NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
MOTOR CASE FABRICATION
FROM WIDE CLOSE-TOLERANCE STEEL SHEETS

Prepared by
Bernard B. Moss

MISSILE AND SPACE SYSTEMS DIVISION
Douglas Aircraft Company, Inc.
Santa Monica, California
Contract: AF33(600)-39653
ASD-7-787

December 1961 - April 1962

Six missile motor cases of the second stage Nike-Zeus configuration were manufactured by roll-and-weld fabrication methods. In these cases the processing technique of resistance seam welding heat treated components was employed. All six satisfactory met the proof test at a theoretical hoop stress of 237,000 psi.
MOTOR CASE FABRICATION
FROM WIDE CLOSE-TOLERANCE STEEL SHEETS

Prepared by
Bernard B. Moss

MISSILE AND SPACE SYSTEMS DIVISION
Douglas Aircraft Company, Inc.
Santa Monica, California
Contract: AF33(600)-39653
ASD-7-787

December 1961 - April 1962

Six missile motor cases of the second stage Nike-Zeus configuration were manufactured by roll-and-weld fabrication methods. In these cases the processing technique of resistance seam welding heat treated components was employed. All six satisfactorily met the proof test at a theoretical hoop stress of 237,000 psi.

FABRICATION BRANCH
MANUFACTURING TECHNOLOGY LABORATORY

ASD, AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO
MOTOR CASE FABRICATION
FROM WIDE CLOSE-TOLERANCE STEEL SHEETS

CONTRACT: AF 33(600)-39653
ASD-7-787

MISSILE AND SPACE SYSTEMS DIVISION

Douglas Aircraft Company, Inc.
3000 Ocean Park Blvd.
Santa Monica, California

Approved by

L. Waisman
Assistant Chief Design Engineer
Materials Research & Production Methods

Prepared by

B. B. Moss
Materials Research & Production Methods
MOTOR CASE FABRICATION
FROM WIDE CLOSE-TOLERANCE STEEL SHEETS

Prepared by Bernard B. Moss
DOUGLAS AIRCRAFT COMPANY, INC.

This report covers the end use of the AISI 4340 steel sheets remaining at
the Douglas Aircraft Co., Torrance facility at the completion of the Symposium
on Wide Close-Tolerance Steel Sheets held at Pacific Palisades, June 27 and 28,
1961. It is published as supplemental to the Douglas Aircraft Company present-
tation at the symposium.

Six missile motor cases of the second stage Nike-Zeus configuration were manufac-
tured by roll-and-weld fabrication methods. In these cases the processing
technique of resistance seam welding heat treated components was employed. All
six satisfactorily met the proof test at a theoretical hoop stress of 237,000
psi.
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligations whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from ASTIA, Document Service Center, Arlington Hall Station, Arlington 12, Virginia.

Copies of ASD Technical Reports should not be returned to the ASD Air Force Systems Command unless return is required by security considerations, contractual obligations, or notice on a specific document.
This report covers all work performed by the participating contractor Douglas Aircraft Company, Inc., from December 1961 to April 1962. The report was released by the author in May, 1961 for publication as ASD Technical Report 62-7-787.

This project was negotiated by the Fabrication Branch, Manufacturing Technology Laboratory, ASD, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. The assigned project engineer for ASD, Air Force Systems Command was Mr. Robert T. Jameson, ASRCTF. The assigned project engineer for Douglas Aircraft Company, Inc., Missile and Space Systems Division, was Mr. Bernard B. Moss, senior specialist. This disclosure is based on work performed by the contractor, under Air Force Contract AF33(600)-39653.

The primary objective of the Fabrication Branch of the Manufacturing Technology Laboratory is to increase producibility and to improve the quality and efficiency of the fabrication of aircraft, missiles, and components thereof. This report is being disseminated in order to advise of the experience gained in the use of wide steel sheets, thereby assisting industry in reducing costs and improving reliability and efficiency and giving "MORE AIR FORCE PER DOLLAR".

