NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
MOUSE FETAL LIVER: A SOURCE OF IMMUNOLOGICALLY REACTIVE CELLS

by

M.L. Tyan
L.J. Cole

U.S. NAVAL RADIOLOGICAL DEFENSE LABORATORY
SAN FRANCISCO 24, CALIFORNIA

12ND. P7463
This work was accomplished under the Bureau of Medicine and Surgery Task MR005.08-5200, Subtask 3, Technical Objective AW-6, as described in the U.S. Naval Radiological Defense Laboratory Annual Report to the Bureau of Medicine and Surgery (OPNAV Form 3910-1) of 31 December 1962, and is listed in the U.S. Naval Radiological Defense Laboratory Technical Program Summary for Fiscal Years 1963-1965 of 1 November 1962 under Program A3, Problem 2, entitled "Nuclear Warfare Aspects of Whole Body Ionizing Radiation." This study was supported through funds provided by the Bureau of Medicine and Surgery, and the Defense Atomic Support Agency under NWER Program A 4c, Subtask 03.027.
ABSTRACT

Male and female AHeJ mice were mated and the resulting pregnancies were surgically interrupted at various stages of gestation. The embryos were dissected and identical organs (liver, thymus, gut, placenta, and umbilicus) from each separate pregnancy were pooled and injected i. p. into sublethally irradiated (500 rad) F₁ hybrids (either BALB/c x A)F₁ or (C57L x A)F₁. Death of the F₁ hybrids within 60 days was the criterion for the presence of immunologically competent cells in the inoculum. At the end of this period the survivors were sacrificed, their spleens and lymph nodes homogenized, and injected i. p. into sublethally irradiated F₁ hybrids of the other type. Again death within 60 days was the criterion for the presence of immunologically competent cells in the inoculum.

One death occurred among the primary hosts (placenta 1/8). Immunologically competent cells (AHeJ) were detected in secondary recipients of 2nd trimester fetal liver (3/3), 2nd trimester thymus (3/3), and 3rd trimester fetal liver (11/12). No immunologically competent cells (AHeJ) were found in secondary recipients of 3rd trimester and newborn thymus (1/14). Deaths occurred among secondary hosts of fetal gut (3/5), umbilicus (1/3), and placenta (2/9). There were two deaths (2/29) among the secondary control mice. It is concluded that 2nd and
3rd trimester mouse fetal liver, 2nd trimester fetal thymus, and perhaps other fetal tissues contain potential immunologically competent cells. The theoretical significance of these data is discussed.
SUMMARY

The Problem:

Recent observations have focused attention upon the mammalian embryonic and neonatal thymus as a critical organ in the ultimate development of immunological competence. However, other data indicate that mouse fetal liver may be a source of potential immunologically competent cells. The present work adds further evidence for the presence of potential immunologically competent cells in both mouse fetal liver and thymus.

The Findings:

Male and female AHeJ mice were mated and the resulting pregnancies were surgically interrupted at various stages of gestation. The embryos were dissected and identical organs (liver, thymus, gut, placenta, and umbilicus) from each separate pregnancy were pooled and injected i. p. into sublethally irradiated (500 rad)F₁ hybrids (either (BALB/c x A)F₁ or (C57L x A)F₁). Death of the F₁ hybrids within 60 days was the criterion for the presence of immunologically competent cells in the inoculum. At the end of this period the survivors were sacrificed, their spleens and lymph nodes homogenized, and injected i. p. into sublethally irradiated F₁ hybrids of the other type. Again death within
60 days was the criterion for the presence of immunologically competent cells in the inoculum.

One death occurred among the primary hosts (placenta 1/8). Immunologically competent cells (AHeJ) were detected in secondary recipients of 2nd trimester fetal liver (3/3), 2nd trimester thymus (3/3), and 3rd trimester fetal liver (11/12). No immunologically competent cells (AHeJ) were found in secondary recipients of 3rd trimester and newborn thymus (1/14). Deaths occurred among secondary hosts of fetal gut (3/5), umbilicus (1/3), and placenta (2/9). There were two deaths (2/29) among the secondary control mice. It is concluded that 2nd and 3rd trimester mouse fetal liver, 2nd trimester fetal thymus, and perhaps other fetal tissues contain potential immunologically competent cells. The theoretical significance of these data is discussed.
INTRODUCTION

Recent observations have focused attention upon the embryonic and neonatal thymus as a critical organ in the ultimate development of immunological competence. Kalmutz (1) demonstrated that the opossum embryo was able to react against antigenic stimuli as soon as the thymus had matured, but prior to maturation of other "lymphoid organs". Miller (2), Martinez et al (3) and others (4-7) have shown that mice and rats thymectomized within 24 hours of birth have a markedly reduced life span and a broad impairment of their immunological responsiveness. It has been suggested (2-9) that the fetal thymus and its descendent lympho-epithelial cells, either by the centrifugal distribution of thymocytes which give rise directly to functionally active "collateral" cells, or by some as yet unknown process which promotes proliferation and maturation of locally arising lymphocytic cells, govern the immunological reactivity of the mammalian organism.

