NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
APPLIED MATHEMATICS AND STATISTICS LABORATORIES

STANFORD UNIVERSITY

CALIFORNIA

ESTIMATING MISSILE RELIABILITY

BY

S. BLUMENTHAL and J. DENTON

TECHNICAL REPORT NO. 81
October 26, 1962

PREPARED UNDER CONTRACT Nonr-225(52)
(NR-342-022)
FOR
OFFICE OF NAVAL RESEARCH
I. Introduction.

The problem to be discussed is a specialization of a problem mentioned by Deemer and Mayberry [1961]. Their problem concerned the allocation to targets of a stockpile of missiles, the assignment being made on the basis of the outcome of a testing program designed to estimate missile reliability. Thus the question of how many missiles from the stockpile should be expended in operational test firings must be studied. Somewhat more specifically their problem may be put into the following form. We assume we have a stockpile of missiles and a set of targets \(\{T_1, T_2, \ldots, T_t\} \) over which we wish to allocate these missiles in an optimal way. If a missile is completely reliable then it has a certain probability \(P_j \) of destroying a target \(T_j \) at which it is aimed.

Since, however, missiles are not completely reliable, we assume that a missile has reliability \(R \) and that the probability that the target \(T_j \) survives a single missile is \((1-P_j R) \), while the probability that it survives \(n \) missiles is \((1-P_j R)^n \). However, the value of \(R \) must be estimated from the operational testing. It is desirable that each target upon which missiles are expended should have enough missiles allocated to it so that its survival probability is very small. However, we wish to avoid assigning more missiles than necessary to a given target. Nevertheless, a given amount of over-assignment is to be preferred to the same amount of under-assignment; i.e., in terms of a non-negative
loss function, the loss is zero when the target does not survive and positive otherwise.

II. The Problem.

The specific problem to be discussed below may be formulated as follows. We imagine a circle of fixed radius \(p \) surrounding each target with the property that if a missile detonates within this circle the target will be destroyed, but the target is undamaged by a missile detonation outside this circle. We associate with each missile a number \(R \) called its reliability which we define as the probability that the missile, when aimed at a given target, will detonate within the circle of radius \(p \) surrounding that target. Thus the probability that a given target survives one missile is

\[
1 - R,
\]

and the probability that it survives \(n \) missiles is

\[
(1 - R)^n,
\]

so the probability of destroying the target with \(n \) missiles is

\[
1 - (1 - R)^n.
\]

Let us confine our attention to the target \(T \). Given a number \(Q \), specified in advance, with \(0 < Q < 1 \), the number of missiles \(n_T \) to be expended on the target \(T \) is then

\(^1 \) The analysis based on \(R \) is conceptually the same as if \(R \) is replaced by the value \(P_j R \) developed in the Introduction.
Since R is unknown, we cannot determine n_T. We therefore wish to obtain an estimate \hat{R} from which n_T may be estimated in the obvious way:

$$n_T = \min(h; 1-(1-R)^h \geq Q).$$

The loss function to be employed in this situation takes the value zero if T is destroyed with probability greater than or equal to Q and one if this probability is less than Q. This leads to the search for an estimator \hat{R} which underestimates R with predetermined probability. That is, given α, $0 < \alpha < 1$, we seek an \hat{R} with the property that

$$P(\hat{R} \leq R) \geq 1-\alpha.$$

In classical terminology \hat{R} is a lower confidence bound for the value of R.

We also assume that the target lies at the origin $(0,0)$ of a Cartesian coordinate system. If $(x_1, y_1), \ldots, (x_n, y_n)$ are the points of impact of the n missiles, then each is thought of as a random observation of a bivariate normal variable with mean vector $(0,0)$ (there is no aiming bias) and covariance matrix Σ given by

$$\Sigma = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}.$$

In words, X and Y are independently normally distributed with zero means and unknown variances σ_1^2 and σ_2^2. The reliability R then has the form

3
where \(\rho \) is a given positive constant.

We now consider several methods for obtaining confidence intervals for \(R \). Once these are obtained we employ their lower bounds as values \(\hat{R} \) to be substituted into equation (2) to obtain the estimate \(\hat{n}_T \).