Your comments are solicited on the potential utilization of wide steel sheets as applied to present or future production programs. Suggestions concerning additional manufacturing methods development required on this or other subjects will be appreciated.
PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

[Signature]

ARDEN B. HUGHES
Lt. Colonel, USAF
Chief, Manufacturing Technology Laboratory
Directorate of Materials & Processes
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>FABRICATION</td>
<td>2</td>
<td>4 4</td>
</tr>
<tr>
<td>INSPECTION</td>
<td>3</td>
<td>6 6</td>
</tr>
<tr>
<td>PROCESS CONTROL</td>
<td>4</td>
<td>8 8</td>
</tr>
<tr>
<td>PROOF TESTING</td>
<td>5</td>
<td>11 11</td>
</tr>
<tr>
<td>TABLES</td>
<td>6</td>
<td>15 15</td>
</tr>
<tr>
<td>FIGURES</td>
<td>7</td>
<td>18 18</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>8</td>
<td>23 23</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION
INTRODUCTION

This report is supplemental to the Douglas Aircraft Company presentation at the Symposium on Wide, Close-Tolerance Steel Sheets which was sponsored by the United States Air Force, and was held at Pacific Palisades, June 27 and June 28, 1961. The proceedings and presentations were published in October, 1961 as ASD Technical Report 61-7-787a. The publication of this supplemental report serves to put on record the end use of the wide steel sheets, alloy AISI 4340, that remained in the possession of the Douglas Aircraft Company at the conclusion of the above Symposium.

It was previously demonstrated that a motor case cylinder could successfully be fabricated by a 360° single roll, provided a wide enough sheet is obtainable. The original objective in demonstrating the feasibility of eliminating a longitudinal fusion weld by the use of the wide steel sheet furnished by this contract was achieved. This procedure required special tooling which was no longer available when the second set of motor cases was released for production. Each sheet was therefore sheared to the width required for production by the standard Douglas roll-and-weld fabrication procedure which employs two longitudinal fusion welds. The necessity of following this procedure in no way detracts from the success of the United States Air Force sponsored program which resulted in the extra wide sheets furnished, since the Douglas fabrication techniques and controls, are directly applicable to the double or single longitudinal weld procedure, provided proper tooling is available.

The most significant change in the processing since the previous report was prepared is the weld-after-heat-treatment sequence. The assembly sequence of the
three main motor case components, the cylinder, dome, and the cone, as previously reported, was to roll cylinder half shells, longitudinally butt fusion weld, size the cylinder, fit the dome and cone to the cylinder and install by resistance seam welding, and then heat treat the entire structure. The feasibility of resistance seam welding the dome and cone to the cylinder after they have been individually heat treated was established experimentally, and then applied to the production line motor cases. The six motor cases covered by this report were handled as six routine production cases, released for production, after the weld-after-heat-treat fabrication sequence was firmly established as the standard processing sequence.
SECTION II
FABRICATION
FABRICATION

The fabrication of the shell was unchanged with regard to the basic processing and handling, and is adequately covered in the previous report. The cone is machined from a die forging and this sequence is unchanged. The deep drawing of the dome was changed in that a new Douglas design hydraulic forming press was used. This press incorporates the concept of a variable hold-down pressure of the blank thereby permitting more consistent control of the material thickness during the forming operation, than is normally obtained with the conventional type forming press.

The heat treatment of the components is carried out in a Gantry type, inverted pit furnace employing the following heat treatment procedure.

(a) Austenitize for 1-1/2 hours at 1525°F in an endothermic atmosphere.
(b) Quench in oil.
(c) Temper for two hours at 475°F.

After heat treatment, the end closures, the dome and the cone, are fitted to the cylinder and installed by resistance seam welding. This sequence required considerable development work in establishing proper weld settings, and the required processing control. It has resulted in a motor case with increased reliability, permitting the proof testing to approximately 0.05% permanent set (a theoretical calculated hoop stress of 237,000 psi in the cylinder).
SECTION III
INSPECTION
INSPECTION

The final inspection of the completed assembly is unchanged from what was previously reported. The welds are x-rayed and are inspected magnetically. Figure 1 shows a motor case positioned on the magnetic particle inspection unit in the normal position for inspecting. The final dimensional check is carried out electronically in a unit specifically designed for this purpose. Figure 2 shows a motor case on the inspection stand in the inverted position with the cone end up.
SECTION IV
PROCESS CONTROL
PROCESS CONTROL

The main areas of processing control at which monitoring includes tensile test coupons are the incoming receiving inspections, the fusion welding, the resistance seam welding and the heat treatment. The incoming receiving inspection and testing is unchanged from what was previously reported.

The longitudinal fusion welds are identified as "A" and "B". A tensile coupon is prepared from the trim area of the cylinder across each weld with the weld bead at the reduced section. This is illustrated in Figure 3. The coupons proceed through the same heat treatment as the cylinder and are then tested. Table I give the mechanical strength data of the fusion weld control coupons for the six motor cases covered by this report.

At regular intervals the seam welder settings for any specific motor case configuration are checked by welding a special test panel, using heat treated steel sections that are the same gage as the mating motor case components. Strips of the panel are then tested in tension. This special test coupon is illustrated in Figure 4. Due to the offset character of the test specimen and the resulting bending moment at the nugget the strength values obtained do not give an absolute value of the strength at the joint. However the test has been found to be very useful in monitoring the resistance seam weld settings. The data for the six motor cases, are given in Table 2, and are included to illustrate the narrow scatter, which points up the close control that can be exercised in this type of closure joining.

The heat treatment cycle and the atmosphere control are monitored by including tensile coupons with each heat treat load. These are compared with the strength...
of copper plated coupons included with the same load. Table 3 gives the heat treatment control data for the six cylinder components of the motor cases covered by this report.
SECTION V

PROOF TESTING
PROOF TESTING

As has been previously indicated the completed motor case is proof tested by pressurizing with oil to a theoretical hoop stress in the cylinder of 237,000 psi. This results in a permanent set in the cylinder of approximately .05%. The data covering the proof testing of the six motor cases is given in Table 4.
SECTION VI
TABLES
<table>
<thead>
<tr>
<th>MOTOR CASE NO.</th>
<th>WELD</th>
<th>YIELD STR. PSI x 10^-3 0.2 OFFSET</th>
<th>ULTIMATE STRENGTH PSI x 10^-3</th>
<th>ELONGATION % IN 2 INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC141</td>
<td>A</td>
<td>217.2</td>
<td>255.5</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>217.5</td>
<td>255.6</td>
<td>6.0</td>
</tr>
<tr>
<td>RC142</td>
<td>A</td>
<td>214.8</td>
<td>250.8</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>219.6</td>
<td>259.2</td>
<td>7.0</td>
</tr>
<tr>
<td>RC143</td>
<td>A</td>
<td>NOT AVAILABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>NOT AVAILABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC144</td>
<td>A</td>
<td>218.4</td>
<td>261.1</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>217.7</td>
<td>256.9</td>
<td>7.0</td>
</tr>
<tr>
<td>RC145</td>
<td>A</td>
<td>220.5</td>
<td>260.8</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>220.4</td>
<td>260.1</td>
<td>7.0</td>
</tr>
<tr>
<td>RC146</td>
<td>A</td>
<td>221.1</td>
<td>257.8</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>224.2</td>
<td>263.9</td>
<td>6.0</td>
</tr>
<tr>
<td>MOTOR CASE NO.</td>
<td>WELD</td>
<td>ULTIMATE STRENGTH PSI x 10^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC141</td>
<td>Dome</td>
<td>175.6, 184.0, 183.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>178.8, 181.0, 180.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cone</td>
<td>197.4, 202.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>197.1, 196.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R142</td>
<td>Dome</td>
<td>195.9, 193.7, 195.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>196.6, 192.7, 197.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cone</td>
<td>195.1, 193.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>195.1, 194.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC143</td>
<td>Dome</td>
<td>192.2, 195.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>194.7, 194.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cone</td>
<td>NOT AVAILABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC144</td>
<td>Dome</td>
<td>150.1, 191.6, 151.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>193.7, 199.5, 165.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cone</td>
<td>202.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>201.8, 200.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200.3, 198.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC145</td>
<td>Dome</td>
<td>195.6, 194.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>193.0, 188.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cone</td>
<td>202.0, 204.8, 202.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC146</td>
<td>Dome</td>
<td>177.0, 178.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>181.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cone</td>
<td>NOT AVAILABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTOR CASE NO.</td>
<td>COUPON CONDITION</td>
<td>YIELD STR. PSI x 10^{-3} 0.2 OFFSET</td>
<td>ULTIMATE STRENGTH PSI x 10^{-3}</td>
<td>ELONGATION % IN 2 INCHES</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>RCI41</td>
<td>Unplated</td>
<td>211.4 213.3 210.7 209.6</td>
<td>253.1 253.4 250.4 251.6</td>
<td>6.5 6.5 6.5 6.5</td>
</tr>
<tr>
<td></td>
<td>Copper plated</td>
<td>219.9 225.8</td>
<td>262.1 263.9</td>
<td>7.0 7.0</td>
</tr>
<tr>
<td>RCI42</td>
<td>Unplated</td>
<td>215.7 213.8 213.4 211.9</td>
<td>253.8 254.7 253.7 251.5</td>
<td>4.6 6.2 6.2 6.2</td>
</tr>
<tr>
<td></td>
<td>Copper plated</td>
<td>218.1 280.2</td>
<td>259.5 260.4</td>
<td>7.0 7.0</td>
</tr>
<tr>
<td>RCI43</td>
<td>Unplated</td>
<td>212.8 207.4 212.2 209.9</td>
<td>251.6 244.6 250.0 245.8</td>
<td>7.0 7.0 7.0 6.5</td>
</tr>
<tr>
<td></td>
<td>Copper plated</td>
<td>210.1 219.1</td>
<td>263.5 258.1</td>
<td>6.5 6.5</td>
</tr>
<tr>
<td>RCI44</td>
<td>Unplated</td>
<td>212.8 210.9 217.3 213.3</td>
<td>254.8 252.9 257.6 254.4</td>
<td>6.0 7.0 6.0 6.0</td>
</tr>
<tr>
<td></td>
<td>Copper plated</td>
<td>222.2 222.8</td>
<td>263.3 265.7</td>
<td>7.5 6.0</td>
</tr>
<tr>
<td>RCI45</td>
<td>Unplated</td>
<td>215.5 215.6 215.1 210.7</td>
<td>254.7 257.0 257.9 254.0</td>
<td>6.0 6.0 7.0 7.0</td>
</tr>
<tr>
<td></td>
<td>Copper plated</td>
<td>220.2 220.7</td>
<td>261.1 262.2</td>
<td>6.5 6.5</td>
</tr>
<tr>
<td>RCI46</td>
<td>Unplated</td>
<td>215.1 213.1 214.7 215.2</td>
<td>257.0 253.6 255.2 255.1</td>
<td>6.0 6.0 6.0 6.0</td>
</tr>
<tr>
<td></td>
<td>Copper plated</td>
<td>222.2 222.9</td>
<td>262.2 262.6</td>
<td>6.5 6.5</td>
</tr>
</tbody>
</table>
TABLE 4