However, rodents protected against the lethal effects of X-radiation by the intravenous infusion of isogenic or allogeneic fetal liver cells manifest none of the stigmata of immunological incompetence (10-14). Moreover, Doria et al (15), using 12-18 day mouse embryos, demonstrated that fetal liver "contained potential or actual antibody forming cells" which when transplanted into lethally irradiated hosts, conferred upon them a competent immune system of the donor type. The present communication is intended to add further evidence for the presence of potential
immunologically competent cells in both fetal liver and thymus, and to
discuss briefly the possible significance of these and the above
cited data.

MATERIALS AND METHODS

The presence of potential immunologically reactive cells in various
fetal tissues was determined by the parental-\(F_1 \) hybrid, graft-versus-
host method of Cole (16), with the following modification. It could
be assumed that any immature lymphoid cells which might be present in an
inoculum of parental strain fetal tissue would rapidly develop tolerance
to their sublethally irradiated \(F_1 \) hybrid host, and, as a result, their
presence would not be detected. If, however, maturation of these
potential immunologically competent cells occurred in the \(F_1 \) hybrid host,
it should be possible to demonstrate them upon transfer to an \(F_1 \) hybrid
of another type (one parent in common).

Twelve week old mice, either (C57L x A)\(F_1 \) or (BALB/c x A)\(F_1 \) (called
LAF\(_1\) and CAF\(_1\) respectively), which had received 500 rad whole body X radi-
ation just prior to the i. p. injection of parental strain fetal tissue,
were used as primary hosts. Death of these sublethally irradiated \(F_1 \)
hybrids within 60 days was the criterion for the presence of immunologically
competent cells in the inoculum. At the end of this period, each
survivor was sacrificed; its spleen and lymph nodes extirpated, lightly
homogenized in cold Tyrode's solution, and the cell suspension injected
into 1 or 2 sublethally irradiated \(F_1 \) hybrids of the other type. Again,
death of the secondary host within 60 days indicated the presence of immunologically reactive parental strain cells in the inoculum. F₁ hybrids (of the same type as the primary host), which had received 500 rad whole body X radiation but no injection of fetal tissue, served as primary radiation controls. Sublethally irradiated F₁ hybrids (of the same type as the secondary host), which received an i. p. injection of spleen and lymph nodes from the primary control animals, were the controls for the secondary hosts. The irradiated mice were housed 4-10 per cage. The diet was Purina Lab Chow, and water (containing 1% Neomycin) was given ad libitum.

Male and female AHeJ mice were mated and the resultant pregnancies were surgically extirpated at various stages of gestation. The embryos were separated from the other products of conception without contamination by maternal blood or tissue, and the various organs under study were dissected free in the cold. Identical organs from a single pregnancy were pooled in cold Tyrode's solution and the cells were dissociated by gentle aspiration through a 23 gauge needle. Where placental tissue was used, the organs were grossly dissected free of maternal decidua, finely minced in cold Tyrode's solution, and the cells were dissociated, by gentle aspiration through a 20 gauge needle. It is doubtful that the placental tissue was entirely free of maternal contamination. The cell suspensions were then injected intraperitoneally into 1 or 2 irradiated F₁ hybrids. Each pregnancy was comprised of from three to nine embryos.
of from 11 days gestation to the newly born. The fetal organs used were thymus, liver, gut, umbilicus and placenta. Primary recipients of fetal thymus received from $1 - 10 \times 10^6$ nucleated cells per animal while recipients of fetal liver received from $25 - 150 \times 10^6$ nucleated cells. No attempt was made to quantitate the number of gut, umbilicus or placenta cells given.

