EVIDENCE FOR DIRECT STIMULATION OF
THE MAMMALIAN NERVOUS SYSTEM WITH
IONIZING RADIATION

by
E. L. Hunt
D. J. Kimeldcrf

U.S. NAVAL RADIOLOGICAL
DEFENSE LABORATORY
SAN FRANCISCO 24, CALIFORNIA
ABSTRACT

In a behavioral study designed to detect the most immediate reaction of the intact nervous system to ionizing radiation, rats were exposed while asleep to X rays (250 kvp), and measurements of behavioral arousal and heart rate were made to indicate activation of the central nervous system. A transitory behavioral arousal was exhibited within 12 seconds at an exposure rate of 0.25 r/second. At a higher dose rate of 1.9 r/second this initial reaction increased in scope and by 30 seconds included sub-cortical activation as well, as indicated by a heart rate response. These reactions depended upon the rate of exposure and not upon the total dose. In blinded animals, exposure at the high intensity evoked both the behavioral arousal and the heart rate response. This indicates that CNS activation cannot be attributed to the direct effect of radiation on the visual receptor system. Although radiation may act as a stimulus to the CNS through other sensory systems it was also suggested that the nervous system itself is directly sensitive to ionizing radiation.
NON-TECHNICAL SUMMARY

The Problem

This study was undertaken to provide evidence of an immediate reaction of the intact mammalian nervous system to low intensity exposure to ionizing radiation.

The Findings

X-ray exposure acts as a stimulus to the nervous system in the rat as evidenced by its power to produce behavioral arousal in the sleeping animal within 12 seconds at an exposure rate of as little as 0.25 r/second. At a higher dose rate of 1.9 r/second this initial reaction is subsequently increased in scope and includes subcortical activation as indicated by the presence of a change in heart rate by 30 seconds. These reactions depend upon the rate of exposure and not upon the total dose. Since the response is present in blinded as well as normal animals it cannot be attributed to the direct effect of radiation on the visual receptor system. The most probable basis for the effect is that the nervous system is directly sensitive to ionizing radiation.
EVIDENCE FOR DIRECT STIMULATION OF THE MAMMALIAN NERVOUS SYSTEM WITH IONIZING RADIATION

Investigations dependent upon neurophysiological and histological techniques have generally failed to produce evidence of any marked reactivity of the adult mammalian nervous system to ionizing radiation (1). Behavioral methods have been used to demonstrate that a low dose level of radiation can act as an unconditioned stimulus in the conditioning of avoidance responses (2), and it was considered likely that a behavioral criterion might also be utilized to detect the most immediate effects of radiation stimulation in the intact mammalian nervous system.

For this purpose, rats were exposed to X rays while asleep in a glass exposure chamber (Fig. 1.) and observational measurements of behavioral arousal were made. Heart rate measurements were also made to provide additional evidence of central activation during the arousal response (3,4,5).

Young adult, male, Sprague-Dawley rats served as subjects. Prior
Fig. 1 Cut-away version of observation-exposure chamber with rat in a sleep position and connected for recording of EKG.
to radiation exposure the animals received 40 hours of adaptation (6) which included exposure to X-ray machine and room noises. Heart rate values during the sleep state, obtained in the last 8-hour period of adaptation, were used to equate experimental groups.

Behavioral arousal was measured by means of a rating scale which provided identification of any visible departures from the condition of sleep or complete inactivity. The viewing distance through a leaded-glass window to the X-ray room ranged from 2 to 5 meters. Three trained observers typically showed better than 90% agreement on independent ratings made in a series of reliability tests. Heart potentials were recorded on a four-channel oscillograph (Grass). As a precaution to limit systematic observer bias, inspection of all data was delayed to after completion of all experiments.

A Maxitron X-ray unit, operated at 250 kvp, 25 ma. (HVL of 2.3 mm. Cu), was used for a 1,000 r exposure delivered in 9 minutes or 60 minutes. The dose rate for animals in the high intensity exposure group was nominally 1.9 r/sec. (1.5 - 2.5 r/sec., depending upon the animal's position in the chamber) and for the low intensity exposure group the rate was 0.25 r/sec. (0.22 - 0.28 r/sec.). Control animals were placed behind lead shields in the X-ray room.

To obtain adequate samples, 7 or 8 animals in each of 12 identical experimental runs were used. No differences among runs were apparent and data from all runs were combined in the analysis. From
minutes before through 15 minutes after the start of exposure five sampling intervals per minute were scheduled, each of 12 seconds duration. Two to three samples per minute were obtained from each animal on each variable during this period. This report presents the data obtained during the first minute of exposure from animals rated as asleep and completely inactive over the three intervals just prior to exposure.

