NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
FLUID AMPLIFICATION

Gain Analysis of the Proportional Fluid Amplifier

S. J. Peperone
Silas Katz
John M. Goto

30 October 1962

DIAMOND ORDNANCE FUZE LABORATORIES
ORDNANCE CORPS • DEPARTMENT OF THE ARMY
WASHINGTON 25, D.C.
4. Gain Analysis of the Proportional Fluid Amplifier

ERRATA SHEET

Page 13. Under Section 3. Analysis of Power-Jet Deflection, the first assumption should read:

1) The fluid is incompressible

Page 17. Equation 4 should be:

\[dQ = \frac{\partial Q_0}{\partial \theta} d\theta + \frac{\partial Q_o}{\partial \theta_s} d\theta_s + \frac{\partial Q_o}{\partial \theta_d} d\theta_d + \frac{\partial Q_o}{\partial I} dI \]

Page 17. Equation 6 should be:

\[G_Q = \frac{\partial Q_o}{\partial \theta_s} \cdot \frac{\partial \theta_s}{\partial Q_1} \]

Page 17. Equation 7a should be:

\[v_{av} = \left(\sqrt{2 \frac{Q_0}{\rho}} \right) \left(\frac{1}{\theta_d} \cdot \int_0^{\theta_d} p^{1/2} (\theta + \theta_s, I) d\theta \right) \]

Page 19. In the paragraph below equation 15, \(L \) should be \(I \)

Page 22. Line 1 should read:

When these values........equation 11, 21

Page 28; Abscissa on figure 11 should be:

\(Q_d \) (standard deviation \(\sigma \))
FLUID AMPLIFICATION

4. Gain Analysis of the Proportional Fluid Amplifier

S. J. Peperone
Silas Katz
John M. Goto

FOR THE COMMANDER:
Approved by

R. D. Hatcher
Chief, Laboratory 300

Qualified requesters may obtain copies of this report from ASTIA.
This publication is the fourth in a DOFL-report series on the basic design and operating principles of fluid amplification. As reported in reference 1, the objective of a proportional fluid amplifier is to achieve—without mechanical moving parts—the control of fluid power by a lesser amount of power. A realization of this objective, which was proved feasible, would result in a fluid device having signal-power gain, small-signal linearity, broad bandwidth, and high reliability. In many respects, the device would be analogous to the transistor in the field of electronics.

Specifically, this report presents a theoretical analysis of pressure, volume flow, and power gains of a proportional fluid amplifier and compares predictions with experimental data. The analysis was made assuming an incompressible fluid; the measurements were made using air at pressures less than 5 psig.

Also included are generalized background discussions on jet-stream characteristics and power-jet deflections.
NOMENCLATURE

\[A = \text{area} \quad \text{ft}^2 \]
\[b = \text{output aperture width} \quad \text{ft} \]
\[F = \text{force} \quad \text{lbf} \]
\[G = \text{gain} \quad \text{nondimensional} \]
\[g_c = \text{conversion factor} \quad \frac{32.2 \text{ lbm ft}}{\text{lbf sec}^2} \]
\[L = \text{distance from point of apparent emanation of the power jet to output apertures} \quad \text{ft} \]
\[l = \text{distance from power nozzle exit to output aperture} \quad \text{ft} \]
\[p = \text{total pressure (gauge)} \quad \frac{\text{lbf}}{\text{ft}^2} \]
\[Q = \text{volume flow rate} \quad \frac{\text{ft}^3}{\text{sec}} \]
\[v = \text{velocity} \quad \frac{\text{ft}}{\text{sec}} \]
\[w = \text{nozzle width} \quad \text{ft} \]
\[\alpha = \text{ratio of dynamic to total pressure (gauge)} \quad \text{nondimensional} \]
\[\gamma = \text{stream deflection angle (measured from interaction region)} \quad \text{radians (or deg)} \]
\[\theta = \text{angle to arbitrary point of stream} \quad \text{radians (or deg)} \]
\[\theta_s = \text{stream deflection angle} \quad \text{radians (or deg)} \]
\[\rho = \text{density} \quad \frac{\text{lbm}}{\text{ft}^3} \]
\[\sigma = \text{standard deviation} \quad \text{radians (or deg)} \]
\[\varphi = \text{angle of spread of the power stream} \quad \text{radians (or deg)} \]
\[\theta_d = \text{angle subtended by one output aperture} \quad \text{radians (or deg)} \]
NOMENCLATURE—Continued

(Subscripts)

1 = power stream
2 = left-control stream
3 = right-control stream
av = average value
d = output aperture
i = signal input
L = left-output aperture entrance
m = maximum value
o = signal output
p = pressure
pQ = power
Q = flow rate
R = right-output aperture entrance
s = static conditions
CONTENTS

FOREWORD	..	3
NOMENCLATURE	5
LIST OF ILLUSTRATIONS	8
1. INTRODUCTION	9
2. CHARACTERISTICS OF JET STREAMS	9
3. ANALYSIS OF POWER-JET DEFLECTION	13
4. THEORETICAL DEVELOPMENT OF GAIN	14
4.1 Flow Gain	14
4.2 Pressure Gain	19
4.3 Power Gain	20
5. APPLICATION OF THEORY	21
5.1 Predicting the Gain of a Fluid Amplifier	21
5.2 Optimization of Gain	22
5.2.1 Constant-Width Apertures	22
5.2.2 Constant-Deviation Apertures	22
5.2.3 Varying-Width Apertures	22
6. TEST SETUP AND PROCEDURE	29
7. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS	29
7.1 Flow Difference	32
7.2 Pressure Difference	32
8. DISCUSSION	32
9. CONCLUSIONS	37
10. REFERENCES	38

APPENDIX A: THEORETICAL ANALYSIS OF INTERACTING STREAMS—MATHEMATICAL DERIVATIONS | 39
ILLUSTRATIONS

Figure
1 Proportional fluid amplifier—basic design.
2 Power-jet pressure profile at entrance to output apertures.
3 Schematic diagram of jet diffusion.
4 Experimental profiles.
5(a) Jet impinging on a flat wall.
5(b) Fluid amplifier interaction region.
6 Theoretical flow gain versus stream deflection with stream width as a parameter.
7 Theoretical pressure gain versus stream deflection with stream width as a parameter.
8 Theoretical power gain versus stream deflection with stream width as a parameter.
9 Theoretical gain versus downstream distance constant-width aperture ($\Theta_s = 0$).
10 Theoretical gain versus downstream distance constant-deviation apertures ($\Theta_s = 0$).
11 Theoretical gain versus aperture width fixed distance downstream ($\Theta_s = 0$).
12 Proportional amplifier.
13 Functional diagram of test setup.
14,15 Comparison of experimental and theoretical flow differences.
16,17 Comparison of experimental and theoretical pressure differences.
A1 Free body diagrams of the interacting streams.
1. **INTRODUCTION**

To achieve fluid amplification without mechanical moving parts, a power nozzle is used to transform the energy initially stored in static pressure into dynamic pressure. This power stream of high energy fluid passes through an interaction region and is partitioned into two output apertures as shown in figure 1. Control streams placed at each side and usually normal to the power stream determine the direction of flow of the power stream. Variations in the net thrust of the control streams change the deflection of the power stream, and thereby change the division of fluid between the two output apertures (fig. 2).