RESULTS

As can be seen in Table I, one death occurred among the primary hosts (placenta 1/3), indicating: (1) the absence of mature immunologically competent cells in the fetal tissue injected, (2) inadequate numbers of these cells were given, or (3) the potential lymphoid cells in the inoculum were incapable of reactivity in this system. However, deaths did occur among the secondary recipients of fetal liver and thymus from 11 or 12 day gestations (3/3 and 3/3), and among secondary hosts of third trimester fetal liver (11/12). There was one death among the secondary recipients of third trimester and new born thymus (1/14). The deaths occurring among secondary recipients of fetal gut (3/5), umbilicus (1/3) and placenta (2/9) may be explained by contamination with fetal liver, which occurred occasionally during dissection, in the case of gut and umbilicus, and by contamination with maternal tissue in the case of placenta. These latter findings, however, warrant further investigation. There were two deaths (2/29) among the secondary control animals (both occurring in mice housed in the same cage).
DISCUSSION

On the basis of these data and of the observations of Doria et al (15), it is apparent that fetal liver and 2nd trimester fetal thymus contain potential immunologically competent cells, which under the proper conditions are capable of immunological reactivity. These cells were characterized by an apparent initial absence of immunological reactivity in this system and/or an increased ability to become "tolerant" of allogeneic living cells. It should be noted that cells of similar potential were not found in 3rd trimester thymus or in newborn thymus. It is of interest that Delmasso et al (6) in their study of the immunological competence of spleen cells from mice thymectomized during early neonatal life, observed that these cells manifested no reactivity in primary hosts. The present data suggest that such cells might well have exhibited immunological reactivity, had they been transferred to suitable secondary hosts.

That the thymus is not the only source of cells possessing potential immunological competence in the mouse fetus now seems clear. Mouse fetal liver and, perhaps, other fetal tissues (i.e., gut, spleen, lymph nodes) may contain cells which, under the proper circumstances, and when exposed to appropriate stimuli, are capable of immunological reactivity. The mammalian "immune system" may, therefore, be composed of distinct "lines" of cells, phylogenetically derived at different times, which manifest diversity in degree, mode and specificity of their reactivity.
TABLE I

POTENTIAL IMMUNOLOGICALLY COMPETENT CELLS IN THE LIVER AND THYMUS OF A/HeJ MOUSE EMBRYOS

<table>
<thead>
<tr>
<th>TRIMESTER OF PREGNANCY</th>
<th>FETAL CELLS INJECTED (A/HeJ)</th>
<th>60-DAY MORTALITY (NO/TOTAL)</th>
<th>MEAN SURVIVAL TIME (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary Host 3Secondary Host (LAF1 or CAF1) (LAF1 or CAF1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymus</td>
<td>0/2</td>
<td>3/3</td>
<td>15</td>
</tr>
<tr>
<td>Liver</td>
<td>0/2</td>
<td>3/3</td>
<td>26</td>
</tr>
<tr>
<td>Placenta</td>
<td>0/1</td>
<td>1/1</td>
<td>47</td>
</tr>
<tr>
<td>Gut</td>
<td>0/1</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0/6</td>
<td>0/6</td>
<td></td>
</tr>
<tr>
<td>Third **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymus</td>
<td>0/8</td>
<td>1/12</td>
<td>34</td>
</tr>
<tr>
<td>Liver</td>
<td>0/8</td>
<td>11/12</td>
<td>19</td>
</tr>
<tr>
<td>Placenta</td>
<td>1/8</td>
<td>2/9</td>
<td>16</td>
</tr>
<tr>
<td>Gut</td>
<td>0/5</td>
<td>3/5</td>
<td>16</td>
</tr>
<tr>
<td>Umbilicus</td>
<td>0/3</td>
<td>1/3</td>
<td>10</td>
</tr>
<tr>
<td>None</td>
<td>0/32</td>
<td>2/19</td>
<td>10</td>
</tr>
<tr>
<td>Newborn *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymus</td>
<td>0/1</td>
<td>0/2</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0/6</td>
<td>0/4</td>
<td></td>
</tr>
</tbody>
</table>

* Pooled data from two separate pregnancies (11 and 12 day gestation)

** Pooled data from seven separate pregnancies (18 to 20 day gestation)

Δ One litter of seven
but which in the adult animal occur as an apparently homogeneous cell population. It is proposed that during the 3rd trimester of pregnancy in mice, the lympho-epithelial cells of the thymus differentiate from other potential immunologically competent cells, and that at about the time of birth they migrate to the ultimate sites of immunological reactivity. Here, the thymocytes and their direct descendants, in the adult as well as in the neonate, are not themselves primarily immunologically reactive in the classic sense; however, in some way, as yet unknown they are capable of modifying or augmenting certain lines of lymphoid cells, i.e., by "hormonal" means, or by information transfer, thereby determining the extent, and increasing the specificity of their immunological reactivity.