III. Methods of Estimation.

Method 1

On the basis of the sample \((x_1, y_1), \ldots, (x_n, y_n)\) we want a value \(\hat{R} \) such that when \(R \) is the true value of the parameter, the probability that \(\hat{R} \) is no greater than \(R \) should be at least \((1-\alpha)\):

\[
P[\hat{R} \leq R | R] \geq 1-\alpha.
\]

The experimenter is to specify \(\alpha \). By choosing \(\hat{R} \) in this manner, we are essentially "underestimating" \(R \) which leads to a conservative assignment of missiles.

We can always satisfy (4) by setting \(\hat{R} = 0 \), but this leads to assigning all missiles to one target. Thus we should like to employ an estimator \(\hat{R} \) which satisfies (4) while maximizing the number of targets attacked. In classical terminology, this means that we are looking for a shortest upper confidence interval for \(R \).

Let us now confine our attention to the case where \(\sigma_1 = \sigma_2 = \sigma \).

In this case we have

\[
(3) \quad R = R(\Sigma) = P(x^2 + y^2 \leq \rho^2)
\]
It is clear that R is a monotone decreasing function of a, so that it suffices to find an upper confidence bound \hat{a} for a, i.e., the desired bound \hat{R} is

\begin{equation}
\hat{R} = 1 - e^{-\mu^2/2\sigma^2}.
\end{equation}

Consider the following hypothesis testing problem:

Given $\mu_1 = \mu_2 = 0$, to test

\begin{align*}
H_0 : \sigma^2 &\geq \sigma_0^2 \\
\text{vs. } H_1 : \sigma^2 &< \sigma_0^2.
\end{align*}

It is well known that (c.f. Lehmann, 1959) the test which accepts

H_0 when $\frac{\sum_{i=1}^{n} (X_i^2 + Y_i^2)}{\sigma^2} \geq C_1$ is a uniformly most powerful unbiased test

of H_0 vs. H_1 with size α, where C_1 is the upper $100(1-\alpha)\%$ point

of the chi-squared distribution with $2n$ degrees of freedom. From this, we see that a "uniformly most accurate" upper confidence bound σ^2, for σ^2 is given by

\begin{equation}
\sigma^2 = \frac{1}{C_1} \sum_{i=1}^{n} (X_i^2 + Y_i^2).
\end{equation}

Note that the bound given by (7) and (6) has the following property.

Among all bounds \hat{R} satisfying (4), this bound minimizes $E_R(L(R, \hat{R}))$.

\begin{equation}
R = \frac{1}{2\pi \sigma^2} \int \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2\sigma^2}} \, dx \, dy = 1 - e^{-\frac{\mu^2}{2\sigma^2}}.
\end{equation}
where \(L(R, \hat{R}) \) is any measure of the loss resulting from overestimating \(R \), and where \(L(R, \hat{R}) \) is non-negative for \(\hat{R} > R \), and is non-decreasing in \(\hat{R} \) (see Lehmann [1959], p. 78). \(\hat{R}_T \) is then obtained from (2).

Now let us turn our attention to the case where \(\sigma_2^2 = K\sigma_1^2 \), where \(K \) is a known positive constant. In this case,

\[
R = \frac{1}{2\sigma_1 \sigma_2} \int \int_{x^2 + y^2 < \rho^2} e^{-(\frac{x^2}{2\sigma_1^2} + \frac{y^2}{2\sigma_2^2})} \, dx \, dy
\]

(8)

\[
= 1 - \frac{1}{\pi} \int_0^{\pi/2} e^{-\frac{\rho^2}{\sigma_1^2 (1+(K-1)\sin^2 \theta)}} \, d\theta.
\]

Again, it can be seen that \(R \) is a monotone decreasing function of \(\sigma_1^2 \), and again an upper confidence bound \(\sigma_1^2 \) for \(\sigma_2^2 \) yields the lower confidence bound \(\hat{R}_T \), where

\[
(9) \quad \hat{R}_T = 1 - \frac{1}{2\pi} \int_0^{\pi/2} e^{-\frac{\rho^2}{\sigma_1^2 (1+(K-1)\sin^2 \theta)}} \, d\theta.
\]

This last integral may have to be evaluated by numerical methods.