The gain of a proportional amplifier is defined as the ratio of the change in the variable of interest at the output to the change of this variable at the input—that is, the ratio of output to input signal. The theoretical analysis that follows was made of the gains in pressure, volume flow, and power; predictions were compared with experimental data. An incompressible fluid was assumed in this analysis and the measurements were made using air at less than 5 psig.

2. **CHARACTERISTICS OF JET STREAMS**

The operation of a proportioning fluid amplifier is dependent upon controlling and collecting the fluid stream issuing from a nozzle. To understand fluid amplification, therefore, some knowledge of jet-stream characteristics is necessary.

A fluid stream discharging into a fluid initially at rest undergoes both lateral diffusion and deceleration (ref 2) while the surrounding fluid is brought into motion. The reason for this is that, at the exit of the nozzle, a high velocity gradient exists between the stream and the surrounding fluid. Eddies generated in this region produce a lateral mixing process resulting in the formation of two distinct regimes (fig. 3), the zone of establishment and the zone of established flow. Over an extremely wide range of Reynolds number (ref 2), the stream characteristics remain essentially unchanged. The zone of establishment ends about 6 nozzle widths downstream from the nozzle exit for the conditions of interest here. In this zone the mixing process has not penetrated to the center line of the jet stream, and the conditions at the center line are still the same as at the nozzle exit. At approximately 6 nozzle widths the fluid enters the zone of established flow. In this region the velocity throughout the stream decreases as the distance from the nozzle exit increases.

The fluid in the amplifier under consideration differs from the stream described above, because it is confined between parallel
Figure 1. Proportional fluid amplifier—basic design.
Figure 2. Power-jet pressure profile at entrance to output apertures.
Figure 3. Schematic diagram of jet diffusion.
plates. In the unconfined stream, only the tangential shear within
the mixing region decelerates the jet stream, and since this pro-
cess is completely internal, momentum flux is conserved. In the
confined stream, the top and bottom plates exert a shearing force
on the stream. This process is external to the stream, and momen-
tum flux is not conserved. Consequently, the zone of established
flow appears to emanate from a point on the center line farther up-
stream from the nozzle than the apparent point of emanation of an
unconfined stream (ref 3).

Dynamic pressure profiles (taken at DOFL) of a two-dimensional
(2-D) stream confined between parallel plates are shown in figure 4.
The ratio of the distance between plates to the nozzle width (as-
pect ratio) was 8. Integration of these profiles confirms the fact
that momentum flux is not conserved, but decreases with increasing
distance from the nozzle exit. In this case, the stream appears to
emanate from a point 4 nozzle widths upstream from the exit. As
the aspect ratio is lowered this distance is expected to increase.

The maximum pressure of these experimental profiles occurs on
the center line of the stream. These data show that the maximum
pressure 7 nozzle widths downstream of the exit dropped to 95 per-
cent of the exit pressure; at 11 nozzle widths, to 68 percent of the
exit pressure. The shape of these profiles is similar to those
found in reference 2 for 2-D jets without parallel plates.

It is to be noted that the experimental profiles were obtained
in the absence of output apertures. Experimental evidence indicates
that the static pressure throughout the zones of motion is constant
if no obstructions are present. The stagnation pressure at the
edges of the apertures affects the profiles; however, if the edges
are sharp, this effect is believed to be small.

3. ANALYSIS OF POWER-JET DEFLECTION

The following analysis of the power-jet deflection by means of
the control stream is based on three assumptions:

(1) The fluid is incompressible and steady.
(2) The flow is steady.
(3) The impingement of the control stream on the power stream
may be viewed as a 2-D potential motion problem where the
power jet is considered as a nondeformable wall. This
means that there is no mixing between the control and
power streams.

The thrust exerted by the control stream on the power jet is
computed from Newton's second law, which for a frictionless fluid
in steady motion may be written as
where \(\rho \) and \(\vec{v} \) are the density and velocity of the control stream, \(dA \) is incremental area, \(p_s \) is static pressure, and \(g_c \) is the gravitational conversion factor. This equation simply states that the sum of the external forces acting on the system is equal to the rate of change of momentum of the bounded mass system.

Assuming that the problem of determining the velocity \(\vec{v} \) is similar to the classical problem of the impingement of an incompressible, frictionless, steady stream on a flat wall, the result is given by the curves of figure 5a.

The solution shows (ref 4) that the streamlines are hyperbolas whose asymptotes are the x and y axes. The control stream, therefore, follows along the side of the power jet with no bounce. If the configuration in figure 5a is modified by inserting walls at the middle and edge filaments, and if the power jet replaces the wall, the streamlines remain essentially unchanged (figure 5b).

The geometry of the classical problem now conforms to the interaction region of the fluid amplifier and \(\vec{v} \) is determined. The desired relation between stream thrust and deflection angle is derived in appendix A.

4. **THEORETICAL DEVELOPMENT OF GAIN**

4.1 **Flow Gain**

The flow gain \(G_Q \) of a proportional amplifier is defined as the ratio of the change in the output volumetric flow difference \(\Delta Q_o \) to the change in input volumetric flow difference \(\Delta Q_i \) so that

\[
G_Q = \frac{\Delta Q_o}{\Delta Q_i}
\]

or

\[
G_Q = \frac{\Delta(Q_L - Q_R)}{\Delta(Q_2 - Q_3)}
\]

where the subscripts L and R refer to the left- and right-output apertures, and 2 and 3 refer to the left- and right-control nozzles, respectively.

The output-flow difference \(Q_o \) is a function of the pressure profile \(p(\theta, \theta_s) \), the angle subtended by the apertures \(\theta_d \), and the
Figure 4. Experimental profiles.
Figure 5(a). Jet impinging on a flat wall.

Figure 5(b). Fluid amplifier interaction region.
downstream distance of the apertures l (fig. 1), where θ is an arbitrary angle and θ_s is the stream deflection angle:

$$Q_o = Q_o(\theta, \theta_s, \theta_d, l)$$ \hspace{1cm} (3)

The total differential of equation (3) is

$$dQ_o = \frac{\partial Q_o}{\partial \theta} d\theta + \frac{\partial Q_o}{\partial \theta_s} d\theta_s + \frac{\partial Q_o}{\partial \theta_d} d\theta_d + \frac{\partial Q_o}{\partial l} dl$$ \hspace{1cm} (4)

For small increments, the flow gain may be written as

$$G = \frac{dQ_o}{dq_1} = \frac{\partial Q_o}{\partial \theta} dq_1 + \frac{\partial Q_o}{\partial \theta_s} \frac{d\theta_s}{dq_1} + \frac{\partial Q_o}{\partial \theta_d} \frac{d\theta_d}{dq_1} + \frac{\partial Q_o}{\partial l} \frac{dl}{dq_1}$$ \hspace{1cm} (5)

Assuming that the pressure profile does not change for small control inputs, $\frac{d\theta}{dq_1} = 0$; and since θ_d and l are independent of Q_1, the gain expression reduces to

$$G = \frac{\partial Q_o}{\partial \theta_s} \frac{d\theta_s}{d\theta_1}$$ \hspace{1cm} (6)

From the definition of flow rate, the output flow difference may be written as

$$Q_o = A_L v_{avL} - A_R v_{avR}$$ \hspace{1cm} (7)

where A_L, for example, is the area of the left aperture and v_{av} is the average velocity. For an incompressible fluid, the total pressure at the entrances and exits of the apertures is the sum of the static and dynamic pressure; moreover, the static pressure of the fluid stream approaching non-loaded apertures is ambient, so that the output volume flow rate may be computed from $p = \frac{\rho}{2g_C} v^2$.