Thus, one may regard the mammalian thymus as a recent immunological acquisition whose functions include discrimination of fine antigenic differences and the governance of reactivity of certain lines of less sophisticated lymphoid cells.
REFERENCES

3. Martinez, C., Kersey, J., Papermaster, B. W., and Good, R. A.
 and Med. 110, 205 (1962).
7. Papermaster, B. W., Dalmasso, A. P., Martinez, C., Good, R. A.,
14. Tschetter, P. N., Githens, J. H., Moscovici, M. G., Blood 18, 182
 (1961).
15. Doria, G., Goodman, J. W., Gengozian, N., and Congdon, C. C.,
DISTRIBUTION

Copies

NAVY

1-3 Chief, Bureau of Ships (Code 335)
4 Chief, Bureau of Ships (Code 320)
5-6 Chief, Bureau of Medicine and Surgery
7 Chief of Naval Operations (Op-07T)
8 Chief of Naval Research (Code 104)
9-11 Director, Naval Research Laboratory (Code 2021)
12 Office of Naval Research (Code 422)
13 Office of Naval Research (Code 441)
14-23 Office of Naval Research, FPO, New York
24-26 Naval Medical Research Institute
27 CIC, Radiation Exposure Evaluation Laboratory
28 Director, Aviation Medical Acceleration Laboratory
29 U.S. Naval Postgraduate School, Monterey
30 Commander, Naval Ordnance Laboratory, Silver Spring
31 Naval Missile Center (Code 5700)
32 U.S. Naval Hospital, San Diego
33 CO, Naval Medical Research Unit No. 2
34 CO, Naval Medical Field Research Laboratory, Camp Lejeune

ARMY

35 Chief of Research and Development (Atomic Division)
36 Chief of Research and Development (Life Science Division)
37 Deputy Chief of Staff for Military Operations (CBR)
38 Chief of Engineers (ENBMC-DE)
39 Chief of Engineers (ENGGW)
40 CG, Army Materiel Command (AMCRD-DE-NE)
41 CG, USA CBR Agency
42 President, Chemical Corps Board
43-45 CO, BW Laboratories
46 CO, Chemical Corps Training Command
47 Commandant, Chemical Corps Schools (Library)
48 CO, Chemical Research and Development Laboratories
49 Commander, Chemical Corps Nuclear Defense Laboratory
50 Hq., Army Environmental Hygiene Agency
51 CG, Aberdeen Proving Ground
CO, Army Medical Research Laboratory, Fort Knox
Army Medical Research and Nutrition Laboratory (MEDEN-AD)
CO, Army Medical Service Combat Development Agency
Medical Field Service School, Fort Sam Houston (Stimson Lib.)
Brooks Army Medical Center (Dep. Prev. Med.)
Director, Surgical Research Unit, Fort Sam Houston
Director, Walter Reed Army Medical Center
Hq., Army Nuclear Medicine Research Detachment, Europe
CG, Combat Developments Command (CDCMR-V)
CG, Quartermaster Res. and Eng. Command
Hq., Dugway Proving Ground
The Surgeon General (MEDNE)
Office of the Surgeon General (Combat Dev.)
CG, Engineer Res. and Dev. Laboratory
Director, Office of Special Weapons Development
CG, Munitions Command
CO, Frankford Arsenal
CG, Army Missile Command

AIR FORCE
Assistant Chief of Staff, Intelligence (AFCIN-3B)
CG, Aeronautical Systems Division (ASAPRD-NS)
CO, Radiological Health Laboratory Division
Director, USAF Project RAND
Commandant, School of Aerospace Medicine, Brooks AFB
CO, School of Aviation Medicine, Gunter AFB
6571st Aeromedical Research Lab., Holloman AFB
Radiobiological Laboratory
Office of the Surgeon (SUP3.1), Strategic Air Command
Office of the Surgeon General
CG, Special Weapons Center, Kirtland AFB
Director, Air University Library, Maxwell AFB
Commander, Technical Training Wing, 3415th TTG
Hq., Second Air Force, Barksdale AFB
Commander, Electronic Systems Division (CRZT)

OTHER DOD ACTIVITIES
Chief, Defense Atomic Support Agency (Library)
Commander, FC/DASA, Sandia Base (FCDV)
Commander, FC/DASA, Sandia Base (FCTG5, Library)
Commander, FC/DASA, Sandia Base (FCWT)
Office of Civil Defense, Washington
Civil Defense Unit, Army Library
Armed Forces Institute of Pathology
Armed Services Technical Information Agency
Director, Armed Forces Radiobiology Research Institute
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>Research Analysis Corporation</td>
</tr>
<tr>
<td>117</td>
<td>Life Science Officer, AEC, Washington</td>
</tr>
<tr>
<td>118</td>
<td>Director, Division of Biology and Medicine</td>
</tr>
<tr>
<td>119</td>
<td>NASA, Ames Research Center, Moffett Field</td>
</tr>
<tr>
<td>120</td>
<td>Naval Attaché, Stockholm (for Commodore Troell)</td>
</tr>
<tr>
<td>121</td>
<td>Aerojet General, Azusa</td>
</tr>
<tr>
<td>122-126</td>
<td>Argonne Cancer Research Hospital</td>
</tr>
<tr>
<td>127-136</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>137-138</td>
<td>Atomic Bomb Casualty Commission</td>
</tr>
<tr>
<td>139</td>
<td>AEC Scientific Representative, France</td>
</tr>
<tr>
<td>140</td>
<td>AEC Scientific Representative, Japan</td>
</tr>
<tr>
<td>141-143</td>
<td>Atomic Energy Commission, Washington</td>
</tr>
<tr>
<td>144-147</td>
<td>Atomic Energy of Canada, Limited</td>
</tr>
<tr>
<td>148-150</td>
<td>Atomics International</td>
</tr>
<tr>
<td>151-152</td>
<td>Battelle Memorial Institute</td>
</tr>
<tr>
<td>153</td>
<td>Borden Chemical Company</td>
</tr>
<tr>
<td>154-157</td>
<td>Brookhaven National Laboratory</td>
</tr>
<tr>
<td>158</td>
<td>Chicago Patent Group</td>
</tr>
<tr>
<td>159</td>
<td>Colorado State University</td>
</tr>
<tr>
<td>160</td>
<td>Columbia University (Rossi)</td>
</tr>
<tr>
<td>161</td>
<td>Committee on the Effects of Atomic Radiation</td>
</tr>
<tr>
<td>162-164</td>
<td>Defence Research Member</td>
</tr>
<tr>
<td>165-166</td>
<td>duPont Company, Aiken</td>
</tr>
<tr>
<td>167</td>
<td>duPont Company, Wilmington</td>
</tr>
<tr>
<td>168</td>
<td>Edgerton, Garmeshausen and Grier, Inc., Goleta</td>
</tr>
<tr>
<td>169</td>
<td>Edgerton, Garmeshausen and Grier, Inc., Las Vegas</td>
</tr>
<tr>
<td>170-171</td>
<td>General Dynamics, Fort Worth</td>
</tr>
<tr>
<td>172-173</td>
<td>General Electric Company, Cincinnati</td>
</tr>
<tr>
<td>174-181</td>
<td>General Electric Company, Richland</td>
</tr>
<tr>
<td>182</td>
<td>General Electric Company, St. Petersburg</td>
</tr>
<tr>
<td>183</td>
<td>General Scientific Corporation</td>
</tr>
<tr>
<td>184</td>
<td>Hughes Aircraft Company, Culver City</td>
</tr>
<tr>
<td>185</td>
<td>Iowa State University</td>
</tr>
<tr>
<td>186</td>
<td>Journal of Nuclear Medicine</td>
</tr>
<tr>
<td>187</td>
<td>Knolls Atomic Power Laboratory</td>
</tr>
<tr>
<td>188-189</td>
<td>Los Alamos Scientific Laboratory (Library)</td>
</tr>
<tr>
<td>190</td>
<td>Lovelace Foundation</td>
</tr>
<tr>
<td>191</td>
<td>Martin-Marietta Corporation</td>
</tr>
<tr>
<td>192</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>193-194</td>
<td>Midwestern Universities Research Association</td>
</tr>
<tr>
<td>195</td>
<td>Mound Laboratory</td>
</tr>
<tr>
<td>196</td>
<td>National Academy of Sciences</td>
</tr>
<tr>
<td>197-198</td>
<td>NASA, Scientific and Technical Information Facility</td>
</tr>
<tr>
<td>199</td>
<td>National Bureau of Standards (Taylor)</td>
</tr>
<tr>
<td>200</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>201</td>
<td>National Lead Company of Ohio</td>
</tr>
<tr>
<td>202</td>
<td>National Library of Medicine</td>
</tr>
<tr>
<td>203</td>
<td>New Jersey State Department of Health</td>
</tr>
</tbody>
</table>
New York Operations Office
New York University (Eisenbud)
Office of Assistant General Counsel for Patents
Phillips Petroleum Company
Pratt and Whitney Aircraft Division
Public Health Service, Washington
Public Health Service, Las Vegas
Public Health Service, Montgomery
Sandia Corporation, Albuquerque
Union Carbide Nuclear Company (ORGDP)
Union Carbide Nuclear Company (ORNL)
Union Carbide Nuclear Company (Paducah Plant)
United Nuclear Corporation (NDA)
U.S. Geological Survey, Denver
U.S. Geological Survey, Menlo Park
U.S. Geological Survey, Naval Weapons Plant
U.S. Weather Bureau, Washington
University of California, Davis
University of California Lawrence Radiation Lab., Berkeley
University of California Lawrence Radiation Lab., Livermore
University of California, Los Angeles
University of California, San Francisco
University of Chicago Radiation Laboratory
University of Hawaii
University of Puerto Rico
University of Rochester (Atomic Energy Project)
University of Tennessee (UTA)
University of Utah
University of Washington (Donaldson)
Wayne State University
Westinghouse Electric Corporation (Rahilly)
Westinghouse Electric Corporation (NASA)
Western Reserve University (Friedell)
Technical Information Extension, Oak Ridge