PROOF TESTING DATA

NIKE-ZEUS - SECOND STAGE - P/N 5682968

<table>
<thead>
<tr>
<th>MOTOR CASE NO.</th>
<th>DATE OF TEST</th>
<th>MINIMUM SECTION THICKNESS INCHES</th>
<th>MAXIMUM PRESSURE PSIG</th>
<th>THEORETICAL HOOP STRESS IN CYLINDER $f = \frac{Pr}{t}$ PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC141</td>
<td>1-24-62</td>
<td>.115</td>
<td>1514</td>
<td>237,000</td>
</tr>
<tr>
<td>RC142</td>
<td>2-5-62</td>
<td>.111</td>
<td>1461</td>
<td>237,000</td>
</tr>
<tr>
<td>RC143</td>
<td>3-28-62</td>
<td>.112</td>
<td>1475</td>
<td>237,000</td>
</tr>
<tr>
<td>RC144</td>
<td>2-2-62</td>
<td>.113</td>
<td>1488</td>
<td>237,000</td>
</tr>
<tr>
<td>RC145</td>
<td>4-13-62</td>
<td>.114</td>
<td>1501</td>
<td>237,000</td>
</tr>
<tr>
<td>RC146</td>
<td>3-28-62</td>
<td>.113</td>
<td>1488</td>
<td>237,000</td>
</tr>
</tbody>
</table>

* $r = 18$ inches
SECTION VII
FIGURES
FIGURE 2

Motor case on the inspection stand in the inverted position with the cone end up.
FUSION WELD TEST COUPON LOCATION

FIGURE 3
Location of fusion weld control test coupon cut from trim area.
ROLL SEAM WELD TEST COUPON

FIGURE 4

Special resistance seam weld control test coupon.
SECTION VIII
DISTRIBUTION LIST
DISTRIBUTION LIST

1 cy - Aerojet-General Corporation
6452 North Irwindale Avenue
Azusa, California

1 cy - Aerojet General Corporation
Attn: I. Liberman
11711 Woodruff Avenue
Downey, California

1 cy - Aeronautical Systems Division
Wright-Patterson AFB, Ohio
Attn: ASRCE Mr. Teres

6 cy - Aeronautical Systems Division
& I Repro.
Wright-Patterson AFB, Ohio
Attn: ASRCTF

1 cy - Aeronautical Systems Division
Attn: ASRKRA (Lt. W. Dyke
Wright-Patterson AFB, Ohio

1 cy - Aeronca Manufacturing Co.
Middletown, Ohio
Attn: Chief Engineer

1 cy - Aeronutronics Division
Ford Motor Co.
Ford Road, Newport Beach
Attn: R. E. Heise
Research Laboratory

1 cy - Aerospace Corporation Library
Technical Reports
2400 East El Segundo Boulevard
El Segundo, California

1 cy - Aerospace Industries Association
15th & H Streets, N. W.
Washington 25, D. C.

