi: The electromagnetic interaction between two crossing electron streams. Part II; Trans. Chalmers Univ. of Techn., No. 197, 1958.

45. H. Wilhelmsson: The interaction between an obliquely incident plane electromagnetic wave and an electron beam. Part II; Trans. Chalmers Univ. of Techn., No. 198, 1958.

*) Not published in the Chalmers Transactions.
46. H.Wilhelmsson: On the properties of the electron beam in the presence of an axial magnetic field of arbitrary strength; Trans. Chalmers Univ. of Techn., No. 205, 1958.

47. H.Wilhelmsson: The interaction between an obliquely incident plane electromagnetic wave and an electron beam. Part III; Trans. Chalmers Univ. of Techn., No. 206, 1958.

50. H.Wilhelmsson: A survey of radio-frequency and microwave resonance lines of interest to radio astronomy. 1960. *)

52. Papers presented at the fourth international conference on ionization phenomena in gases at Uppsala, August 17-21, 1959. 1960. *)

53. H.Wilhelmsson: Two problems concerning the electron ring current. 1960. *)

54. T.Orhag: The variation of electron density in the ionosphere during a solar eclipse. 1960. *)

55. H.Wilhelmsson and N.Fischer: On the force-free magnetic fields. 1960. *)

56. O.E.H.Rydbeck: On the coupling between waves in inhomogeneous systems. 1961. *)

*) Not published in the Chalmers Transactions.
Research Reports from the Research Laboratory of
Electronics:

7. O.E.H. Rydbeck: The propagation and coupling of waves in inhomogeneous media with applications to electromagnetic and space charge waves. (On the propagation of waves in an inhomogeneous medium II.)

11. S. Olving and A. Ots: An experimental investigation of
the propagation of space charge waves along

12. A.V. Stomberg: The rotatron - an electron tube for
shift and multiplication of frequencies.
1960.

13. O.E.H. Rydbeck and M.H. Fischer: Space charge waves
in an electron beam of Gaussian cross section.
1960.

14. O.E.H. Rydbeck: The integral equation of traveling wave
tubes with electron beams of arbitrary cross
section. 1960.

15. O.E.H. Rydbeck and A.R. Thomasson: Low frequency waves

at high latitudes. 1960.

18. O.E.H. Rydbeck: Electron stream whistler mode interac-

19. K.M.B. Vilhelmsson: On the problem of overtaking in a

20. O.E.H. Rydbeck: On the coupling between waves in inhomoge-
neous systems. 1960.

21. O.E.H. Rydbeck: Research in the field of propagation
and interaction of electromagnetic waves and
space charge type waves in homogeneous and

of incoherent scattering of radio waves by a
plasma in a uniform magnetic field. 1961.

23. L.F. Eastman: Coherent non-linearities in a magneto-

Lecture Notes from the Research Laboratory of Electronics: