AD NUMBER

AD285614

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution: Controlled: All requests to Army Biological Labs., Fort Detrick, Frederick, MD.

AUTHORITY

TECHNICAL MEMORANDUM 24

IMMUNOLOGICAL STUDIES WITH BACILLUS ANTHRACIS

I. Bacillus anthracis Aerosol Challenge of Guinea Pigs Vaccinated with Protective Antigen

SEPTEMBER 1962

19990624000

UNITED STATES ARMY BIOLOGICAL LABORATORIES
FORT DETRICK
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
The work reported here was conducted under Project 4B11-02-068, Aerobiological Research, Task -01, Stability and Virulence of BW Aerosols. The expenditure order number was 2201301.

William C. Day
Ruth R. Bailey
Gerald H. TePaske
Henry C. Wallace

Aerobiology Division
DIRECTOR OF BIOLOGICAL RESEARCH

Project 4B11-02-068

September 1962
This document or any portion thereof may not be reproduced without specific authorization from the Commanding Officer, Biological Laboratories, Fort Detrick, Frederick, Maryland; however, ASTIA is authorized to reproduce the document for U.S. Government purposes.

This memorandum is designed primarily for rapid dissemination of current R&D technical information for review and suggestions. It is an internal operating document and distribution is usually limited to the installation and to supporting or cooperating agencies.

The information in this report has not been cleared for release to the general public.

ASTIA AVAILABILITY NOTICE

Qualified requestors may obtain copies of this document from ASTIA.

Foreign announcement and dissemination of this document by ASTIA is limited.
ABSTRACT

This study indicated that three separate injections of *Bacillus anthracis* protective antigen provided a higher level of immunity than one injection when guinea pigs were challenged by the respiratory route with two different strains (V1B and NH6) of *Bacillus anthracis*. Based on LD50 values obtained with control animals, protective antigen provided a higher level of resistance against intracutaneous route of challenge than the respiratory. Immunized animals challenged intracutaneously with strain NH6 displayed a much lower level of resistance against this route than that observed for strain V1B. Averaged LD50 values obtained with control guinea pigs indicated that strain V1B was more virulent via the respiratory route than strain NH6. In contrast, strain NH6 was slightly more virulent than strain V1B for control animals via the intracutaneous route.

ACKNOWLEDGMENTS

The authors wish to express their appreciation to Dr. Milton Puziss and Mr. John G. Ray, Jr., Medical Investigation Division, for technical assistance rendered, and to Mr. Cecil Eckard, Biostatistics Division, for his statistical analyses of the data.
CONTENTS

Abstract .. 3
Acknowledgments .. 3

I. INTRODUCTION ... 7

II. MATERIALS AND METHODS 8
 A. Immunization and Antibody Titer Procedures 8
 B. Challenge Procedures 8

III. RESULTS AND DISCUSSION 9

IV. SUMMARY .. 13

Literature Cited .. 15

TABLES

I. Results of Respiratory Challenge of Guinea Pigs Vaccinated One
 Time with B. anthracis Protective Antigen 10

II. Results of Respiratory and Intracutaneous Challenge of Guinea Pigs
 Vaccinated Three Times with B. anthracis Protective Antigen 11
I. INTRODUCTION

Little information can be found in the open literature concerning the respiratory challenge with Bacillus anthracis of guinea pigs previously immunized via the subcutaneous route with B. anthracis protective antigen. Russian workers have used protective antigen in the vaccination of sheep and found it to be on a par with live vaccine when these animals were challenged subcutaneously. Recent studies by F. Klein et al using B. anthracis protective antigen, have shown it to be highly protective for guinea pigs when used in conjunction with live vaccines. In Klein's studies, however, all animals were immunized and challenged via the intraperitoneal route.

The purpose of the present study was to determine the ability of an aluminum-hydroxide-gel-adsorbed B. anthracis protective antigen (derived from anaerobic culture) to protect guinea pigs (immunized subcutaneously) against large aerosol doses of virulent B. anthracis spores.
II. MATERIALS AND METHODS

A. IMMUNIZATION AND ANTIBODY TITER PROCEDURES

The vaccination schedule for this study was divided into two phases. In Phase I, guinea pigs were inoculated subcutaneously with 0.5 milliliter of vaccine containing approximately 10 milligrams of crude antigen. This vaccine was obtained from Dr. Milton Puziss, Medical Investigation Division. The description of the method used to develop this vaccine has been recently submitted for publication. In Phase II, guinea pigs were inoculated three times (0.5 milliliter per injection) at two-week intervals over a period of four weeks.

Blood sera from all animals were tested for anthrax antibody titers three days prior to challenge. The serological test used to measure antibody titer is referred to as the "agar gel precipitation test" and is a modification of a test described by C. B. Thorne and F. C. Belton in 1957. All serological tests were conducted by Mr. John G. Ray, Jr., Medical Investigation Division.