Panel A of Fig. 2 shows the relative incidence of behavioral arousal (top) and of mean heart rate (bottom) during the first minute of exposure. Both exposed groups showed evidence of behavioral arousal within the first 12 seconds ($P < 0.02; \chi^2$). The high intensity exposure group subsequently exhibited a higher incidence of arousal ($P < 0.001; \chi^2$). Both groups were approaching the control group level of activity by the end of the first minute. Analysis of covariance was used on the heart rate data with the pre-exposure value serving as the covariment variable in the analysis at each test point (7). The intra-class correlations were homogeneous among groups, high, and positive (+.625 - +.928). The high intensity exposure group exhibited a peak in heart rate at about 30 seconds ($P < 0.005; F$) which corresponded in time to its peak incidence in behavioral arousal. These are not responses to a total dose since the low intensity exposure group, regardless of cumulative exposure time or dose, failed to exhibit any further responses beyond the behavioral response shown
Fig. 2 The incidence of activity and mean heart rates in normal (Panel A) and ophthalmectomized (Panel B) animals. Heart rate means adjusted by analysis of covariance. Panel C shows mean changes in heart rates of normal rats that were asleep before both the sham-exposure (top) and radiation-exposure (bottom) tests. Standard error limits are indicated for control group heart rate means.
in the first measurement interval. It may be concluded that the threshold intensity of radiation exposure required to elicit diffuse neural activation, as indicated by the joint occurrence of the behavioral and heart rate responses, is between 0.25 and 1.9 r/second. A threshold intensity for activation limited to behavioral arousal, shown in the first interval of 12 seconds, is probably less than 0.25 r/second.

Presumably, a visual sensation of sufficient intensity to arouse an animal sleeping with eyes closed, and, therefore, partially dark-adapted, could be produced by X rays delivered at the intensities employed (8). To test this possibility, additional experimental runs were made using animals that had been subjected to complete, bilateral ophthalmectomy at one month prior to the exposure test. Panel B of Fig. 2 shows the results of this test. The arousal response appeared within the first measurement interval of 12 seconds. Hence, the arousal response cannot be attributed to direct retinal stimulation with ionizing radiation.

A procedural study was made to test for the presence of an arousing stimulus other than radiation, including possible residual noise from the sound-shielded shutter. A sham-exposure test was made in each experimental run at least 30 minutes before the radiation-exposure test. The results of these tests indicated that the arousal response cannot be ascribed to stimulation coincident with radiation. This can be shown most readily with the heart rate data obtained from normal rats.
that were asleep and inactive before both sham-exposure and radiation-exposure tests (Panel C of Fig. 2).

It is evident that ionizing radiation acts in a manner analogous to a stimulus in that it evokes a reflex-like arousal response in this behavioral preparation. The reaction is initiated in the presence of heightened sensory thresholds normally associated with sleep (10). It may be inferred from the behavior and heart rate data that the degree of neural activation underlying the response is related to the intensity of radiation. The arousal response is not dependent upon direct visual stimulation by X rays. The arousal reactions which arise after or continue beyond the first few seconds very likely involve reflex activation of the adrenal medulla (4,5).

Recent studies with mammals have shown that within the first minute of moderate intensity exposure gastric retention occurs (11), oxygen consumption increases (12), and EEG activity is altered (13). Although these responses might be related to the arousal response, arising as a consequence of central activation, they might also be primary responses to nervous stimulation with radiation. Reflex-like reactions to ionizing radiations have been described for invertebrates; the most sensitive reaction was found to be tentacle retraction in the snail (14). The arousal response in the rat would appear to be of comparable sensitivity.