In terms of the pressure profile $p(\theta+\theta_s, l)$ the average velocity is

$$v_{av} = \sqrt{\frac{2g_C}{\rho}} \cdot \frac{1}{\theta_d} \int_{\theta_d}^{\theta_d} p \, dl \, d\theta$$ \hspace{1cm} (7a)
and the output volume flow rate is

\[Q_0 = \frac{1}{\delta_d} \sqrt{\frac{2g_c}{\rho}} \left[A_L \int_{\theta_d}^{\theta_d} p^{1/2} (\theta+\theta_s', \theta') d\theta - A_R \int_{-\theta_d}^{\theta_d} p^{1/2} (\theta+\theta_s', \theta') d\theta \right] \]

(8)

The relation between stream deflection \(\gamma \) and input-flow difference is derived (app A) by applying the momentum equation to the interaction region. If the left and right control areas are equal, the relation is approximately

\[\tan \gamma = \frac{\rho (1+\alpha^2) (1+\sin \varphi)(Q_1^2 + 2Q_1 Q_3)}{2 g_c \alpha_2 A_1 A_2 (1+\alpha_1)(p_1)} \]

(9)

where \(\alpha \) is the ratio of dynamic to total pressure, \(\varphi \) is the difference in deflection between power stream and control stream, and the subscript 1 refers to the power nozzle.

It should be noted that the angles \(\theta_s \) and \(\gamma \) are measured from different vertices. Experiments have shown that the power stream appears to radiate from a source approximately 4 nozzle widths upstream of the power-jet exit (for an aspect ratio of \(8 \)), but it is deflected about the point of intersection of the power- and control-nozzle center lines.

From figure 1, the geometrical relation between angles \(\theta_s \) and \(\gamma \) is

\[\tan \theta_s = \frac{L - \frac{w_2}{2}}{L} \tan \gamma \]

(10)

where \(L \) is the downstream distance from the point of apparent emanation to the apertures and \(w_2 \) is the control-nozzle width.

If the areas of the left and right apertures are equal, the theoretical flow gain obtained by combining eq (6), (8), (9), (10) and normalizing the pressure is

\[G_Q = \frac{K_{Q_2} A_1 A_2 p_m^{1/2}(t)}{Q_1 A_2 \delta_d p_1^{1/2}} \left[\frac{p_m^{1/2}(\theta_d + \theta_s', \theta)}{p_m^{1/2}(t)} + \frac{p_m^{1/2}(-\theta_d + \theta_s', \theta)}{p_m^{1/2}(t)} - \frac{2p_m^{1/2}(\theta_s', \theta)}{p_m^{1/2}(t)} \right] \]

(11)

where \(p_m(t) \) refers to the maximum pressure of the profile,

\[K = \frac{2A_2(t - \frac{w_2}{2})(1+\alpha_2)(1+\sin \varphi) \cos^2 \theta_s}{A_1 L(1+\alpha_1)\alpha_2} \]

and
\[Q_1 = A_1 \sqrt{2g_c \frac{p_1}{\rho}} \]

and where it must be kept in mind that \(\frac{\partial p(\theta + \theta_s^e)}{\partial \theta} = \frac{\partial p(\theta + \theta_s^e)}{\partial \theta_s} \)

4.2 Pressure Gain

The pressure gain of a proportional fluid amplifier is defined as the ratio of change in total output pressure difference, to the change in total input pressure difference. This may be written as

\[G_p = \frac{\Delta p_o}{\Delta p_1} \quad (12) \]

or

\[G_p = \frac{\Delta(p_2 - p_3)}{\Delta(p_L - p_R)} \quad (12a) \]

The output pressure difference \(p_o \) is a function of the pressure profile, \(p(\theta, \theta_s) \), the width of the apertures \(\theta_d \), and the downstream distance of the apertures, \(t \); that is

\[p_o = p_o(\theta, \theta_s, \theta_d, t) \quad (13) \]

The total differential of equation (13) is

\[dp_o = \frac{\partial p_o}{\partial \theta} d\theta + \frac{\partial p_o}{\partial \theta_s} d\theta_s + \frac{\partial p_o}{\partial \theta_d} d\theta_d + \frac{\partial p_o}{\partial t} dt \quad (14) \]

For small increments, the pressure gain may now be written as

\[G_p = \frac{\frac{\partial p_o}{\partial \theta}}{\frac{\partial p_1}{\partial \theta}} + \frac{\frac{\partial p_o}{\partial \theta_s}}{\frac{\partial p_1}{\partial \theta_s}} + \frac{\frac{\partial p_o}{\partial \theta_d}}{\frac{\partial p_1}{\partial \theta_d}} + \frac{\frac{\partial p_o}{\partial t}}{\frac{\partial p_1}{\partial t}} \quad (15) \]

Assuming that the pressure profile does not change for small control inputs, and since \(\theta_d \) and \(L \) are independent of \(p_1 \), the gain expression reduces to

\[G_p = \frac{\frac{\partial p_o}{\partial \theta_s}}{\frac{\partial p_1}{\partial \theta_s}} \quad (16) \]

From the assumptions, the output pressure is in the form of dynamic pressure; therefore,
By using the expression for average velocity, the output pressure difference is

\[
p_o = \frac{\frac{1}{2}g_c}{\frac{1}{2}g_c} v^{a} \text{avL} - \frac{\frac{1}{2}g_c}{\frac{1}{2}g_c} v^{a} \text{avR}
\]

(17)

The relation between stream deflection and input pressure difference is derived in appendix A. If the left and right control areas are equal, the relation is approximately

\[
\tan \gamma = \frac{A_2(1+\alpha_2)(1+\sin \varphi) p_i}{A_1(1+\alpha_1) p_i}
\]

(19)

From the geometrical relation in equation (10), equation (19) may be written as

\[
\tan \theta_s = \frac{A_2(1-\frac{w_2}{2})(1+\alpha_2)(1+\sin \varphi) p_i}{A_1 L(1+\alpha_1) p_i}
\]

(20)

A theoretical expression for pressure gain is obtained by combining equations (16), (18), (20), and normalizing the pressure so that

\[
G_p = \frac{\alpha_2 K p_m(t)}{p_d p_i} \left[\frac{\int_{\theta_d}^{\theta_s} \frac{p_{i,2}^{a} (\theta_s, t)}{p_m^{a} (t)} d\theta}{\int_{\theta_d}^{\theta_s} \frac{p_{m,2}^{a} (\theta_s, t)}{p_m^{a} (t)} d\theta} - \frac{\int_{\theta_d}^{\theta_s} \frac{p_{i,2}^{a} (\theta_s, t)}{p_m^{a} (t)} d\theta}{\int_{\theta_d}^{\theta_s} \frac{p_{m,2}^{a} (\theta_s, t)}{p_m^{a} (t)} d\theta} \right]
\]

(21)

where, as before,

\[
K = \frac{2A_2(1-\frac{w_2}{2})(1+\alpha_2)(1+\sin \varphi) \cos^2 \theta_s}{A_1 L(1+\alpha_1) \alpha_2}
\]

4.3 Power Gain

The power gain may be defined in terms of pressure gain and flow gain, so that
The theoretical expression for power gain is, therefore, obtained by multiplying equation (11) by equation (21).