1 cy - Aerospace Industries Association
7660 Beverly Boulevard
Los Angeles 36, California

1 cy - Air Force Systems Command
Attn: RDIDEG (Mr. C. W. Kniffin)
Andrews AFB
Washington 25, D. C.

10 cy - Armed Services Techn, Info. Agency
Attn: TIPCD
Arlington Hall Station
Arlington 12, Virginia

1 cy - Armor Research Foundation
10 W. 35th Street
Chicago 16, Illinois

1 cy - Ballistic Systems Division
Attn: BSR, Deputy for Technical
Develop.
P. O. Box 262
Inglewood, California

1 cy - Battelle Memorial Institute
Defense Metals Info. Center
505 King Avenue
Columbus, Ohio

1 cy - Beech Aircraft Corporation
East Central Avenue
Wichita, Kansas
Attn: Chief Engineer

1 cy - Bell Aircraft Corporation
P. O. Box 482
Fort Worth 1, Texas
Attn: Chief Design Engineer

1 cy - Bendix Products Division
Missiles Department
400 S. Beiger Street
Mishawaka, Indiana
Attn: Chief, Airframe Design Corp.
Lockheed Aircraft Corporation
California Division
2555 North Hollywood Way
Burbank, California
Attn: Robert L. Vaughn,
Producibility Methods Engr.

Lockheed Aircraft Corp.
Marietta, Georgia
Attn: C. K. Bauer D/72-34

Lockheed Aircraft Corp.
Missile & Space Division
Attn: A. N. Petersen, Mgr.
P. O. Box 504
Sunnyvale, California

Lycoming Division
AVCO Manufacturing Corp.
Stratford, Connecticut
Attn: Chief Engineer

McDonnell Aircraft Corp.
P. O. Box 516
Lambert-St. Louis Municipal Arpt.
St. Louis 3, Missouri
Attn: E. Szabo

Martin Company
Baltimore 3, Maryland
Attn: Chief Design Engineer

Martin Company
P. O. Box 179
Denver 1, Colorado
Attn: Chief Engineer

Martin Company
Orlando, Florida
Attn: Chief Engineer

National Academy of Sciences
Materials Advisory Board
2101 Constitution Avenue
Washington 25, D. C.

National Aeronautics & Space Administration
1724 F. Street, N. W.
Washington 25, D. C.

National Aeronautics & Space Administration
Langley, Virginia
Attn: Technical Director

National Northern Division
American Potash & Chemical Corp.
P. O. Box 175
West Hanover, Massachusetts
Attn: General Manager

Naval Air Material Center
Naval Base Station
Philadelphia, Pennsylvania

Naval Research Laboratories
Washington 25, D. C.
Director
Attn: Code 2021

North American Aviation, Inc.
4300 East Fifth Avenue
Columbus 16, Ohio
Attn: E. Szabo

North American Aviation Inc.
International Airport
Los Angeles 45, California
Attn: Chief Engineer

Northrop Aircraft, Inc.
Norair Division
1001 East Broadway
Hawthorne, California

Redstone Arsenal
Commanding General
U. S. Army
Huntsville, Alabama
Attn: Chief, Structures Design
1 cy - Republic Aviation Corp.
Farmingdale, L. I., New York
Attn: H. Jones, Exec Vice-Pres

1 cy - Rohr Aircraft Corp.
P. O. Box 878
Chula Vista, California
Attn: Chief Structures Engineer

1 cy - Ryan Aeronautical Co.
Lindbergh Field
2701 Harbor Drive
San Diego 12, California

1 cy - Sikorsky Aircraft
Stratford, Connecticut
Attn: J. T. Gailigan
Chief Tool Engineer

1 cy - Solar Aircraft Co.
2200 Pacific Highway
San Diego 12, California
Attn: Chief Structures

1 cy - Space Systems Division
AF Unit Post Office
Los Angeles 45, California
Attn: SSKR (Mr. F. Becker)

1 cy - Thiokol Chemical Corp.
Brigham City, Utah
Attn: James A. Bryson

1 cy - United States Atomic Energy Commission
Attn: Margaret L. Plueger, Chief Information Section
Reference and Analysis Branch
Post Office Box 62
Oak Ridge, Tennessee

1 cy - U. S. Steel Corp.
505 William Penn Place
Pittsburgh 30, Pennsylvania
Attn: Mr. M. Lightner, Vice-pres