USNRDL

USNRDL, Technical Information Division

DISTRIBUTION DATE: 1 February 1963
Male and female AHeJ mice were mated and the resulting pregnancies were surgically interrupted at various stages of gestation. The embryos were dissected and identified organs (liver, thymus, gut, placenta, and umbilicus) from each separate pregnancy were pooled and injected i.p. into sublethally irradiated F1 hybrids (either (BALB/c x A)F1 or ((C57L x A)F1). Death of the F1 hybrids within 60 days was the criterion for the presence of immunologically competent cells in the inoculum. At the end of this period the survivors were sacrificed, their spleens and lymph nodes homogenized, and injected i.p. into sublethally irradiated F1 hybrids of the other type. Again death within 60 days was the criterion for the presence of immunologically competent cells in the inoculum.

One death occurred among the primary hosts (placenta 1/3). Immunologically competent cells (AHeJ) were detected in secondary recipients of 2nd trimester fetal liver (2/3), 2nd trimester thymus (2/3), and 3rd trimester fetal liver (1/12). No immunologically competent cells (AHeJ) were found in secondary recipients of 3rd trimester and newborn thymus (1/14). Deaths occurred among secondary hosts of fetal gut (3/5), umbilicus (1/3), and placenta (2/9). There were two deaths (2/29) among the secondary control mice. It is concluded that 2nd and 3rd trimester mouse fetal liver, 2nd trimester fetal thymus, and perhaps other fetal tissues contain potential immunologically competent cells. The theoretical significance of these data is discussed.
Naval Radiological Defense Laboratory
USNRDL-TR-605

Male and female AHeJ mice were mated and the resulting pregnancies were surgically interrupted at various stages of gestation. The embryos were dissected and identical organs (liver, thymus, gut, placenta, and umbilicus) from each separate pregnancy were pooled and injected i.p. into sublethally irradiated (500 rad) F1 hybrids (either ((BALB/c x A))F1 or ((C57L x A))F1). Death of the F1 hybrids within 60 days was the criterion for the presence of immunologically competent cells in the inoculum. At the end of this period the survivors were sacrificed, their spleens and lymph nodes homogenized, and injected i.p. into sublethally irradiated F1 hybrids of the other type. Again death within 60 days was the criterion for the presence of immunologically competent cells in the inoculum.

One death occurred among the primary hosts (placenta 1/3). Immunologically competent cells (AHeJ) were detected in secondary recipients of 2nd trimester fetal liver (3/5), 2nd trimester thymus (3/3), and 3rd trimester fetal liver (11/12). No immunologically competent cells (AHeJ) were found in secondary recipients of 3rd trimester and newborn thymus (1/14). Deaths occurred among secondary hosts of fetal gut (3/5), umbilicus (1/3), and placenta (2/9). There were two deaths (2/29) among the secondary control mice. It is concluded that 2nd and 3rd trimester mouse fetal liver, 2nd trimester fetal thymus, and perhaps other fetal tissues contain potential immunologically competent cells. The theoretical significance of these data is discussed.

presence of immunologically competent cells in the inoculum. At the end of this period the survivors were sacrificed, their spleens and lymph nodes homogenized, and injected i.p. into sublethally irradiated F1 hybrids of the other type. Again death within 60 days was the criterion for the presence of immunologically competent cells in the inoculum.

