NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Best Available Copy
TEST: MATERIAL - CHOBERT 3/32 HOLLOW STEEL RIVETS - GALVANIC CORROSION EFFECTS WITH 7075 ALUMINUM - INVESTIGATION OF

OBJECT: To determine the susceptibility of the inside surface of Chobert rivets to corrosion when such rivets are used to attach FXWO20 nutplates to 7075-T6 aluminum alloy.

TEST SPECIMENS AND PROCEDURE: Two assemblies were fabricated of 7075-T6 aluminum alloy using six sets of fasteners for each assembly. The fasteners consisted of FXW014-16 titanium bolts and FXW020-55 aluminum nutplates which were joined to the 7075-T6 aluminum with Chobert type 224/310 steel rivets (cadmium plated) as shown in Figure 1. The 7075-T6 alloy was clad on one side, and the assembly was made such that the bare surfaces of the alloy were together (clad sides out). The two assemblies were identical with the exception that the rivets on one assembly received a wash prime treatment. A similar assembly was fabricated for use as a control. The control assembly contained MS20426-AD3 aluminum rivets instead of the steel rivets.

After fabrication, the specimens were exposed to 200 hour salt spray in accordance with FTMS151, Method 811P. Photographs were made at 50 hour intervals. After salt spray exposure, the bolts and rivets were torqued using inch/pound torque wrench and the failure values were recorded.

RESULTS: Table I lists the torque values required to fail the bolts and rivets after 200 hour salt spray exposure. The operating conditions of the salt spray chamber during the test are given in Table II. Figures 1 thru 4 show specimens after each 50 hour salt spray exposure interval. Figure 5 shows bare aluminum which had been in contact with an aluminum rivet after 200 hours salt spray. Figure 6 is the same except Chobert steel rivets were used.

DISCUSSION: Information is needed to determine what effect salt spray exposures have upon the inside surface of Chobert rivets used to attach FXW020 nutplates to 7075-T6 aluminum alloy.

Table I shows that no appreciable difference was found between the torque values of Chobert rivets with wash prime application and the same type rivets with no wash prime. In production these rivets are required to pass 95 - 110 in./lbs. torque without failure, and bolts are required to pass 190 - 210 in./lbs. without failure. All values in Table I are above these limits. Figure 4 shows that after 200 hours salt spray exposure the two assemblies (one with wash prime and one with no wash prime) are identical in appearance. It may be noted that the assembly with aluminum rivets is comparable to the two assemblies with Chobert rivets. More corrosion was evident on aluminum which had been in contact with the Chobert rivets than on that which had been in contact with aluminum rivets (see Figures 5 and 6). However, since the aluminum area is so much greater than the steel area, corrosion would be minor and the aluminum would soon become passive.

CONCLUSIONS: The results of this test show the following:

1. Significant corrosion did not occur in or near Chobert (cadmium plated steel) rivets when joined to FXW020 nutplates and 7075-T6 aluminum alloy and exposed to 200 hour salt spray.

2. The use of wash prime on Chobert rivets is not considered necessary in this application.

The tests described in this report were conducted between 8 December 1958 and 9 January 1959.

*See notes on page 2.

WITNESS:

DATE: 30 January 1959
TABLE I

<table>
<thead>
<tr>
<th>Material Strengths</th>
<th>Aluminum Alloys</th>
<th>190</th>
<th>200</th>
<th>200</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 20126-AD3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- No reading (Missed exact reading at failure, but was in excess of 200 in./lbf)
- No counterpart

Assembly Requirements:
- Type Rivets
- Required torque to fail

Results of Torque Tests on Aluminum Assemblies
TABLE II

<table>
<thead>
<tr>
<th>TEMPERATURE OF BOI (\theta)</th>
<th>AIR GAUGE PRESSURE psig</th>
<th>TEMPERATURE OF HUMIDIFIER (\theta)</th>
<th>SPECIFIC GRAVITY OF SALT SOLUTION</th>
<th>SPECIFIC GRAVITY OF FOG SOLUTION</th>
<th>ML. FOG/HR. COLLECTED IN 10 CM FUNNEL</th>
<th>pH OF SALT SOLUTION</th>
<th>pH OF FOG SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM</td>
<td>97(^{\circ})</td>
<td>12</td>
<td>110(^{\circ})</td>
<td>1.157</td>
<td>1.153</td>
<td>1.2</td>
<td>7.1</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>92(^{\circ})</td>
<td>12</td>
<td>100(^{\circ})</td>
<td>1.148</td>
<td>1.146</td>
<td>0.6</td>
<td>6.5</td>
</tr>
</tbody>
</table>

I. DESCRIPTION OF SPECIMENS AND/OR PARTS

Size: 10" x 2" x 0.250" (complete assembly)

Alloy and Condition: 7075-T6 aluminum, titanium bolts, rivets - steel with cadmium plate and aluminum

Edges Sealed With: None

Pre-Exposure Cleaning: MEK wipe

II. No. of Specimens: 3

III. Reason for Test or Use of Part: Check corrosion resistance of rivets

IV. Exposure Time: 200 hours

Date and Time in Chamber: 1-2-58 1-6-58 1-8-58 1-10-58

Date and Time out of Chamber: 1-5-58 1-8-58 1-10-58 1-12-58

V. Method of Specimen Support: Specimens flat on non-corrosive plexiglass rack.

VI. Results and Remarks: (See Report)
EFFECT OF 150 HOURS SALT SPRAY EXPOSURE
LIFE OF 200 HOURS
SALT SPRAY EXPOSURE
7073 BAR ALUMINUM IN CONTACT WITH ALUMINUM RIVET AFTER 200 HRS. SALT SPRAY EXPOSURE.
B-58 F-8165
CONVAIR FT. WORTH TEXAS