Proceeding exactly as in the case \(\sigma_1 = \sigma_2 = \sigma \), we find the following most accurate upper confidence bound \(\sigma_1^2 \) for \(\sigma_2^2 \):

\[
(10) \quad \sigma_1^2 = \frac{1}{\sigma_1^2} \sum_{i=1}^{n} \left[X_{i}^2 + \frac{Y_i}{K} \right]^2,
\]

where \(C_1 \) is the upper \((1-\alpha)\%\) point of the chi-square distribution with \(2n \) degrees of freedom.
The \(\hat{R} \) obtained here has all of the desirable characteristics which were enjoyed by the estimator in the previous case. However, it remains to assign a value to \(K \). This might be done on the basis of previous experience, or by performing preliminary experiments to test an hypothesis of the form \(H: K = K_0 \) where \(K_0 \) is chosen arbitrarily (\(K_0 = 1 \), say) or on the basis of how large a deviation from unity is significant.

Extension of this method to the case where \(K \) is unknown and no assumptions are made concerning it does not appear to be feasible since we may then formulate no hypothesis corresponding to \(H: \sigma^2 \geq \sigma_0^2 \) for which a UMP unbiased test exists. A similar difficulty intrudes in the case of non-zero covariances.

Method 2

For a sequence of \(m \) test firings let the random variable \(X_i \) be one or zero according as the \(i \)th detonation is or is not inside the circle of radius \(\rho \) surrounding the target (\(i = 1, 2, \ldots, m \)). Following Lehmann (1959) set

\[
Y = \sum_{i=1}^{m} X_i + U,
\]

where \(U \) is independent of \(X_i \), \(i = 1, \ldots, m \), and has a uniform distribution on \((0,1)\). (The use of the statistic \(Y \) is equivalent to randomization.) Then \(Y \) has probability density

\[
\left(m \right) R[y](1-R)^{m-[y]}, \quad 0 \leq y < m+1,
\]

where \([y]\) denotes the greatest integer less than or equal to \(y \). The conditions of Lehmann's Corollary 3 (Chapter 8 §5) are then satisfied and \(\hat{R} \) is then the solution of
\[\Pr_{R}[Y > y] = \alpha, \]

where \(y \) is the observed value of \(Y \). A solution exists for \(\alpha \leq y \leq m + \alpha \). For \(m + \alpha < y \) we take \(\hat{R} = 1 \), and for \(y < \alpha \) we take \(\hat{R} = 0 \). This bound is then uniformly most accurate in the sense of Lehmann and has the further desirable property of minimizing \(E_R L(R, \hat{R}) \) subject to the requirement

\[\Pr_R[\hat{R} \leq R] \geq 1-\alpha \text{ for all } R. \]

For large samples the usual normal approximation with continuity correction utilizing the statistic

\[Y' = \sum_{i=1}^{m} X_i \]

may be employed. Then \(\hat{R} \) is the value of \(p \) satisfying

\[\Pr\left[\frac{Y'}{m} - p \geq \frac{\sqrt{mp(1-p)}}{m} \right] = 1-\alpha, \]

where \(\Phi \) is the cdf of the standard normal distribution and \(\Phi(a) = a \).

Method 3

Since it is not possible to find an exact test of the hypothesis:

\(H_0: R = R_0 \) vs. \(H_1: R < R_0 \) (whose acceptance region provides a lower bound on \(R \)); and since it is very difficult to find an approximate test of this hypothesis (at least using the method to be described) we shall describe a large sample test of \(H_0: R = R_0 \) vs. \(H_1: R \neq R_0 \). From the acceptance region, we get upper and lower confidence bounds \(\left(\hat{R}_u, \hat{R}_l \right) \) on \(R \) and we can then take \(\hat{R}_l \) as a lower confidence bound. If \(\alpha \) is the significance level of the 2-sided test, and it is symmetric then
\[\frac{l - \alpha}{2} \] should be the confidence level of the interval \((\hat{R}_L, 1)\). Since the test we use is not UMP, the bound obtained will not be sharp. How this bound compares with those obtained by the other methods investigated is not known, nor is the actual confidence level for a small sample, since asymptotic distribution results are used in deriving the test. Now if \(\hat{\gamma}_1 \) and \(\hat{\gamma}_2 \) represent upper confidence limits of coefficient \((1-(1-\alpha)^{1/2})\), then \(R(\hat{\gamma}_1, \hat{\gamma}_2) \) is an \(\alpha \)-level bound on \(R \). This is the crudest and simplest, and it is not clear that the bound \(\hat{R}_L \), described below, will be larger than \(R(\hat{\gamma}_1, \hat{\gamma}_2) \).