One death occurred among the primary hosts (placenta 1/3). Immunologically competent cells (AHeJ) were detected in secondary recipients of 2nd trimester fetal liver (3/5), 2nd trimester thymus (3/3), and 3rd trimester fetal liver (11/12). No immunologically competent cells (AHeJ) were found in secondary recipients of 3rd trimester and newborn thymus (1/14). Deaths occurred among secondary hosts of fetal gut (3/5), umbilicus (1/3), and placenta (2/9). There were two deaths (2/29) among the secondary control mice. It is concluded that 2nd and 3rd trimester mouse fetal liver, 2nd trimester fetal thymus, and perhaps other fetal tissues contain potential immunologically competent cells. The theoretical significance of these data is discussed.

Naval Radiological Defense Laboratory
USNRDL-TR-605

Male and female AHeJ mice were mated and the resulting pregnancies were surgically interrupted at various stages of gestation. The embryos were dissected and identical organs (liver, thymus, gut, placenta, and umbilicus) from each separate pregnancy were pooled and injected i.p. into sublethally irradiated (500 rad) F1 hybrids (either ((BALB/c x A))F1 or ((C57L x A))F1). Death of the F1 hybrids within 60 days was the criterion for the presence of immunologically competent cells in the inoculum. At the end of this period the survivors were sacrificed, their spleens and lymph nodes homogenized, and injected i.p. into sublethally irradiated F1 hybrids of the other type. Again death within 60 days was the criterion for the presence of immunologically competent cells in the inoculum.

One death occurred among the primary hosts (placenta 1/3). Immunologically competent cells (AHeJ) were detected in secondary recipients of 2nd trimester fetal liver (3/5), 2nd trimester thymus (3/3), and 3rd trimester fetal liver (11/12). No immunologically competent cells (AHeJ) were found in secondary recipients of 3rd trimester and newborn thymus (1/14). Deaths occurred among secondary hosts of fetal gut (3/5), umbilicus (1/3), and placenta (2/9). There were two deaths (2/29) among the secondary control mice. It is concluded that 2nd and 3rd trimester mouse fetal liver, 2nd trimester fetal thymus, and perhaps other fetal tissues contain potential immunologically competent cells. The theoretical significance of these data is discussed.

UNCLASSIFIED
Naval Radiological Defense Laboratory
UNSRDL-TR-605

UNCLASSIFIED

Male and female AHeJ mice were mated and the resulting pregnancies were surgically interrupted at various stages of gestation. The embryos were dissected and identical organs (liver, thymus, gut, placenta, and umbilicus) from each separate pregnancy were pooled and injected i.p. into sublethally irradiated (500 rad) F1 hybrids (either (BALB/c x A)F1 or (C57L x A)F1). Death of the F1 hybrids within 60 days was the criterion for the presence of immunologically competent cells in the inoculum. At the end of this period the survivors were sacrificed, their spleens and lymph nodes homogenized, and injected i.p. into sublethally irradiated F1 hybrids of the other type. Again death within 60 days was the criterion for the presence of immunologically competent cells in the inoculum.

One death occurred among the primary hosts (placenta 1/3). Immunologically competent cells (AHeJ) were detected in secondary recipients of 2nd trimester fetal liver (5/5), 2nd trimester thymus (3/3), and 3rd trimester fetal liver (11/12). No immunologically competent cells (AHeJ) were found in secondary recipients of 3rd trimester and newborn thymus (1/14). Deaths occurred among secondary hosts of fetal gut (3/5), umbilicus (3/5), and placenta (2/9). There were two deaths (2/29) among the secondary control mice. It is concluded that 2nd and 3rd trimester mouse fetal liver, 2nd trimester fetal thymus, and perhaps other fetal tissues contain potential immunologically competent cells. The theoretical significance of these data is discussed.