B. CHALLENGE PROCEDURES

Two strains of B. anthracis spore cultures were used in the challenging of immunized and control animals. These strains were designated as V1B and NH6. Both strains were highly virulent for guinea pigs and monkeys by the respiratory or intracutaneous route.

In Phase I, guinea pigs were challenged via the respiratory route at two, three, and four weeks post-vaccination. In Phase II, groups of animals were challenged separately by both the respiratory and intracutaneous route, two weeks after the third injection of antigen or six weeks after the first injection.

Respiratory challenge of guinea pigs was carried out in the Reyniers chamber, by exposing them to aerosols of B. anthracis spores generated by the UCTL atomizer (particle number median diameter, 2.5 microns) at a temperature of 25°C ±2°C and relative humidities of 28 ±3 per cent.

Calculated inhaled doses for guinea pigs in both experimental phases ranged from 2 x 10^3 to 4 x 10^6 spores. From 6 to 10 animals were exposed at a point, and aerosol dose was controlled by varying animal exposure time. All aerosols were sampled with Shipe impingers containing 25 milliliters of sterile distilled water as collecting fluid. Concentration of spores per liter of aerosol was calculated from counts of colonies grown on a nutrient agar plate that had been streaked previously with impinger fluid and incubated twenty-four hours at 37°C.
Antibody titers, respiratory LD50 values, and 95 per cent confidence limits obtained from immunized and control animals tested in Phase I of this study are recorded in Table I. It can be seen from these results that guinea pigs challenged (with either strain of anthrax) two weeks after vaccination gave respiratory LD50 values that were approximately 2½ logs greater than that obtained with control animals, indicating that the *B. anthracis* antigen at this point offered some protection to guinea pigs against respiratory challenge. On the third and fourth week post-vaccination, animals challenged with strain VIB showed LD50 values that did not differ significantly from values obtained with control animals. Respiratory LD50 values obtained at three and four weeks with strain NH6, however, showed no significant change from the two-week values, as seen in the case of strain VIB. This finding indicated that the *B. anthracis* antigen was able to produce a higher level of protection over a longer period of time against strain NH6 than it did for strain VIB, when only one injection of antigen was administered.

It is interesting to note that decrease in protection against strain VIB occurred simultaneously with a gradual drop in antibody titer over the four-week period. An observation of definite significance was the fact that strain VIB was more virulent via the respiratory route for guinea pigs than strain NH6, as demonstrated by the LD50 values.

Respiratory LD50 values obtained in Phase II are shown in Table II. These results indicated, compared with those in Table I, that with either strain of anthrax, three inoculations of antigen afforded more protection to the guinea pig against *B. anthracis* spores than one inoculation. This observation was borne out by the fact that the respiratory LD50 values for both strains obtained two weeks after the third vaccination (Table II) were approximately a log greater than those obtained two weeks after one vaccination (Table I).

LD50 values obtained with immunized animals challenged intracutaneously were extremely interesting. In the case of strain VIB, the immunity afforded by protective antigen was much greater than that observed with animals challenged by the respiratory route. This statement is borne out by the fact that the intracutaneous LD50 for immunized animals obtained with strain VIB (Table II) was approximately five logs greater than the intracutaneous LD50 values obtained for control animals. Conversely, the intracutaneous LD50 value obtained with strain NH6 for immunized animals was only three logs greater than the LD50 value obtained for control animals. This difference in protection observed for the two strains via the intracutaneous route can be logically explained on the basis that strain NH6 was shown to be more virulent for control guinea pigs via the
<table>
<thead>
<tr>
<th>Time Elapsing Between Vaccination and Challenge, weeks</th>
<th>Vaccinates</th>
<th>Controls²/³</th>
<th>95% Confidence Limits, spores</th>
<th>Respiratory LD₅₀, spores</th>
<th>95% Confidence Limits, spores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Antibody Titer</td>
<td>Respiratory LD₅₀, spores</td>
<td>95% Confidence Limits, spores</td>
<td>Respiratory LD₅₀, spores</td>
<td>95% Confidence Limits, spores</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Challenge Strain V1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1:32</td>
<td>2.3 x 10⁵</td>
<td>8.6 x 10⁴</td>
<td>6.5 x 10³</td>
<td>3.9 x 10²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1:16</td>
<td>5.2 x 10⁶</td>
<td>9.0 x 10⁵</td>
<td>1.3 x 10⁴</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1:8</td>
<td>3.9 x 10⁶</td>
<td>1.2 x 10⁶</td>
<td>5.5 x 10³</td>
<td>2.1 x 10⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Challenge Strain NH₁₆</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1:32</td>
<td>3.8 x 10⁵</td>
<td>2.1 x 10⁵</td>
<td>4.4 x 10⁴</td>
<td>1.3 x 10⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1:16</td>
<td>1.0 x 10⁵</td>
<td>7.1 x 10⁵</td>
<td>1.5 x 10⁵</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1:16</td>
<td>2.2 x 10⁵</td>
<td>6.6 x 10⁵</td>
<td>8.1 x 10⁶</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Controls prior to aerosol exposure had negative antibody titers, as measured by the agar gel precipitation test.
Table II. Results of Respiratory and Intracutaneous Challenge of Guinea Pigs Vaccinated Three Times with *B. Anthracis* Protective Antigen

