DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Mean Lives of Positrons in Aqueous Solutions*

Jerome E. Jackson

and

John D. McGervey

Western Reserve University

By measurement of the time distribution of positron annihilations in aqueous solutions, reaction rates for oxidation of positronium by the ions \(\text{MnO}_4^- \), \(\text{IO}_3^- \), and \(\text{Hg}^+ \) have been determined. In strong oxidizing solutions the mean life of the positrons reaches a lower limit of \(4.3 \times 10^{-10} \) sec; the short lifetime \(\tau \) in water was measured and found to agree with this value. A \(\text{Pb(ClO}_4)_2 \cdot 3\text{H}_2\text{O} \) solution reduced the intensity \(I_2 \) with no significant change in the long mean life \(\tau_2 \), an effect previously observed in nitrate solutions. This may mean that in these two cases oxidation can occur before \(\text{Ps} \) is thermalized but not afterwards. The decay distributions from a mixture of \(\text{Hg}^+ \) and \(\text{MnO}_4^- \) ions in solution and the \(\text{Hg}^+ \) ion in separate solutions with \(\text{Cl}^- \) and \(\text{ClO}_4^- \), indicated an association taking place between the negative and positive ions.

\[\times 10^{-10} \]
The study of positron annihilations in liquids is directed toward understanding the type of interaction that leads to the formation or destruction of bound states prior to annihilation. In water approximately 1/3 of the positrons pair with an electron through an electrostatic attraction forming a hydrogen-like system called positronium (Ps). This system is considered stable even though the electron and positron annihilate in a short time. Conditions are favorable for Ps formation when the positrons entering water are slowed by inelastic collisions to an energy that lies in the range called the "Ore gap". For the positron to be within the Ore gap its energy must be less than the first excitation potential of the surrounding molecules, but not below the first ionisation potential minus the binding energy of Ps ($E_b \geq KE \geq E_1 - E_b$).

The paired electron and positron in positronium may form a singlet (spins anti-parallel) or triplet (spins parallel) state. The mean life for the singlet state is 1.25×10^{-10} sec, decaying by self-annihilation. The triplet state lives much longer, 1.4×10^{-7} sec, thus allowing other decay mechanisms to take place before self-annihilation.

The formation of Ps in water was demonstrated by the positron lifetime measurements of Bell and Graham. Later Green and Bell found a complex decay with about 20% of the positrons having a long mean life, $\tau_L = 1.8 \times 10^{-9}$ sec, and the rest having a mean life of about 3×10^{-10} sec. The positrons with the short mean life reach thermal energy without capturing an electron, and annihilate as free positrons. Those with the long mean life form triplet Ps and are partially shielded from the surrounding electrons, but eventually decay by annihilations with neighboring electrons by the "pickoff" process.
The existence of an atom of Ps in water enables one to study chemical reactions between it and ions in solution. When good oxidizing agents are added to water, the ions formed capture the electron from the Ps atom. This leaves the positron with an energy too low to form another Ps atom. Without its paired electron the positron is no longer shielded from other electrons, thus its mean life in water is shortened. This effect on the mean life has been previously observed for the ions Hg$^{++}$, Sn$^{+++}$, and Sn$^{++}$\(^{1}\). Measurements of the angular correlation of the two annihilation gamma rays also indicated the oxidation of Ps by the ions Cu$^{++}$ and MnO$_4^-$\(^{5}\).

In a collision the Ps atom may be destroyed by oxidation if the electron energy level of the resulting product ion is lower than it was in Ps. Even when the electron energy level for Ps is lower than the product ion, the transfer of an electron may still be possible if the lacking energy is supplied by the kinetic energy of the reactants. The lower the product ion energy level the better it performs as an oxidizing agent; the corresponding oxidation potential is chosen here to become more positive and is given in table I in this sense. The oxidation potentials only partially reflect the ability of these ions to act as oxidizing agents of Ps. The value for an ion's oxidation potential is obtained in many cases from a cell reaction involving several electrons, whereas when this ion reacts with Ps, only one electron is transferred. An example of what may happen is given by the IO$_3^-$ ion in table I; its oxidation potential was determined from a cell reaction involving six electrons. It is seen that the IO$_3^-$ ion has a higher oxidation potential than the Hg$^{++}$ and MnO$_4^-$ ions, but is the least effective as an oxidizing agent.