5. APPLICATION OF THEORY

5.1 Predicting the Gain of a Fluid Amplifier

The theoretical expressions for flow and pressure gain are given in equations (11) and (21). Gains are calculated from these equations by specifying:

(a) The shape of the pressure profile at the entrance to the apertures;

(b) The physical dimensions of the amplifier;

(c) The ratio of dynamic pressure to total pressure for control (α_2) and power (α_1) streams; and

(d) The turning angle of the control stream ϕ.

Experimental (fig. 4) and theoretical analyses (ref 2) of 2-D submerged jets show that the pressure profile is approximately Gaussian in the region of established flow. This may be expressed mathematically as

$$p(\theta) \approx p_m \exp \left[- \frac{(\theta - \theta_s)^2}{2\sigma^2} \right]$$

At power-stream pressures of 5 psig, and an aspect ratio of 8:1, these data gave a peak pressure p_0 of 3.5 psig and a standard deviation σ of approximately 2.40 deg at 11 nozzle widths downstream. Since the value of σ depends to some extent on aspect ratio, the dependence of pressure and flow gains on σ is also considered.

The ratios α_1 and α_2 were determined experimentally as $\alpha_1 = 0.84$ and $\alpha_2 = 0.44$ at the operating pressures of the amplifier. These operating pressures were chosen below 5 psig so that the assumption of incompressibility would be valid.

The turning angle ϕ has been taken as 8 deg, since the power stream spreads at approximately this angle in the interaction region. The direction of flow of the control stream as it leaves the interaction region therefore differs from the axis of the power stream by this angle.

$$G_{Q} = \left| \frac{\Delta p_{o} \Delta Q_{o}}{\Delta p_{1} \Delta Q_{1}} \right|$$

or,

$$G_{Q} = \left| \frac{G_{p} G_{Q}}{G_{Q}} \right|$$

$$G_{Q} = \left| G_{p} G_{Q} \right|$$

$$G_{Q} = \left| \frac{G_{p} G_{Q}}{G_{Q}} \right|$$

$$G_{Q} = \left| \frac{G_{p} G_{Q}}{G_{Q}} \right|$$
When these \(\sigma \) values are employed in equations (11), (21), and (22), the theoretical flow, pressure, and power gains are determined. Figures 6, 7, and 8 show the theoretical gains plotted against deflection angle for a Gaussian profile.

5.2 Optimization of Gain

Consideration will now be given to the effect of varying certain physical dimensions of the amplifier to optimize the gain using measured pressure profiles.

It should be noted that the pressure gain given by equation (21) is not directly proportional to the ratio of control area \(A_2 \) and power area \(A_1 \) alone, since the \(\alpha \)'s are also functions of the areas. This applies also to the ratio of flow rates \(Q_2/Q_1 \) in the flow gain expression (eq 11). Since the functional relation between the areas (or flow rates) and the \(\alpha \)'s is not analyzed here, the effects of varying the area ratio or flow rate control to power ratio is not considered.

5.2.1 Constant-Width Apertures—Varying Distance Downstream

As the downstream distance of constant-width apertures is increased, each aperture accepts a smaller percentage of the total stream. The peak pressure is also decreasing with increasing downstream distance. Using experimental profile data taken at DOFL, these quantities may be related to downstream distance. Figure 9 is a plot of theoretical pressure, flow, and power gains versus downstream distance for the case of a constant width aperture equal to 1.5 power nozzle widths and a stream deflection \(\theta_s = 0 \). The theoretical gains maximize at 11 nozzle widths downstream.

5.2.2 Constant-Deviation Apertures—Varying Distance Downstream

If the apertures are constrained to subtend a fixed angle, the aperture width must increase with increasing downstream distance. Figure 10 shows the relation between theoretical pressure, flow, and power gains, and downstream distance for a fixed aperture angle of 2.4 deg at a stream deflection of \(\theta_s = 0 \). The pressure gain decreases monotonically in the region of established flow, whereas the flow gain increases monotonically. The power gain, however, exhibits a maximum at about 11 nozzle widths downstream.

5.2.3 Varying-Width Apertures—Fixed Downstream Distance

Varying the width of apertures at a fixed downstream position varies their position with respect to the pressure profile. Figure 11 is a plot of theoretical pressure, flow, and power gains versus the equivalent \(\sigma \) width at 11 nozzle widths downstream and \(\theta_s = 0 \).
Figure 6. Theoretical flow gain versus stream deflection with stream width as a parameter.
Figure 7. Theoretical pressure gain versus stream deflection with stream width as a parameter.
Figure 8. Theoretical power gain versus stream deflection with stream width as a parameter.
Figure 9. Theoretical gain versus downstream distance constant-width aperture ($\theta_s = 0$).

\[\begin{align*}
K_1 &= 4K \left(\frac{2x}{L} - w_2 \right) p_1 \\
K_2 &= 4K \left(\frac{2x}{L} - w_2 \right) A_o Q_2 \\
K_3 &= K_1 K_2 \\
\sigma &= 2.4^o \\
\theta_s &= 0
\end{align*} \]
Figure 10. Theoretical gain versus downstream distance constant-deviation apertures ($\theta_s = 0$).
Figure 11. Theoretical gain versus aperture width fixed distance downstream ($\theta_e = 0$).
The flow gain increases monotonically until the apertures increase to the width of the power stream; thereafter, increasing the aperture width does not change the gain. The pressure gain is a maximum at an aperture width of 1.7σ, and the power gain is a maximum at approximately 2.5σ.

6. TEST SETUP AND PROCEDURE

To check the theoretical analysis, tests were performed on the amplifier shown in figure 12. This amplifier has the following dimensional features:

(a) The nozzle widths of power and control streams are approximately equal.
(b) The entrance width b of each output aperture is 1.5 power nozzle widths.
(c) The entrance of the apertures is fixed at 11 power nozzle widths from the exit of the power nozzle.
(d) The ratio of nozzle height to power nozzle width (aspect ratio) is 8.

A functional diagram (fig. 13) shows the test arrangement used with this amplifier. The test setup consists of a regulated air supply to each nozzle and the means of measuring input and output conditions. The flow rate into the nozzles and out of the apertures is measured with rotameters that have a full-scale accuracy within 2 percent. The pressure in the control-input tanks is measured with manometers.

During a test, the power stream settling tank was maintained at a constant pressure of 3 or 5 psig. One of the control tanks was also kept at a constant pressure, which is 0 to 20 percent of the power-stream pressure. Small changes were then made in the other control pressure. The flowmeters at the input and output were read at each control-pressure point.

It may be seen in figure 12 that there are through-holes on each side of the power stream in the region between the control jets and apertures. This effectively short circuits any pressure difference across the stream, thereby insuring stream stability.

7. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

In comparing the theoretical and experimental results, it is advantageous to plot output difference versus input difference rather than gain versus deflection angle, since calculation of experimental gain requires division by small differences, which reduces the accuracy of the results. Equations (2) and (12) show that the slope of the curve that has the output difference as ordinate and input difference as abscissa will be the gain of the amplifier.
Figure 13. Functional diagram of test setup.
7.1 Flow Difference

If the conditions given in section 5.1 are assumed again, a theoretical relation between aperture-flow difference \(Q_L - Q_R \) and control-flow difference \(Q_3-Q_3 \) can be calculated from equations (8), (9), and (10). The theoretical and experimental flow difference results are shown in figures 14 and 15.

The theoretical and experimental results are in close agreement until the control flow difference reaches 10 percent of the power stream flow. As the control flow increases above this value, the experimental results become higher than predicted by the theory.

7.2 Pressure Difference

The theoretical relation between aperture pressure difference \(P_L - P_R \) and control pressure difference \(p_2 - p_3 \) can be calculated from equations (18) and (20) by using the conditions given in section 5.1. This relation is shown in figures 16 and 17 for both theoretical and experimental results. In the experimental results, the dynamic pressure at the entrance to the apertures is computed from the output flowmeter readings by relating dynamic pressure to average velocity and using the equation of continuity.

The experimental and theoretical curves have essentially the same shape. For small control pressure differences, the agreement is good. As the control pressure difference increases, the experimental aperture pressure difference becomes larger than predicted by the theory. The maximum value, or point of zero gain, occurs when the control pressure difference is approximately 10 percent of the power stream pressure.

8. DISCUSSION

To obtain the theoretical output differences a Gaussian pressure profile was assumed. This profile was selected from those found experimentally by specifying the same standard deviation and maximum value. Increasing the standard deviation of the theoretical profile as much as 20 percent caused only a negligible change in the output difference functions, \(P_L - P_R \) and \(Q_L - Q_R \), because all apertures were almost equally affected. This was also confirmed experimentally. The experimental profile was broadened by increasing the percentage of control pressure; however, tests made at 10-, 20-, and 30-percent control pressure yielded close results. If the maximum value of the Gaussian is changed, the output difference functions are also changed. According to the theory, the aperture difference pressure is directly proportional to the maximum pressure. The experiments made with power stream pressures of 3 psig and 5 psig tended to confirm this. At a
Figure 14. Comparison of experimental and theoretical flow differences.

\[
(Q_L - Q_R)' = -(Q_L - Q_R)
\]

\(P_1 = 5\) psig
Figure 15. Comparison of experimental and theoretical flow differences.
Figure 16. Comparison of experimental and theoretical pressure differences.
Figure 17. Comparison of experimental and theoretical pressure differences.
power stream pressure of 5 psig, the maximum aperture pressure difference was 2.78 psig. At 3 psig, the aperture pressure difference was 1.75 psig. The ratio of these is 0.63 compared with the prediction of 0.60 from the theory. In addition, experimental profile data of undeflected streams obtained at DOFL were substituted in the theoretical equations. The result was within 5 percent of the result obtained with the Gaussian profile. It must be concluded, then, that the use of Gaussian profiles in place of actual undeflected profiles leads to relatively small errors in the theoretical results.

To obtain the theoretical input differences, the momentum equation was applied to the interaction region (app A). An approximate relation has been employed to give the input-pressure difference $p_2 - p_3$ in equation (20) and the input-flow difference $Q_2 - Q_3$ from equation (9). At present there are no experimental data available to check the accuracy of this relation.

As the control differences increase, the experimental output differences become greater than the theory predicts. The theoretical output differences were based on the assumption of a Gaussian profile. At present, profiles of highly deflected streams have not been taken but they are not expected to remain Gaussian; therefore, the use of a profile that remains Gaussian restricts the theoretical results to conditions where the steam deflections are small.

The experimental difference functions are greater than the theory predicts. In the present tests the total output flow was greater than the profile indicated, even when the stream was not deflected. This occurs because a fluid whose velocity is nonuniform at the input to an aperture continues to entrain fluid after the fluid has entered the collectors. In this analysis, all calculations were made under the assumption that the velocity profile at the input to an aperture is unaffected by the presence of the aperture.

9. CONCLUSIONS

A theory has been presented that predicts small signal pressure, flow, and power gain of a single amplifier stage. The theory indicates that a power gain of about 100 is easily achievable with pressure and flow gains of about 10.

All gains are at maximum when the power stream is evenly divided by the two output apertures. The gains decrease with deflection angle and become zero when the stream is approximately centered in one of the apertures.

The power gain maximizes at about 11 power-jet nozzle widths downstream with aperture widths 1.5 times the power-jet nozzle width.
Comparison of those aspects of the theory, which could be checked on a single laboratory model showed good agreement within the experimental error. On this model the pressure gain was calculated to be 9.1 and measured 8.4; the flow gain was calculated to be 10.5 and measured 9.4.

10. REFERENCES

APPENDIX A

THEORETICAL ANALYSIS OF INTERACTING STREAMS—MATHEMATICAL DERIVATIONS

To formulate the expression for gain in equation (6) and (16), it is necessary to have a relationship between input difference and the stream deflection. This relation can be obtained by the application of the momentum equation to the control and power streams.

In the derivation it is assumed that the fluid is incompressible, the flow is steady, there is no energy loss, and the change in momentum is due only to the change in direction of the interacting streams. Experiments have shown that the axes of the power stream and control streams are not parallel after interacting because of the characteristic spreading of a jet stream. This fact is considered in the derivation.

From the above assumptions and neglecting body forces, the momentum equation

\[\int p_s \, d\bar{A} = \int \frac{\rho}{g_c} (\mathbf{v} \cdot d\bar{A}) \mathbf{v} \] \hspace{1cm} (A-1)

may be written as Newton's second law

\[\sum \mathbf{F} = \frac{d\mathbf{\bar{M}}}{dt} = \dot{\mathbf{\bar{M}}} \] \hspace{1cm} (A-2)

where \(\mathbf{\bar{M}} \) is the momentum vector and \(\mathbf{\bar{F}} \) is the force vector.

From the free body diagrams shown in figure A-1, the following component equations are obtained (where the subscript \(w \) denotes the wall):

Left-Control Stream

\[\sum F_x = \dot{M}_x \]

\[p_{s2}A_2 \cos \beta + p_{s2}A_2 \sin(\phi-\gamma) - F_{x2} = - \frac{\rho_c}{g_c} A_2v_2^3 \sin(\phi-\gamma) - \frac{\rho_c}{g_c} A_2v_2^2 \cos \beta \] \hspace{1cm} (A-3)
Figure A-1. Free body diagrams of the interacting streams.
\[\sum F_y = \dot{m} \]

\[\dot{m} = \dot{m}_x \sin \beta + \dot{m}_{yw2} + \dot{m}_{yw2} - \dot{m}_{s2 A2} \cos (\phi - \gamma) = \frac{\dot{m}}{g_c} A_2 v_2^2 \cos (\phi - \gamma) - \frac{\dot{m}}{g_c} A_2 v_2^2 \sin \beta \]

(A-4)