The missile landing coordinates \(X \) and \(Y \) are independent \(N(0, \sigma_1^2) \), \(N(0, \sigma_2^2) \) respectively. We want a bound for

\[
R = \frac{1}{2\pi\sigma_1\sigma_2} \int_0^\infty \int_0^\infty e^{-\frac{1}{2} \left(\frac{x^2}{\sigma_1^2} + \frac{y^2}{\sigma_2^2} \right)} \, dx \, dy.
\]

Let \(U = \sum_{i=1}^n x_i^2 \), \(V = \sum_{i=1}^n y_i^2 \), and let \(\sigma_1^2 = \theta_1 \), \(\sigma_2^2 = \theta_2 \). The Max Likelihood Estimates of \(\theta_1 \) and \(\theta_2 \) are \(\frac{u}{n} \) and \(\frac{v}{n} \) respectively, where \(u \) and \(v \) are sufficient statistics for \(\theta_1 \), \(\theta_2 \) and have the distribution \(p(u,v,\theta_1,\theta_2) = \frac{C_n(\sqrt{uv})^{n/4-1/2}(\theta_1,\theta_2)^{-n/2}e^{-1/2(u/(\theta_1) + v/(\theta_2))}}{\theta_1^{n/4-1/2} \theta_2^{n/4-1/2}} \).

Let \(\theta_1^0 \) and \(\theta_2^0 \) be the maximum likelihood estimates of \(\theta_1, \theta_2 \) under the restriction \(R = R_0 \). Then we know (see Lehmann (1959), pp. 310 - 311) that under \(H_0 \) (i.e., when \(R = R_0 \)) that \((-2 \log \Lambda_n\) (where \(\Lambda_n \) is the "likelihood ratio")

9
\[\Lambda_n = \left(uv \right)^{n^2} n^{-n} e^{-\left(\theta_1^0 \theta_2^0 \right)} \left(\frac{n}{2} \right)^{\frac{1}{2}} \exp\left(-\frac{1}{2}\left(\frac{u}{\theta_1^0} + \frac{v}{\theta_2^0} \right) \right) \]

has for large \(n \) approximately a \(\chi^2 \) distribution. If \(P(\chi^2 \leq C_n) = 1 - \eta \), then we would accept \(H_0 \) if \(-2 \log \Lambda_n \leq C_\alpha \).

Note that \(\theta_1^0 \) and \(\theta_2^0 \) are the solutions of

(1) \[\frac{d}{ds_1} \left(p(u,v,\theta_1,\theta_2) + \mu R(\theta_1,\theta_2) \right) = 0 \]

and \(R(\theta_1,\theta_2) = R_0 \).

Looking only at (1) and (ii), we see that \(\theta_1^0, \theta_2^0 \) can be found as functions of \(\mu \), so \(-2 \log \Lambda_n \) is a function of \(\mu \), say \(h(\mu) \). We can show that \(h(0) = 0 \) and \(h(-\infty) = h(\infty) = \infty \). Thus, if \(h(\mu) \) is decreasing for \(\mu < 0 \) and increasing for \(\mu > 0 \), there will be exactly two values of \(\mu \) so that \(h(\mu) = C_\alpha \), i.e. \(h(\mu_1) = h(\mu_2) = C_\alpha \) \((\mu_1 < 0 < \mu_2)\), and \(h(\mu) < C_\alpha \) for \(\mu_1 < \mu < \mu_2 \). Therefore, we would accept \(H_0 \) for any \(\mu \) in this range. Since \(\hat{\theta}_1, \hat{\theta}_2 \), the solutions of (i) and (ii) are functions of \(\mu \), \(R(\hat{\theta}_1,\hat{\theta}_2) \) is a function \(R(\mu) \) of \(\mu \). If \(R \) is a monotone (increasing) function of \(\mu \), then \(\mu_1 < \mu < \mu_2 \) corresponds to \(R(\mu_1) < R(\mu) < R(\mu_2) \), and \(H_0 \) would be accepted for \(R(\mu_1) < R(\hat{\theta}_1,\hat{\theta}_2) < R(\mu_2) \) where \(\hat{\theta}_1, \hat{\theta}_2 \) are the solutions of (i) and (ii) under the restriction \(R(\theta_1,\theta_2) = R_0 \). For large \(n \), this test has size \(\alpha \).