The reaction between Ps and an oxidizing ion is different in another
way from the usual oxidation-reduction process; the Ps reaction does not come to equilibrium. The reverse reaction involving the reduction of Ps does not take place, because the Ps ion a positron will decay almost immediately. Without equilibrium, definite limits cannot be assigning to the oxidation potential or binding energy of Ps in solution. The decay distributions of positrons in these solutions where chemical reactions take place do give definite information. The observed lifetime of Ps provides a direct measurement of the forward reaction rate of Ps with an oxidising ion.

EXPERIMENTAL PROCEDURE

A 5 micro curie source of Na22 in the form of NaCl dissolved in HCl was evaporated to dryness in a glass vial, 1cm in diameter and 3 cm high. The solution studied was then deposited in the vial and sealed. With this arrangement less than 2% of the positrons annihilated in the glass. Na22 emits almost simultaneously a positron and a 1.3 Mev gamma ray; the positron annihilates in the solution giving off two .511 Mev gamma rays. The apparatus measures the time interval between the nuclear gamma ray and one of the annihilation gamma rays.

Details of short lifetime measurements are well known. Two scintillation counters view the radiation; a pulse from one dynode of each counter goes to an amplifier and pulse height selector which selects a 1.3 Mev gamma ray from one counter and a .511 Mev annihilation gamma ray from the other. When the two selector outputs are in coincidence, a gate is opened allowing a sixty channel pulse height analyser to accept and sort a pulse from a time-to-amplitude converter. The converter output is proportional to the time difference between fast pulses in the two counters.
Measured delay cables inserted between the counter and converter inputs establish the time scale by shifting the peak of the distribution a given amount. This calibration was linear to within 2% and remained stable to within 2% over periods of several days. A "prompt" curve, obtained by using the gamma rays of Co^60 (see Fig. 1), has a width at half maximum of 0.75 x 10^{-9} sec.

After approximately a ten hour run a distribution of positron lifetimes was obtained. The right hand slope of the distribution gives the mean life of the positrons in a particular liquid environment.

RESULTS AND DISCUSSION

Considering just the two major processes, pickoff and oxidation, the total annihilation probability was found to be the sum of the probabilities for each decay mechanism. For sufficiently long times the observed decay constant \(\lambda_t \) will be

\[
\lambda_t = \lambda_o + \lambda_f \quad \text{if} \quad \lambda_o + \lambda_f \leq \lambda_f \quad \text{or}
\lambda_t = \lambda_f \quad \text{if} \quad \lambda_o + \lambda_f \geq \lambda_f,
\]

where \(\lambda_o \) is the oxidation probability per unit time, \(\lambda_f \) is the pickoff annihilation probability, and \(\lambda_f \) is the free positron annihilation probability per unit time.\(^b\)

The time distribution of positron decay in the solutions KMnO_4, HgO_2, and KIO_3 clearly shows an exponential decay that is the result of oxidation taking place. Two effects serve as evidence that Ps is really oxidized. First, the amount of the oxidizing agent added to shorten the mean life from water by a given amount is related to the oxidation potential of the negative or positive ion in question (MnO_4^-, Hg^{2+}, IO_3^-). Second, the variation of positron mean life with different concentrations of these solutions indicated that \(\lambda_o \) is proportional to concentration; this proportionality
is shown in Fig. 1 for a KMnO₄ solution. In Fig. 2 the mean life of the positron was plotted as a function of concentration; the solid curve was drawn under the assumption that \(\lambda_e \) is proportional to concentration. The observed mean life, \(\frac{1}{\lambda_e + \lambda_p} \), was calculated as a function of \(\lambda_e \) by letting \(\lambda_e \) vary by factors of two in "units" of \(\lambda_p \), corresponding to similar changes in concentration. The experimental points provide a good fit to the calculated curve.