Right-Control Stream

\[\sum F_x = \dot{m}_x \]

\[F_{x2} - F_{x3} - \dot{m}_1 A_1 \sin \gamma = \frac{\dot{m}}{g_c} A_1 v_1^2 \sin \gamma \]

(A-7)

\[\sum F_y = \dot{m}_y \]

\[\dot{m}_y = \dot{m}_{yw2} + \dot{m}_{yw2} - \dot{m}_{s2 A2} \cos (\phi + \gamma) = \frac{\dot{m}}{g_c} A_3 v_3^2 \cos (\phi + \gamma) - \frac{\dot{m}}{g_c} A_3 v_3^2 \sin \beta \]

(A-6)

Power Stream

\[\sum F_x = \dot{m}_x \]

\[F_{x2} - F_{x3} - \dot{m}_1 A_1 \sin \gamma = \frac{\dot{m}}{g_c} A_1 v_1^2 \sin \gamma \]

(A-7)

\[\sum F_y = \dot{m}_y \]

\[\dot{m}_y = \dot{m}_{yw2} + \dot{m}_{yw2} - \dot{m}_{s2 A2} \cos (\phi + \gamma) = \frac{\dot{m}}{g_c} A_1 v_1^2 \cos \gamma \]

(A-8)

Wall

\[F_{yw3} = \dot{m}_{s3 A3} \quad ; \quad F_{yw2} = \dot{m}_{s2 A2} \]

(A-9)

Now, if eq (A-7) is divided by eq (A-8)

\[\tan \gamma = \frac{F_{x2} - F_{x3}}{\dot{m}_1 A_1 + \frac{\dot{m}}{g_c} A_1 v_1^2 - \frac{\dot{m}}{g_c} A_1 v_1^2 - y_2 - y_3} \]

(A-10)

Substituting equations (A-3), (A-4), (A-5), (A-6), and (A-9) into (A-10) the result is

41
\[
\tan \gamma = \frac{[p_{s2}A_2 + \frac{\rho}{g_c} A_2 v_2^2][\cos \beta + \sin (\varphi - \gamma) - [p_{s3}A_3 + \frac{\rho}{g_c} A_3 v_3^2][\cos \beta + \sin (\varphi + \gamma)]]}{[p_{s1}A_1 + \frac{\rho}{g_c} A_1 v_1^2] + [p_{s2} A_2 + \frac{\rho}{g_c} A_2 v_2^2][\sin \beta - \cos(\varphi - \gamma)] + [p_{s3} A_3 + \frac{\rho}{g_c} A_3 v_3^2][\sin \beta - \cos (\varphi + \gamma)] + p_{s2} A_2 + p_{s3} A_3}
\]
(A-11)

In general, the control streams are perpendicular to the power stream ($\beta = 0$) so that equation (A-11) becomes

\[
\tan \gamma = \frac{A_2[p_{s2} + \frac{\rho}{g_c} v_2^2][1 + \sin (\varphi - \gamma)] - A_3[p_{s3} + \frac{\rho}{g_c} v_3^2][1 + \sin (\varphi + \gamma)]}{A_1[p_{s1} + \frac{\rho}{g_c} v_1^2] - A_2[p_{s2} + \frac{\rho}{g_c} v_2^2][\cos (\varphi - \gamma)] - A_3[p_{s3} + \frac{\rho}{g_c} v_3^2][\cos (\varphi + \gamma)] + p_{s2} A_2 + p_{s3} A_3}
\]
(A-12)

For power-stream deflection angles γ small compared with φ, the stream deflection is approximately

\[
\tan \gamma = \frac{[A_2(p_{s2} + \frac{\rho}{g_c} v_2^2) - A_3(p_{s3} + \frac{\rho}{g_c} v_3^2)][1 + \sin \varphi]}{A_1[p_{s1} + \frac{\rho}{g_c} v_1^2] + [p_{s2} A_2 + p_{s3} A_3 - A_2(p_{s2} + \frac{\rho}{g_c} v_2^2) + A_3(p_{s3} + \frac{\rho}{g_c} v_3^2)] \cos \varphi}
\]
(A-13)

In the denominator of equation (A-13), the bracketed term is at least an order of magnitude smaller than the first term. Neglecting this term leads to the further approximation

\[
\tan \gamma = \frac{[A_2(p_{s2} + \frac{\rho}{g_c} v_2^2) - A_3(p_{s3} + \frac{\rho}{g_c} v_3^2)][1 + \sin \varphi]}{p_{s1} A_1 + \frac{\rho}{g_c} A_1 v_1^2}
\]
(A-14)

Using Bernoulli's equation

\[
p = p_s + \frac{\rho}{2g_c} v^2
\]
(A-15)
equation (A-14) becomes

\[\tan \gamma = \frac{\left[A_2(p_2 + \frac{\rho}{2g_c}v_2^2) - A_3(p_3 + \frac{\rho}{2g_c}v_3^2) \right][1 + \sin \varphi]}{A_1(p_1 + \frac{\rho}{2g_c}v_1^2)} \]

(A-16)

If \(A_2 = A_3 \) equation (A-16) takes the form in equation (19) with \(p_1 = p_2 - p_3 \); that is,

\[\tan \gamma = \frac{A_2(1 + \alpha_2)(1 + \sin \varphi)(p_1)}{A_1(1 + \alpha_1)p_1} \]

(A-17)

where, by definition

\[\alpha_1 = \frac{\rho v_1}{2g_c p_1} ; \quad \alpha_2 = \alpha_3 = \frac{\rho v_2}{2g_c p_2} = \frac{\rho v_3}{2g_c p_3} \]

For the flow-gain expression, it is convenient to express equation (A-17) in terms of control flow rather than control pressure.

Expressing \(p_2 \) and \(p_3 \) in terms of \(\alpha_2, v_2 \) and \(v_3 \) and still assuming that \(A_2 = A_3 \), gives

\[p_2 - p_3 = \frac{\rho}{2g_c \alpha_2} (v_2^2 - v_3^2) = \frac{\rho}{2g_c \alpha_2} (Q_2^2 - Q_3^2) \]

(A-18)

By definition \(Q_1 = Q_2 - Q_3 \) so that

\[p_2 - p_3 = \frac{\rho}{2g_c \alpha_2 A_2} (Q_1^2 + 2Q_1Q_3) \]

(A-19)

Substituting equation (A-19) for \(p_1 \) in equation (A-17) gives

\[\tan \gamma = \frac{\rho(1 + \alpha_2)(1 + \sin \varphi)(Q_1^2 + 2Q_1Q_3)}{2g_c \alpha_2 A_2 (1 + \alpha_1)p_1} \]

(A-20)

which is equivalent to equation (9).
Office of the Director of Defense Research & Engineering
AMC Detachment No. 1, Temporary Bldg I
Attn: Technical Library (2 copies)

Commandant
U.S. Army Artillery & Guided Missile School
Fort Sill, Okla
Attn: Combat Development Department

Commander
U.S. Naval Ordnance Laboratory
White Oak, Silver Spring 19, Md.
Attn: Technical Library (2 copies)

Commanding General
White Sands Missile Range
White Sands, New Mexico
Attn: ORDES-OM, Tech Library

Commanding Officer
Watervliet Arsenal
Watervliet, New York
Attn: Technical Library

Transportation Research Command
Ordnance Liaison Officer
Fort Eustis, Va.