| Challenge Route | Vaccinates | | | Controls^a | |
|-----------------|------------|----------|-------------------|----------|
| | Average Antibody Titer | LD₅₀ Values, spores | 95% Confidence Limits, spores | LD₅₀ Values, spores | 95% Confidence Limits, spores |
| Challenge Strain V1B | | | | | |
| Respiratory | 1:64 | 1.1 x 10⁸ | 4.3 x 10⁵ to 5.2 x 10⁶ | 3.0 x 10³ to 4.2 x 10⁴ |
| Intracutaneous | 1:64 | 1.7 x 10⁸ | 8.7 x 10⁶ to 4.1 x 10³ | 12.0 to 17 |
| Challenge Strain NH6 | | | | | |
| Respiratory | 1:64 | 1.8 x 10⁸ | 3.9 x 10⁶ to 3.6 x 10⁶ | 3.8 x 10⁴ to 6.8 x 10⁴ |
| Intracutaneous | 1:64 | 3.6 x 10³ | 2.3 x 10² to 5.7 x 10³ | 3.0 to 7.0 |

^a Controls prior to challenge had negative antibody titers, as measured by the agar gel precipitation test.
intracutaneous route than strain VIB. A final observation that was not anticipated was the finding that the "Time-to-Death" period for immunized animals was not significantly different from that observed for control animals.

Any attempt to compare or extrapolate these data with immunogenic results obtained with humans must take into consideration the fact that the amount of antigen administered to animals in this study was on a weight basis many-fold larger than that administered to personnel working with B. anthracis at Fort Detrick.

Preliminary B. anthracis immunity studies with strain VIB are now being conducted with rhesus monkeys. Results from these studies to date suggest that the B. anthracis protective antigen affords a much greater protection for rhesus monkeys challenged by the respiratory route than that demonstrated with guinea pigs.
IV. SUMMARY

In this study, guinea pigs were immunized with *Bacillus anthracis* protective antigen adsorbed on aluminum hydroxide. Animals were vaccinated subcutaneously with varying amounts of antigen and then challenged separately via the respiratory and intracutaneous routes with spores of two virulent strains (V1B and NH6) of *B. anthracis*. The results of this study demonstrated the following trends:

(a) Guinea pigs immunized with one subcutaneous inoculation of protective antigen and then challenged by the respiratory route with strain V1B demonstrated a definite drop in resistance to *B. anthracis* over a four-week post-vaccinal period, as indicated by a drop in the respiratory LD50 value from 2.3×10^6 to 3.9×10^6 spores. Immunized animals challenged comparably with strain NH6 did not show a drop in the level of resistance over the same time period.

(b) LD50 values obtained with control animals indicated that strain V1B was more virulent for guinea pigs via the respiratory route than strain NH6.

(c) Guinea pigs vaccinated subcutaneously three times over a four-week period displayed a higher level of resistance to respiratory challenge with both strains of *B. anthracis* than that obtained with one vaccination. This observation was confirmed by the fact that the respiratory LD50 value for immunized animals was approximately one log greater than that obtained for one vaccination.

(d) LD50 values obtained with immunized animals challenged intracutaneously with strain V1B indicated that a higher level of immunity was obtained against this route of challenge than observed via the respiratory route, on the basis of LD50 values observed with control guinea pigs.

(e) LD50 values obtained with immunized animals challenged intracutaneously with strain NH6 indicated that a much lower level of immunity was obtained with strain NH6 than with strain V1B against this route of challenge.
LITERATURE CITED

MEMORANDUM FOR Administrator, Defense Technical Information Center, ATTN: DTIC-OCA, 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to the following documents. Request the limited distribution statement assigned to these documents be changed to "Approved for public release; distribution unlimited." Copies of these documents should be released to the National Technical Information Service and should be made available to the public on the Defense Technical Information Center public web site.

 AD442411 AD864551
 AD285613 AD285614
 AD293694 AD818676
 AD477375 AD854094
 AD464951

2. Point of contact for this request is Ms. Judy Pawlus at DSN 343-7322 or by email at judy.pawlus@det.amedd.army.mil.

FOR THE COMMANDER:

PHYLIS M. RINEHART
Deputy Chief of Staff for Information Management