It follows that a confidence interval of coefficient \((1 - \alpha) \) is given by \((R(\mu_1), R(\mu_2)) \), and a lower confidence bound by \(R(\mu_1) \).
The above reasoning is based on the assumption that $R(\mu)$ is monotone increasing and that $h(\mu)$ has the properties described. Since \[\frac{d}{d\mu} h(\mu) = c \mu \frac{d}{d\mu} R(\mu), \] it follows that $h(\mu)$ behaves properly if and only if $R(\mu)$ is monotone increasing. Thus it only remains to show this last monotonicity. It appears to be but this has not yet been demonstrated.

One obvious difficulty about comparing this bound $R(\mu_1)$ with other possible bounds is that it is not possible to solve explicitly for it, and a numerical solution of the equations (i), (ii) and $h(\mu) = C_\alpha$ is necessary.

Method 4

For another large sample procedure for obtaining a lower confidence bound on R when the X and Y aiming errors are uncorrelated and both means are zero, we may adopt the following approach. Let

\[R_0 = R = \frac{1}{2\pi \sigma_1 \sigma_2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2} \left(\frac{x^2}{\sigma_1^2} + \frac{y^2}{\sigma_2^2} \right)} dx dy \]

\[s_1^2 = \frac{1}{n-1} \sum_{i=1}^{n} x_i^2, \quad s_2^2 = \frac{1}{n-1} \sum_{i=1}^{n} y_i^2, \]

\[\hat{R} = \frac{1}{2\pi s_1 s_2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2} \left(\frac{x^2}{s_1^2} + \frac{y^2}{s_2^2} \right)} dx dy \]
\[
R_1 = \frac{\partial^2 A}{\partial s_1^2} \bigg|_{s_1 = \sigma_1} = \frac{1}{8\pi\sigma_1\sigma_2} \int\int_{x^2 + y^2 \leq \rho^2} \left(\frac{x^2\sigma_2^2 - 2}{4}\right) e^{-\frac{1}{2}\left(\frac{x^2}{\sigma_1^2} + \frac{y^2}{\sigma_2^2}\right)} \, dx \, dy
\]

\[
R_2 = \frac{\partial^2 A}{\partial s_2^2} \bigg|_{s_2 = \sigma_2} = \frac{1}{8\pi\sigma_1\sigma_2} \int\int_{x^2 + y^2 \leq \rho^2} \left(\frac{x^2\sigma_2^2 - 2}{4}\right) e^{-\frac{1}{2}\left(\frac{x^2}{\sigma_1^2} + \frac{y^2}{\sigma_2^2}\right)} \, dx \, dy.
\]

Employing the constant function 1 as the dominating function, a straightforward application of Lebesgue's dominated convergence theorem shows that \(R \) is continuous in \(s_1 \) and \(s_2 \). The continuity of \(\frac{\partial^2 A}{\partial s_1^2}, \frac{\partial^2 A}{\partial s_2^2}, \frac{\partial^2 A}{\partial s_1 \partial s_2} \), \(\frac{\partial^2 A}{(\partial s_1^2)^2} \) and \(\frac{\partial^2 A}{(\partial s_2^2)^2} \) follows similarly. (The justification for differentiating under the integral sign is found in a theorem on page 67 of Math. Meth. of Stat. by H. Cramer). Thus \(\hat{R} \) is asymptotically normal since the conditions of the following theorem of Cramer are satisfied:

Theorem (Cramer p. 366, with suitable notation changes). If in some neighborhood of the point \(s_1 = \sigma_1^2, s_2 = \sigma_2^2 \) the function \(\hat{R} \) is continuous and has continuous derivatives of the first and second order with respect to the arguments \(s_1^2 \) and \(s_2^2 \), the random variable \(\hat{R} \) is asymptotically normal, the mean and variance of the limiting distribution being given by \(R \) and \(2(\sigma_1^2)^2 R_1^2 + 2(\sigma_2^2)^2 R_2^2 = \nu \) respectively.