Commanding Officer
Picatinny Arsenal
Dover, New Jersey
Attn: Technical Library (3 copies)

Commanding General
Ordnance Weapons Command
Rock Island, Ill
Attn: Technical Library

Ordnance Technical Intelligence Agency
Arlington Hall Station
Arlington 12, Virginia
Attn: Technical Library

Commanding Officer
Ordnance Special Weapons
Ammunition Command
Dover, New Jersey
Attn: Technical Library
Commanding Officer
Army Research Office (DURHAM)
Box CM, Duke Station
Durham, N. C.

Commanding General
U.S. Army Ordnance Missile Command
Redstone Arsenal, Alabama
Attn: Technical Library (3 copies)
Attn: ORDXM-REE, Bldg 7446, Charles Schriener

Commanding General
Aberdeen Proving Ground
Branch 3, Bldg 400
Aberdeen, Maryland
Attn: Tech Library (4 copies)

U.S. Army Artillery Board
Missile Division
Fort Bliss, Texas
Attn: Technical Library

U.S. Naval Underwater Sound Laboratory
Fort Trumbull
New London, Conn.
Attn: Technical Library
Attn: Research Division, Dr. R. Berman

Department of the Navy
Chief, Office of Naval Research
Washington 25, D. C.

Department of the Navy
RRRE-3L
Bureau of Naval Weapons
Washington 25, D. C.
Attn: S. J. German

Commander
Naval Ordnance Laboratory
White Oak, Silver Spring, Maryland
Attn: B. Gilbert

Commander
U.S. Naval Ordnance Laboratory
Corona, California
Attn: Technical Library

Commander
U.S. Naval Ordnance Test Station
China Lake, California
Attn: Technical Library
DISTRIBUTION (Cont'd)

Commanding Officer
Ordnance Materials Research Office
Watertown Arsenal
Watertown 72, Mass.
Attn: Director's Office

Director, Special Weapons
Office of the Chief of Research & Development
Department of the Army
Washington 25, D. C.

Commanding General
U.S. Army Electronics Proving Ground
Fort Huachuca, Arizona
Attn: Technical Library

Director, Army Research Office
Office of the Chief of Research & Development
Department of the Army
Washington 25, D. C.
Attn: Technical Library

Commanding Officer
Department of the Army
Springfield Armory
Springfield 1, Mass.
Attn: TIU

Commanding Officer
AMC Detachment No. 1 Temporary Bldg 1
Washington 25, D. C.
Attn: ORDTU
Attn: ORDTS
Attn: ORDTN
Attn: ORDTB
Attn: ORDTX
Attn: ORDTW

Commanding General
Headquarters, U.S. CONARC
Materials Developments Section
Fort Monroe, Virginia
Attn: MD-1

Commanding Officer
New York Ordnance District
770 Broadway
New York 3, N. Y.
Attn: William P. Blake
DISTRIBUTION (Cont'd)

Commanding Officer
Los Angeles Ordnance District
55 S. Grand Avenue
Pasadena, California
 Attn: V. V. Barker

Commanding Officer
Frankford Arsenal
Philadelphia 37, Pennsylvania
 Attn: Reference Librarian (3 copies)

Commanding General
Engineering Research & Development Laboratory
Fort Belvoir, Virginia
 Attn: Technical Library

Department of the Army
Office of the Chief of Research & Development
Washington 25, D. C.
 Attn: Chief, Combat Material Div

Department of the Army
Army Research Office
The Pentagon, Washington 25, D. C.
 Attn: Lt Col J. T. Brown, Office, Chief of R & D

Commanding General
OTAC
Detroit Arsenal
Centerline, Mich
 Attn: Technical Library

Commandant
Command & General Staff College
Archives
Fort Leavenworth, Kansas

Commanding Officer
Chemical Warfare Laboratories
Army Chemical Center, Md.
 Attn: Technical Library

Commanding Officer
Camp Detrick
Frederick, Maryland

Commanding Officer
U.S. Army Signal Research & Development Laboratory
Fort Monmouth, N. J.
 Attn: Technical Library
 Attn: Arthur Daniel
DISTRIBUTION (Cont'd)

Commander
Naval Research Laboratory
Washington 25, D. C.
Attn: Technical Library

Commandant
U.S. Marine Corps
Code A04F
Washington 25, D. C.

Department of the Navy
Bureau of Naval Weapons
Washington 25, D. C.
Attn: Code CACF-3

Department of the Navy
Chief of Naval Operations
R & D Planning Group
The Pentagon, Washington 25, D. C.

Commander
Aeronautical Systems Division
Wright-Patterson Air Force Base, Ohio
Attn: Technical Library

Department of the Air Force
Deputy Chief of Staff for Development
Director of R & D
The Pentagon, Washington 25, D. C.

Commander
Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia
Attn: TIPDR (10 copies)

Commander
Armed Services Technical Intelligence Agency
Arlington Hall Station
Arlington 12, Virginia
Attn: TIPDR-B

Commander
Air Research & Development Command
Andrews Air Force Base
Washington 25, D. C.
Attn: Technical Library - B
DISTRIBUTION (Cont’d)

Commander
Air Proving Ground Center
Eglin Air Force Base, Florida
Attn: Technical Library

Commander
Air Material Command
Wright-Patterson Air Force Base, Ohio
Attn: LMDN

Air Force Systems Command
Space Systems Division
Los Angeles, 45, California
Attn: Technical Data Center

Commander
Air Force Ballistic Missile Division
Inglewood, California
P.O. Box 262
Attn: WDSOT

Air Force Special Weapons Center
Kirtland Air Force Base
Albuquerque, New Mexico

Aeronautical Systems Division
Wright-Patterson Air Force Base, Ohio
Attn: WWRMOO (M. Schorr)

Scientific and Technical Information Facility
P. O. Box 5700
Bethesda, Maryland
Attn: NASA Representative (S-AK/DL)
National Aeronautics & Space Administration
Langley Research Center
Langley, Station, Hampton, Va.
Attn: Technical Library

National Aeronautics & Space Agency
Lewis Research Center
2100 Brookpart Road
Cleveland 35, Ohio
Attn: K. Hiller

Marshall Space Flight Center
Advanced Propulsion Section
Huntsville Alabama
Attn: M-S&M-PA
DISTRIBUTION (Cont'd)

Marshall Space Flight Center
Computation Division
Huntsville, Alabama
 Attn: Dr. Walter P. Krause

Chief, Defense Atomic Support Agency
Washington 25, D. C.
 Attn: DASAG/Library

U.S. Atomic Energy Commission
Washington 25, D. C.
 Attn: Technical Reports Library

U.S. Atomic Energy Commission
Division of Military Applications
Germantown, Md.