UNCLASSIFIED

1. Liver.
2. Thymus.
3. Immunization.

I. Tyan, M.L.
II. Cole, L.J.
III. Title.
IV. MR065.08-5200.

Naval Radiological Defense Laboratory
UNSRDL-TR-605

UNCLASSIFIED

Male and female AHeJ mice were mated and the resulting pregnancies were surgically interrupted at various stages of gestation. The embryos were dissected and identical organs (liver, thymus, gut, placenta, and umbilicus) from each separate pregnancy were pooled and injected i.p. into sublethally irradiated (500 rad) F1 hybrids (either (BALB/c x A)F1 or (C57L x A)F1). Death of the F1 hybrids within 60 days was the criterion for the presence of immunologically competent cells in the inoculum. At the end of this period the survivors were sacrificed, their spleens and lymph nodes homogenized, and injected i.p. into sublethally irradiated F1 hybrids of the other type. Again death within 60 days was the criterion for the presence of immunologically competent cells in the inoculum.

One death occurred among the primary hosts (placenta 1/3). Immunologically competent cells (AHeJ) were detected in secondary recipients of 2nd trimester fetal liver (3/3), 2nd trimester thymus (3/3), and 3rd trimester fetal liver (11/12). No immunologically competent cells (AHeJ) were found in secondary recipients of 3rd trimester and newborn thymus (1/14). Deaths occurred among secondary hosts of fetal gut (3/5), umbilicus (1/3), and placenta (2/9). There were two deaths (2/29) among the secondary control mice. It is concluded that 2nd and 3rd trimester mouse fetal liver, 2nd trimester fetal thymus, and perhaps other fetal tissues contain potential immunologically competent cells. The theoretical significance of these data is discussed.

UNCLASSIFIED

1. Liver.
2. Thymus.
3. Immunization.

I. Tyan, M.L.
II. Cole, L.J.
III. Title.
IV. MR065.08-5200.
Naval Radiological Defense Laboratory
USNRDL-TR-605

UNCLASSIFIED

Male and female AHeJ mice were mated and the resulting pregnancies were surgically interrupted at various stages of gestation. The embryos were dissected and identified organs (liver, thymus, gut, placenta, and umbilicus) from each separate pregnancy were pooled and injected i.p. into sublethally irradiated (500 rad) F1 hybrids (either (BALB/c x A)F1 or (C57L x A)F1). Death of the F1 hybrid within 60 days was the criterion for the presence of immunologically competent cells in the inoculum. At the end of this period the survivors were sacrificed, their spleens and lymph nodes homogenized, and injected i.p. into sublethally irradiated F1 hybrids of the other type. Again death within 60 days was the criterion for the presence of immunologically competent cells in the inoculum.

One death occurred among the primary hosts (placenta 1/3). Immunologically competent cells (AHeJ) were detected in secondary recipients of 2nd trimester fetal liver (3/3), 2nd trimester thymus (3/3), and 3rd trimester fetal liver (1/12). No immunologically competent cells (AHeJ) were found in secondary recipients of 3rd trimester and newborn thymus (1/14). Deaths occurred among secondary hosts of fetal gut (3/5), umbilicus (1/3), and placenta (2/9). There were two deaths (2/29) among the secondary control mice. It is concluded that 2nd and 3rd trimester mouse fetal liver and thymus, and perhaps other fetal tissues contain potential immunologically competent cells. The theoretical significance of these data is discussed.

Naval Radiological Defense Laboratory
USNRDL-TR-605

UNCLASSIFIED

Male and female AHeJ mice were mated and the resulting pregnancies were surgically interrupted at various stages of gestation. The embryos were dissected and identified organs (liver, thymus, gut, placenta, and umbilicus) from each separate pregnancy were pooled and injected i.p. into sublethally irradiated (500 rad) F1 hybrids (either (BALB/c x A)F1 or (C57L x A)F1). Death of the F1 hybrid within 60 days was the criterion for the presence of immunologically competent cells in the inoculum. At the end of this period the survivors were sacrificed, their spleens and lymph nodes homogenized, and injected i.p. into sublethally irradiated F1 hybrids of the other type. Again death within 60 days was the criterion for the presence of immunologically competent cells in the inoculum.

One death occurred among the primary hosts (placenta 1/3). Immunologically competent cells (AHeJ) were detected in secondary recipients of 2nd trimester fetal liver (3/3), 2nd trimester thymus (3/3), and 3rd trimester fetal liver (1/12). No immunologically competent cells (AHeJ) were found in secondary recipients of 3rd trimester and newborn thymus (1/14). Deaths occurred among secondary hosts of fetal gut (3/5), umbilicus (1/3), and placenta (2/9). There were two deaths (2/29) among the secondary control mice. It is concluded that 2nd and 3rd trimester mouse fetal liver and thymus, and perhaps other fetal tissues contain potential immunologically competent cells. The theoretical significance of these data is discussed.