Thus \(\sqrt{n} \left[\frac{\hat{R} - R}{\nu} \right] \) has a limiting \(N(0,1) \) distribution. Now set

\[
\hat{v} = 2(s_1^2)^2 \frac{\partial R}{\partial s_1^2} + 2(s_2^2)^2 \frac{\partial R}{\partial s_2^2}.
\]
We know that \(\frac{\partial R}{\partial s_1} \) and \(\frac{\partial R}{\partial s_2} \) are continuous in \(s_1^2 \) and \(s_2^2 \) and that
\[
s_1^2 \to \sigma_1^2 \quad \text{and} \quad s_2^2 \to \sigma_2^2 \quad \text{in probability.} \]
Therefore \(\frac{\partial R}{\partial s_1} \to R_1 \quad \text{and} \quad \frac{\partial R}{\partial s_2} \to R_2 \)
in probability. So by a theorem of Slutsky (p. 255, Cramer) \(\hat{v} \to v \) in probability. We now have recourse to one more pertinent theorem:

Theorem (Cramer §20.6, p. 254). Let \(t_1, t_2, \ldots \) be a sequence of random variables, with the d.f.s. \(F_1, F_2, \ldots \). Suppose that \((F_n(x)) \)
tends to a d.f. \(F(x) \) as \(n \to \infty \).

Let \(\eta_1, \eta_2, \ldots \), be another sequence of random variables, and suppose that \((\eta_n) \) converges in probability to a constant \(c \). Put
\[
X_n = t_n + \eta_n, \quad Y_n = t_n \eta_n, \quad Z_n = \frac{t_n}{\eta_n}.
\]
Then the d.f. of \(X_n \) tends to \(F(x-c) \). Further, if \(c > 0 \), the d.f. of \(Y_n \) tends to \(F(x) \), while the d.f. of \(Z_n \) tends to \(F(cx) \).

Now
\[
\frac{\hat{R} - \hat{R}}{\hat{v}} = \frac{R - R}{\hat{v}}.
\]

By Slutsky's theorem \(\hat{v} \to v \) in probability as \(n \to \infty \). By Cramer's §20.6 theorem the d.f. of \(\frac{\hat{R}}{\hat{v}} \) tends to the d.f. of \(\frac{\hat{R}}{\hat{v}} \). So, by a second application of this theorem the d.f. of \(\frac{\hat{R} - R}{\hat{v}} \) tends to the distribution of \(\sqrt{n} \frac{\hat{R} - R}{\hat{v}} \), i.e. \(\sqrt{n} \frac{\hat{R} - R}{\hat{v}} \) has a limiting \(N(0,1) \) distribution. Therefore we may proceed to construct a large-sample lower \(\alpha \)-confidence bound as follows
\[
\Pr[\sqrt{n} \left(\frac{\hat{R} - R}{\hat{v}} \right) \leq b] = \Phi(b)
\]
\[
\Pr[\frac{\hat{R} - \hat{v}}{\sqrt{n}} b \leq r] = \phi(b)
\]

13
where Φ is the standard normal c.d.f. and b is chosen so that $\Phi(b) = 1-\alpha$.

We remark that though the derivation might be long and tedious, the extension of this method to the case of non-zero covariance appears to require nothing new in principle.