Advisory Group on Elec Parts
Mcore School Building
200 S. 33rd St.
Philadelphia 4, Pennsylvania
 Attn: Allan M. Hadley

Director
Advanced Research Projects Agency
Washington 25, D. C.
 Chief, Technical Operations Division

Atomic Energy Commission
Space Nuclear Propulsion Office
Washington 25, D. C.
 Attn: F. C. Schwenk

University of Maryland
Director, Wind Tunnel
College Park, Maryland
 Attn: Donald S. Gross

United Aircraft Corporation
Research Division
East Hartford 8, Connecticut
 Attn: Mr. R. Olsen

Los Alamos Scientific Laboratory
Los Alamos, New Mexico
 Attn: Library

U.S. Library of Congress
Washington 25, D. C.
 Attn: Science & Technology Division
Army Engineer Research & Development Laboratories
Fort Belvoir, Virginia
 Attn: Chief, Mechanical Dept

University of New Mexico
Albuquerque, New Mexico
 Attn: Dr. Richard Moore

University of Michigan
Institute of Science & Technology
2038 E. Engr Bldg
Ann Arbor, Mich
 Attn: R. R. White, Director

University of Maryland
College of Aeronautical Engineering
College Park, Maryland
 Attn: W. Sherwood

University of Florida
Physics Department
Gainesville, Florida
 Attn: Technical Library - Alex G. Smith
 Attn: L. H. Roberts

Engineering Library
University of California
405 Hilgard Avenue
Los Angeles 24, California
 Attn: Mrs. J. E. Tallman

Engineering Library
University of California
Berkeley, California
 Attn: Mrs. Blanche Dalton

University of Arizona
Physics Department
Tucson, Arizona
 Attn: Professor Ulrich H. Bentz

Sandia Corporation
Sandia Base
Albuquerque, New Mexico
 Attn: Technical Library
DISTRIBUTION (Cont'd)

Rensselaer Polytechnic Institute
Dept of Aeronautical Engineering
Troy, New York
 Attn: Mr. K. T. Yen

Patent Office
Washington 25, D. C.
 Attn: Scientific Library

Ohio State University
576 Melrose Avenue
Columbus 2, Ohio
 Attn: Technical Library

New York Naval Shipyard
Bldg 291, Code 912B
Brooklyn 1, New York
 Attn: Technical Library

National Physical Laboratory
Teddington, Middlesex, England
 Attn: Technical Library
 Thru: AMC Detachment No. 1, Washington 25, D. C.
 Attn: ORDTN

National Bureau of Standards
Bldg 16 - Rm 310
Washington 25, D. C.
 Attn: Chief Section 1.06

National Bureau of Standards
Boulder, Colorado
 Attn: Technical Library

National Bureau of Standards
Washington 25, D. C.
 Attn: Library

Minneapolis-Honeywell Regulator Company
2753 Fourth Avenue, S.
Minneapolis 8, Minn.
 Attn: Mr. H. Sparrow

Massachusetts Institute of Technology
Dept of Mechanical Engineering
Cambridge, Mass.
 Attn: L. Shearer

Linda Hall Library
Joseph C. Shipman
5109 Cherry Street
Kansas City 10, Missouri
DISTRIBUTION (Cont'd)

Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attn: Tech Library (2 copies)

Franklin Institute of the State of Pennsylvania
Philadelphia 3, Pennsylvania
Attn: C. W. Hargens, Tech Director

Mr. Charles A. Belsterling
Franklin Institute of the State of Pennsylvania
Philadelphia 3, Pennsylvania

Engineering Societies Library
29 W. 39th Street
New York 18, New York
Attn: Mr. John Herling, Order Librarian

Dayton & Montgomery County Public Library
215 East Third Street
Dayton 2, Ohio
Attn: Circulation Department

Corning Glass Works
Corning, New York
Attn: James K. Davis

Cornell University
Ithaca, New York
Attn: Dr. Ed Resler, Jr.

John Crerar Library
86 E. Randolph Street
Chicago 1, Illinois
Attn: H. Henkle

Battelle Memorial Institute
Chief Systems Engr Div
505 King Avenue
Columbus 1, Ohio

Armour Research Foundation of Illinois Ins. of Tech. Center
10 W. 45th Street
Chicago 16, Ill
Attn: Mr. George T. Jacobi
Distribution (Cont'd)

Commanding Officer
U.S. Army Limited War Laboratory
Aberdeen Proving Ground, Maryland
Attn: Lt Col J. T. Brown

Mr. W. S. Hinman, Jr.
Deputy Assistant Secretary of the Army
Research & Development
Room 3E390, The Pentagon
Washington 25, D. C.

Office of the Director of Defense
Research & Engineering
Asst. Dir of Research Engineering (Defense)
The Pentagon, Washington 25, D. C.

Institute for Defense Analysis
Gordon Rausbeck
Advanced Research Projects Div
The Pentagon,
Washington 25, D. C.

Commander
U.S. Naval Ordnance Laboratory
Corona, California
Attn: Technical Library

Jet Propulsion Laboratory
Pasadena, California
Attn: Library

USCONARC
Liaison Group
The Pentagon (Rm 3E366)
Washington 25, D. C.

Office of the Director of Defense Research & Engineering
AMC Detachment No. 1
Temporary Bldg 1
Washington 25
Attn: Director of Weapons Systems Evaluation Group (Rm 2E812)

Commander
U.S. Naval Ordnance Test Station
China Lake, California
Attn: Technical Director

Commander
Edwards Air Force Base, Calif
Attn: AFTTC(FTOOT)
DISTRIBUTION (Cont'd)

Internal

Horton, B.M./McEvoy, R.W., Lt Col
Apstein, M./Gerwin, H.L./Guarino, P.A./Kalmus, H.P.
Spates, J.E./Schwenk, C.C.
Hardin, C.D., Lab 100
Sommer, H., Lab 200
Hatcher, R.D., Lab 300
Hoff, R.S., Lab 400
Nilson, H., Lab 500
Flyer, I.N., Lab 600
Campagna J.H./Apolenis, C.J., Div 700
DeMasi, R., Div 800
Landis, P.E./Horsey, E.F., Lab 900
Seaton, J.W., 260
Keller, C., 300
Kirshner, J., 310
Warren, R., 310
Woodward, K., 310
Peperone, S., 310
Scudder, K., 310
Moorhead, J., 310
Campagnuolo, C.J., 310
Carter, V., 310
Goto, J., 310
Gottron, R., 310
Hobbs, E., 310
Holmes, A., 310
Katz, S., 310
Keto, J., 310
Marsh, D., 310
Mon, G., 310
Palmisano, R., 310
Straub, H., 310
Toda, K., 310
Ravitsky, C., 320
Harris, P., 320
Talkin, A., 240
Ravilious, F., 240
Burton, W., 240
Technical Reports Unit, 800
Technical Information Office, 010 (10 copies)
DOFL Library (5 copies)
Rotkin, I./Godfrey, T.B./Eichberg, R. L.
Bryant, W. T./Distad, M. F./McCoskey, R. E./Moorhead, J. G.
(2 pages of abstract cards follow.)
FLUID AMPLIFICATION—Gain Analysis of the Proportional Fluid Amplifier — S. J. Peperone, Silas Katz, John M. Goto

TR-1073, 30 October 1962, 21 pp text, 18 illus, Department of the Army Proj 5803-01-003, OMS Code 5010.11.71200, DOFL Proj 31100, UNCLASSIFIED Report

A theoretical analysis of signal gain using principles of fluid stream interaction is presented. This analysis is applied to predict pressure, flow, and power gains of a fluid amplifier and to determine optimum operating conditions and geometry. Comparison of theory and measurements show agreement within the experimental error.