The nervous mechanisms which are affected by radiation exposure
in the production of behavioral arousal and central activation are obscure. Aside from photoreceptors, no sensory receptors have been demonstrated to be directly sensitive to radiation stimulation. Although the visual system is not essential for the reaction, it cannot be ruled out that stimulation through other receptor systems may initiate the central activation. Direct ganglionic sensitivity to ionizing radiation is also possible. This was proposed years ago by Toyama (15). More recently, Hug (14) has suggested that ionizing radiation may act like visible light in activating certain photosensitive processes in ganglionic structures. It may be that penetrating ionizing radiation is but one of a number of electromagnetic forms of energy to which nervous tissue is directly sensitive and one which would be particularly efficient for stimulating large masses of nervous tissue since the energy transfer would occur relatively uniformly with minimum spatial or temporal loss.
BIBLIOGRAPHY

DISTRIBUTION

Copies

NAVY

1-3
Chief, Bureau of Ships (Code 335)
4
Chief, Bureau of Ships (Code 320)
5-6
Chief, Bureau of Medicine and Surgery
7
Chief of Naval Operations (Op-07T)
8
Chief of Naval Research (Code 104)
9-11
Director, Naval Research Laboratory (Code 2021)
12
Office of Naval Research (Code 422)
13
Office of Naval Research (Code 441)
14-28
Office of Naval Research, FPO, New York
29-31
Naval Medical Research Institute
32
OIC, Radiation Exposure Evaluation Laboratory
33
U.S. Naval Hospital, San Diego
34
Director, Aviation Medical Acceleration Laboratory
35
U.S. Naval Postgraduate School, Monterey
36
Naval Missile Center (Code 5700)
37
Commander, Naval Ordnance Laboratory, Silver Spring
38
CO, Naval Medical Research Unit No. 2
39
CO, Naval Medical Field Research Lab., Camp Lejeune

ARMY

40
Chief of Research and Development (Atomic Div.)
41
Chief of Research and Development (Life Science Div.)
42
Chief of Engineers (ENGRD-DS)
43
Chief of Engineers (ENGRD-S)
44
CG, Chemical Corps Res. and Dev., Command
45
Hq., Chemical Corps Materiel Command
46
President, Chemical Corps Board
47-49
CO, BW Laboratories
50
CO, Chemical Corps Training Command
51
Commandant, Chemical Corps Schools (Library)
52
CO, Chemical Res., and Dev. Laboratories
53
Commander, Chemical Corps Nuclear Defense Laboratory
54
CO, Army Environmental Hygiene Agency
55
CG, Aberdeen Proving Ground
56 CO, Army Medical Research Laboratory
57 Army Medical Res. and Nutrition Laboratory (MEDEN-AD)
58 CO, Army Medical Service Combat Development Command
59-60 Medical Field Service School, Fort Sam Houston
61 Director, Walter Reed Army Medical Center
62 Hq., Army Nuclear Medicine Research Detach., Europe
63 CG, Quartermaster Res. and Eng. Command
64 Quartermaster Food and Container Institute
65 Hq., Dugway Proving Ground
66-68 The Surgeon General (MEDNE)
69 Office of the Surgeon General (Combat Dev.)
70 CG, Engineer Res. and Dev. Laboratory
71 Director, Office of Special Weapons Development
72 Director, Surgical Research Unit, Fort Sam Houston
73 CO, Frankford Arsenal
74 CG, Army Ordnance Missile Command

AIR FORCE

75 Assistant Chief of Staff, Intelligence (AFCIN-3B)
76-81 Commander, Aeronautical Systems Division (ASAPRD-NS)
82 CO, Radiological Health Laboratory Division
83 Commander, Air Force Systems Command
84 Director, USAF Project RAND
85-86 Commandant, School of Aerospace Medicine, Brooks AFB
87 CO, School of Aviation Medicine, Gunter AFB
88 6571st Aeromedical Research Lab., Holloman AFB
89 Radiobiological Laboratory
90 Office of the Surgeon (SUP.1), Strategic Air Command
91 Office of the Surgeon General
92 Director, Air University Library, Maxwell AFB
93-94 Commander, Technical Training Wing, 3415th TTG
95 Hq., Second Air Force, Barksdale AFB
96 Commander, Electronic Systems Division (CRZT)

OTHER DOD ACTIVITIES

97-99 Chief, Defense Atomic Support Agency (Library)
100 Commander, FC/DASA, Sandia Base (FCDV)
101 Commander, FC/DASA, Sandia Base (FCTG5, Library)
102 Commander, FC/DASA, Sandia Base (FCWT)
103 Armed Forces Institute of Pathology
104-113 Armed Services Technical Information Agency
114 Director, Armed Forces Radiobiology Research Institute

OCD

115-122 Office of Civil Defense, Battle Creek
123-124 Office of Civil Defense, Washington