IV. Discussion.

When $\sigma_1^2 = \sigma_2^2 = \sigma^2$ and the covariances are equal then if \hat{R}_1 is the estimator of R given by M1 (method 1) and \hat{R}_2 the estimator of R given by M2, we have, since \hat{R}_2 is uniformly most accurate

$$R' < R \Rightarrow \Pr[\hat{R}_2 \leq R'] \leq \Pr[\hat{R}_1 \leq R'].$$

We note that \hat{R}_2 enjoys its pleasant properties independent of the form of the distribution function for the points of missile impact (i.e. whether or not we assume the coordinates of the points of impact follow a bivariate normal distribution). In particular this is true in the case $\sigma_1^2 \neq \sigma_2^2$ when a bivariate normal distribution is assumed. Also, for large samples the estimator based on Y' appears to involve less computational labor than those introduced in M3 and M4.

At present, because of the approximations involved in the estimators, it seems that the only direct way of comparing M3 and M4 with each other as well as with M1 and M2 appears to be by use of a Monte Carlo method.

With respect to the formulation of the problem employed it may be remarked that the form of the loss function requires assigning enough missiles on each target attacked to insure its destruction before
including additional targets among those to be attacked. If some targets require more missiles than others, then with a limited missile stockpile those requiring fewest missiles should receive first assignment and so on until all of the missiles in the stockpile are assigned. If all targets require the same number of missiles but are not equally important, this may be reflected by assigning higher priority targets a loss greater than 1, if sufficient missiles are not assigned to insure destruction with probability greater than or equal to Q.

It might be noted that the model set forth in Section II may be modified in several ways without materially changing the estimation problem involved. As an example we suggest a cumulative damage model in which the target is surrounded by a circle C_T of fixed radius p. Each missile causes total destruction inside a circle C_M or radius r about its point of impact. The target is considered to the totally destroyed when all of the area inside the circle C_T is destroyed by missile blasts, i.e. when all of the area of C_T can be covered by the area of circles of radius r drawn about the points of impact of missiles which have been fired at the target. If, once again, we assume that the coordinates of the points of impact are independently distributed and have a bivariate normal distribution about the point of aim with $\sigma_1^2 = \sigma_2^2 = \sigma^2$, then questions about the number of missiles to be expended to obtain a given percent damage with a certain level of confidence may be answered by obtaining an estimate for σ^2. We might alternatively wish to fire enough missiles so that the expected coverage of the circle C_T was greater than some specified amount (see Morganthaler [1961]). In this situation it might also be well to
consider whether the point of aim should coincide with the target for every missile in order to obtain maximum coverage from the missiles expended.
REFERENCES

STANFORD UNIVERSITY
TECHNICAL REPORTS DISTRIBUTION LIST
CONTRACT Nm-22592

August, 1962

Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia

Bureau of Supplies and Accounts
Code CW
Department of the Navy
Washington 25, D. C.

Head, Logistics and Mathematical Statistics Branch
Office of Naval Research
Code 456
Washington 25, D. C.

Commanding Officer
Office of Naval Research
Branch Office
Rear Adm. No. 180, Fleet P. 0.
New York, N. Y.

Commanding Officer
Office of Naval Research
Branch Office
1000 Gandy Street
San Francisco 9, California

Commanding Officer
Office of Naval Research
Branch Office
1095 Flier, The John Crane
Library Bldg.
50 East Randolph Street
Chicago 1, Illinois

Commanding Officer
Office of Naval Research
Branch Office
340 Broadway
New York 13, N. Y.

Commanding Officer
Naval Ordinance Firing Lab.
Washington 25, D. C.

Commanding Officer
Naval Ordnance Firing Division
Dover, New Jersey

Commanding Officer
Warren Arsenal
Wartime Administration (OMRD)
Wartime 72, Massachusetts

Commanding Officer
Woomerham Arsenal (OMRO)
Wartime 72, Massachusetts

Commanding Officer
Heidelberg Arsenal
Wartime, New York

Commanding Officer
Heidelberg Division
Springfield Arsenal
Springfield, Massachusetts

Commanding Officer
Signal Corps Electronic Research
Unit, EDB
9560 Technical Service Unit
P. O. Box 235
Mountain View, California

Commanding Officer
9550 Technical Service Unit
Army Liaison Group, Project Michigan
Willis Research Center
Ypsilanti, Michigan

Commanding Officer
Engineering Research & Development Lab.
Fort Belvoir, Virginia

Commanding Officer
Army Research Development & Engineering Center
Radcliffe Road
Philadelphia 37, Pennsylvania