In the region of high concentrations Fig. 2 also shows that the curves for KMnO₄ and HgCl₂ reach a constant value; this value is almost the same for both solutions and equals approximately \(4.3 \times 10^{-10} \) sec. At these concentrations, where the condition \(\lambda_e + \lambda_p \sim \lambda_f \) is fulfilled, a constant mean life is expected, namely \(\frac{1}{\lambda_f} \). In the limit of high concentrations the oxidising ions destroy Ps as quickly as it is formed leaving all the positrons free in water with a constant probability of decay.

The lower limit of \(T_1 \) at high concentrations is a convincing demonstration of the oxidation phenomenon, if it could be shown that the value for this mean life can really be assigned to free positrons in solution. A separate determination of \(\frac{1}{\lambda_f} \) can be made from the complex decay of positrons in pure water. The density of a 1/4 M solution of KMnO₄ is only 1.2% greater than water and is therefore similar to water, as far as free thermalised positrons are concerned. The slope of the long exponential in water, determined by the decay of triplet Ps through the pickoff process, was extrapolated to \(t = 0 \) and subtracted from the total counts to obtain the short lived component (Fig. 3). The short mean life \(T_f \) comes from the annihilation of free positrons in water. The mean life calculated in this way was

\[(4.2 \pm 0.2) \times 10^{-10} \] sec. The close agreement between \(T_f \) and the limiting
mean life verifies that an oxidation process reduces the mean life in these solutions.

The earlier result of 3×10^{-10} sec obtained by Bell and Graham using the "centroid shift" method does not agree with this value. Gerholt pointed out, however, that an error of the order of 10^{-10} sec from the instrumentation alone was possible in their results.\(^6\)

Considering the complex nature of solutions, it is surprising that the explanation of the above data could be given in terms of just two processes; oxidation and pickoff, and that λ is simply proportional to concentration. To pursue the validity of these assumptions further, the solutions $\text{Hg(ClO}_4\text{)}_2 \cdot \text{H}_2\text{O}$ and HgCl_2 were studied. The negative ions Cl^- and ClO_4^- produce no oxidation; solutions with the Cl^- ion have been studied previously,\(^4\) and the solutions $\text{Ba(ClO}_4\text{)}_2$ and $\text{Li(ClO}_4\text{)}$, studied in this work, gave similar results of causing no oxidation. The 1/8 M solution of $\text{Hg(ClO}_4\text{)}_2 \cdot \text{H}_2\text{O}$ reduced the Cl_{2} component by oxidation, but by an amount less than the Hg^{++} ion in a 1/8 M solution of HgCl_2. This seems to indicate a greater association between the ClO_4^- and Hg^{++} ions, which reduces the ability of Hg^{++} to oxidise Ps. There is supporting evidence for this reasoning from chemical data which gives the ClO_4^- ion a larger association constant than Cl^-.\(^5\)

Another test of the association effect was made by mixing a 1/16 M solution of HgCl_2 with a 1/32 M solution KMnO_4. The observed mean life for positrons was greater than in the pure KMnO_4, indicating some type of association which greatly reduced the oxidising power of both the Hg^{++} and MnO_4^- ions.

The intensity of the long lived component is a measure of the number of positrons that form thermalised triplet Ps. The intensity was
taken as the percentage of true counts in the long lived exponential to
the total number of counts in the entire distribution. In water and poor
oxidising solutions that cause no significant decrease in T_{e}, the in-
tensity was $21 \pm 5\%$. A 2 M solution of Pb(ClO$_4$)$_2$·3H$_2$O produced an unexpect-
ed decrease in the intensity, see Fig. 4. A similar result was obtained
for NaNO$_3$ by Green and Bell; a large reduction in intensity was observed
with no significant change in the long lifetime itself. This effect was
explained by assuming that many of the free positrons are captured by the
NO$_3^-$ ion forming a stable compound. The "new" molecule then decays at a
rate comparable to singlet Ps, thus reducing the intensity. By assuming
this electron capture process the variation of intensity as a function
of NO$_3^-$ concentration was explained; however, the assumption becomes some-
what unsatisfactory when this effect did not even appear with six other
monovalent negative ions (Cl$^-$, ClO$_2^-$, ClO$_4^-$, BrO$_3^-$, IO$_3^-$, and MnO$_4^-$),
studied in this work, but does appear associated with the positive Pb$^{++}$
ion.