12
AEC ACTIVITIES AND OTHERS

125 Research Analysis Corporation
126 Life Science Officer, AEC, Washington
127 Division of Biology and Medicine (Benson)
128 NASA, Ames Research Center, Moffett Field
129 Naval Attaché, Stockholm (for Commodore Troell)
130 Aerojet General, Azusa
131-135 Argonne Cancer Research Hospital
136-145 Argonne National Laboratory
146-147 Atomic Bomb Casualty Commission
148 AEC Scientific Representative, France
149 AEC Scientific Representative, Japan
150-152 Atomic Energy Commission, Washington
153-156 Atomic Energy of Canada, Limited
157-159 Atomics International
160-161 Battelle Memorial Institute
162-165 Brookhaven National Laboratory
166 Chicago Patent Group
167 Columbia University (Rossi)
168 Committee on the Effects of Atomic Radiation
169-170 Convair Division, Fort Worth
171-173 Defence Research Member
174-175 duPont Company, Aiken
176 duPont Company, Wilmington
177 Edgerton, Germeshausen and Grier, Inc., Golata
178 Edgerton, Germeshausen and Grier, Inc., Las Vegas
179-180 General Electric Company (ANPD)
181-188 General Electric Company, Richland
189 General Electric Company, St. Petersburg
190 Glasstone, Samuel
191 Hawaii Marine Laboratory
192 Hughes Aircraft Company, Culver City
193 Iowa State University
194 Journal of Nuclear Medicine
195 Knolls Atomic Power Laboratory
196 Lockheed Aircraft Corporation
197-198 Los Alamos Scientific Laboratory (Library)
199 Lovelace Foundation
200 Martin Company
201 Massachusetts Institute of Technology (Hardy)
202 Mound Laboratory
203 National Academy of Sciences
204 National Bureau of Standards (Taylor)
205 National Cancer Institute
206 National Lead Company of Ohio
207 National Library of Medicine
208 New York Operations Office
209 New York University (Eisenbud)
210 Oak Ridge Institute of Nuclear Studies
211 Patent Branch, Washington
212-213 Phillips Petroleum Company
214-217 Pratt and Whitney Aircraft Division
218-219 Public Health Service, Washington
220 Public Health Service, Las Vegas
221 Public Health Service, Montgomery
222 Sandia Corporation, Albuquerque
223 Union Carbide Nuclear Company (ORGDP)
224-228 Union Carbide Nuclear Company (ORNL)
229 Union Carbide Nuclear Company (Paducah Plant)
230 United Nuclear Corporation (NDA)
231 U.S. Geological Survey, Denver
232 U.S. Weather Bureau, Washington
233-235 University of California Lawrence Radiation Lab., Berkeley
236-237 University of California Lawrence Radiation Lab., Livermore
238 University of California, Davis
239 University of California, Los Angeles
240 University of California, San Francisco
241 University of Chicago Radiation Laboratory
242 University of Puerto Rico
243 University of Rochester (Atomic Energy Project)
244 University of Tennessee (UTA)
245 University of Utah
246 University of Washington (Donaldson)
247-250 Western Reserve University
251 Westinghouse Electric Corporation
252-276 Technical Information Service, Oak Ridge

USNRDL

277-300 USNRDL, Technical Information Division

DISTRIBUTION DATE: 20 June 1962
Naval Radiological Defense Laboratory
USNRDL-TR-561
EVIDENCE FOR DIRECT STIMULATION OF THE MAMMALIAN NERVOUS SYSTEM WITH IONIZING RADIATION by E.L. Hunt and D.J. Kimeldorf
7 May 1962 16 p. illus. 15 refs.
UNCLASSIFIED

In a behavioral study designed to detect the most immediate reaction of the intact nervous system to ionizing radiation, rats were exposed while asleep to X rays (250 kvp), and measurements of behavioral arousal and heart rate were made to indicate (over)

1. Nervous system - Effects of radiation.
2. Radiation - Physiological effects.
I. Hunt, E.L.
II. Kimeldorf, D.J.
III. Title.
IV. MR005.08-5201.

UNCLASSIFIED

activation of the central nervous system. A transitory behavioral arousal was exhibited within 12 seconds at an exposure rate of 0.28 r/second. At a higher dose rate of 1.9 r/second this initial reaction increased in scope and by 30 seconds included sub-cortical activation as well, as indicated by a heart rate response. These reactions depended upon the rate of exposure and not upon the total dose. In blinded animals, exposure at the high intensity evoked both the behavioral arousal and the heart rate response. This indicates that CNS activation cannot be attributed to the direct effect of radiation on the visual receptor system. Although radiation may act as a stimulus to the CNS through other sensory systems it was also suggested that the nervous system itself is directly sensitive to ionizing radiation.

UNCLASSIFIED