Commanding General
Rock Island Arsenal
Rock Island, Illinois

Commanding General
Redstone Arsenal (ORDOW-QC)
Huntsville, Alabama

Commanding General
White Sands Proving Ground
Las Cruces, New Mexico

Commanding General
Ordnance Weapons Command
Army Research Branch
Rock Island, Illinois

Commanding General
U. S. Army Electronic Proving Ground
Fort Huachuca, Arizona

Commander
Wright Air Development Center
Altus: ARL Tech. Library, WCAR
Wright-Patterson Air Force Base, Ohio

Commander
Western Development Division
MOSIT
P. O. Box 262
Inglewood, California

Chief, Research Division
Office of Research & Development
Office of Chief of Staff
U. S. Army
Washington 25, D. C.

Chief, Computing Laboratory
Ballistic Research Laboratory
Abbe View Proving Ground, Maryland

Director
National Security Agency
Altus: WABA
Fort George G. Meade, Maryland

Director
Operations Analysis Div., AFOOP
N3, U. S. Air Force
Washington 25, D. C.

Director
Space, Sea & Undersea Research Establishment
Code of Engineering
1215 Washington Avenue
Wilmette, Illinois

Director
Institute Laboratory
Lexington, Massachusetts

Department of Mathematics
Michigan State University
East Lansing, Michigan

Document Library
U. S. Atomic Energy Commission
15th and Constitution Aves., NW.
Washington 25, D. C.

Headquarters
Naval Ordnance Test Station
China Lake, California

National Aeronautical Laboratory
California Institute of Technology
Altus: A. T. Staley
4800 Oak Grove Drive
Pasadena 3, California

Library
The RAND Corporation
1700 Main Street
Santa Monica, California

Library Division
Naval Missile Center Command
U. S. Naval Missile Center
Altus: J. L. Wilson
Palo Verde, California

Mathematics Division
Code 5077
U. S. Naval Ordnance Test Station
China Lake, California

NASA
Altus: Mr. E. B. Jackson, Office of Science
1724 F Street, N. W.
Washington 25, D. C.

National Aeronautical Laboratory
National Bureau of Standards
Washington 25, D. C.

Library Division
Naval Ordnance Test Station
China Lake, California

Superintendent
U. S. Navy Postgraduate School
Monterey, California

Director
Technical Information Office
Naval Research Laboratory
Washington 25, D. C.

Technical Information Service
Altus: Reference Branch
P. O. Box 62
Oak Ridge, Tennessee

Technical Library Branch
Code 354
U. S. Naval Ordnance Laboratory
Altus: C. E. Robinson
Covina, California

Institute for Defense Analyses
Communications Research Division
99 Manns Hall
Princeton, New Jersey

August, 1962

Official Use Only
<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Affiliation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Fred Frishman</td>
<td>Army Research Office, Arlington Hall Station, Arlington, Virginia</td>
<td>1</td>
</tr>
<tr>
<td>Mrs. Dorothy M. Gilford</td>
<td>Logistics and Mathematical Statistics Branch, Office of Naval Research, Washington 25, D. C.</td>
<td>3</td>
</tr>
<tr>
<td>Major Oliver A. Shaw, Jr.</td>
<td>Mathematics Division, Air Force Office of Scientific Research, Washington 25, D. C.</td>
<td>2</td>
</tr>
<tr>
<td>Dr. Robert Lundegard</td>
<td>Logistics and Mathematical Statistics Branch, Office of Naval Research, Washington 25, D. C.</td>
<td>1</td>
</tr>
<tr>
<td>Mr. Carl L. Schemel</td>
<td>U. S. Naval Ordnance Test Station, China Lake, California</td>
<td>1</td>
</tr>
<tr>
<td>Mr. J. Weinste in</td>
<td>Institute for Exploratory Research, USASRDL, Fort Monmouth, New Jersey</td>
<td>1</td>
</tr>
<tr>
<td>Mr. R. H. Noyes</td>
<td>Inst. for Exploratory Research, USASRDL, Fort Monmouth, New Jersey</td>
<td>1</td>
</tr>
</tbody>
</table>