Giving a detailed picture of the Oe gap in a complex liquid medium
would be difficult, but a closer consideration of the energy available
for Ps formation might still prove useful for explaining the above effect.
The Ps atom may be formed with a kinetic energy of up to 2 ev, 100 times
greater than its thermal energy. Even though the thermalisation time is
approximately 10^{-10} sec, one would expect that with this added kinetic
energy the Ps atom could be oxidized by an agent whose electron affinity
in solution is equal to or less than the Ps atom. Since in the experiment
the radiation is viewed at times long compared to the thermalisation time,
this effect would just appear as a decrease in the intensity of the long
lived component. The conclusion is that Pb can be oxidised before it is thermalised by the Pb⁺⁺⁺ and NO₂⁻ ions, but not afterwards.

The speed of the reaction between Pb atoms and both negative and positive ions has been measured directly. This speed was not only related to the oxidation potential of the ions, but also to the degree of association occurring in the solution. Future studies involving both lifetime and intensity measurements may help to give more information on the nature of chemical bonds in solution.
Table I. Mean lives of positrons in aqueous solutions, in millimicroseconds.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Oxidation potential</th>
<th>Concentration, in moles per liter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/256</td>
<td>1/128</td>
</tr>
<tr>
<td>KMnO₄</td>
<td>0.56</td>
<td>1.57±.07</td>
</tr>
<tr>
<td>HgCl₂</td>
<td>0.92</td>
<td>1.51±.04</td>
</tr>
<tr>
<td>KIO₃</td>
<td>1.192</td>
<td>1.09±.08</td>
</tr>
<tr>
<td>Pb(ClO₄)₂·2H₂O</td>
<td>-0.126</td>
<td></td>
</tr>
<tr>
<td>Hg(ClO₄)₂·9H₂O</td>
<td>0.832</td>
<td></td>
</tr>
<tr>
<td>Mixture</td>
<td>(1/32H KMnO₄ + 1/16H HgCl₂)</td>
<td></td>
</tr>
</tbody>
</table>

*These values were measured by J.D. McGeevey, et. al. Phys. Rev. 124, 1113 (1961).
Fig. 1. Time distribution of positronium annihilations in aqueous solutions of HNO$_3$. The prompt curve was obtained from the gamma rays of 137Cs.

- Prompt
- 1/8 M
- 1/32 M
- 1/128 M
Fig. 2. Variation of quantum mean lives with concentration of the oxidizing solution. The experimental points fit the solid curve, which was drawn under the assumption that the oxidation rate is proportional to concentration.

- HgCl₂
- KMnO₄

MEAN LIFE (10⁹ sec. units)

MOLARITY OF SOLUTION
Fig. 3. Complex decay distribution of positrons in H_2O: subtracting the extrapolated component gives the short mean life for free positrons.

$\tau_1 = 4.2 \times 10^{-10} \text{ sec.}$

$\tau_2 = 1.78 \times 10^{-10} \text{ sec.}$
Fig. 4. Time distribution of prompt annihilations in an aqueous solution of \(\text{Pb(CIO}_4)_2 \cdot 3\text{H}_2\text{O} \). The \(\text{H}_2\text{O} \) distribution is used for the purpose of comparison.

- \(\text{Pb(CIO}_4)_2 \cdot 3\text{H}_2\text{O} \)
- \(\text{H}_2\text{O} \)
Research supported in part by the U.S. Air Force Office of Scientific Research.