NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
ACIC TECHNICAL REPORT NO. 96

PRINCIPLES OF ERROR THEORY AND CARTOGRAPHIC APPLICATIONS

FEBRUARY 1962

Aeronautical Chart and Information Center
United States Air Force
St. Louis 18, Mo.
PRINCIPLES OF ERROR THEORY
AND CARTOGRAPHIC APPLICATIONS

ACJC Technical Report No. 96
February 1962

Prepared by
Clyde R. Greenwalt
Melvin E. Shultz

Submitted:

[Signature]
EDWARD H. THOMSON, Chief
Chart Research Division

Reviewed:

[Signature]
THOMAS C. FINNIE
Technical Director

Approved:

[Signature]
STEBBINS W. GRIFFITH, Colonel, USAF
Commander

AERONAUTICAL CHART AND INFORMATION CENTER
Second and Arsenal Streets
St Louis 18, Missouri
NOTICES

This report is issued to disseminate timely, useful technical data to activities engaged in cartography, geodesy, and related subjects. Nothing in this report is to be construed as necessarily coinciding with USAF doctrine.

This report does not contain information or material of a copyrighted nature, nor is a copyright pending on any portion thereof.
CONTENTS

LIST OF ILLUSTRATIONS v

LIST OF TABLES vi

PREFACE vii

ABSTRACT viii

1. ONE-DIMENSIONAL (LINEAR) ERRORS 1
 1.1. Introduction 1
 1.2. Classes of Errors 1
 1.3. Basic Concepts of Probability 2
 1.4. The Normal Distribution of a Continuous Random Variable 6
 1.5. Application of the Probability Density Function to Random Errors 9
 1.6. Precision Indexes 14
 1.7. Conversion Factors 17
 1.8. Propagation of Errors 18
 1.9. Examples of Linear Errors 21

2. TWO-DIMENSIONAL (ELLIPTICAL, CIRCULAR) ERRORS 21
 2.1. Introduction 21
 2.2. Elliptical Errors 23
 2.3. Circular Errors 23
 2.3.1. Circular Probability Distribution Function 23
 2.3.2. Circular Precision Indexes 25
 2.3.3. Circular Conversion Factors 41
 2.3.4. Propagation of Circular Errors 42
3. THREE-DIMENSIONAL (ELLIPSOIDAL, SPHERICAL) ERRORS

3.1. Introduction 43
3.2. Ellipsoidal Errors 43
3.3. Spherical Errors 44
 3.3.1. Spherical Probability Distribution Function 44
 3.3.2. Spherical Precision Indexes 45
 3.3.3. Spherical Conversion Factors 52
 3.3.4. Propagation of Spherical Errors 53

4. APPLICATION OF ERROR THEORY TO POSITIONAL INFORMATION 54
 4.1. Positional Errors 54
 4.2. The Accuracy Statement 55
 4.3. Summary of Formulas and Conversion Factors 58

APPENDIXES
 A Percentage Probability for Standard Error Increments
 B The Most Probable Value
 C Propagation of Errors
 D Derivation and Solution of the Two-Dimensional Probability Distribution Function
 E Derivation of the Spherical Probability Distribution Function
 F Substitution of the Circular Form for Elliptical Error Distributions

REFERENCES
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Probabilities of Numbers from the Roll of Two Dice</td>
<td>5</td>
</tr>
<tr>
<td>2a</td>
<td>Normal Probability Density Curve</td>
<td>8</td>
</tr>
<tr>
<td>2b</td>
<td>Normal Probability Distribution Curve</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Normal Probability Density Curve of Observed Values</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Normal Probability Density Curve of Errors</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>Probability Areas</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Normal Circular Distribution</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Curve of the $P(R)$ Function When $P(R) = 39.35%$</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>Curve of the $P(R)$ Function When $P(R) = 50.00%$</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>MSPE Probability Curve</td>
<td>38</td>
</tr>
<tr>
<td>10</td>
<td>Graph of Conversion Factors for 39.35% to 50% Probability</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>Graph of Conversion Factors for 50% to 39.35% Probability</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>Comparison of Spherical Standard Error Approximation Methods</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>MRSE Probability Curve</td>
<td>51</td>
</tr>
<tr>
<td>Table No.</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>I</td>
<td>Summary of Linear Precision Indexes</td>
<td>17</td>
</tr>
<tr>
<td>II</td>
<td>Linear Error Conversion Factors</td>
<td>17</td>
</tr>
<tr>
<td>III</td>
<td>Values of the Constant K</td>
<td>23</td>
</tr>
<tr>
<td>IV</td>
<td>Solution of (P(R)) Function for (P(R) = 39.35%)</td>
<td>34</td>
</tr>
<tr>
<td>V</td>
<td>Solution of (P(R)) Function for (P(R) = 50.00%)</td>
<td>36</td>
</tr>
<tr>
<td>VI</td>
<td>Summary of Circular Precision Indexes</td>
<td>41</td>
</tr>
<tr>
<td>VII</td>
<td>Circular Error Conversion Factors</td>
<td>41</td>
</tr>
<tr>
<td>VIII</td>
<td>Values for the Constant (W)</td>
<td>44</td>
</tr>
<tr>
<td>IX</td>
<td>Solution of (P(S)) Function for (P(S) = 50.00%)</td>
<td>49</td>
</tr>
<tr>
<td>X</td>
<td>Summary of Spherical Precision Indexes</td>
<td>52</td>
</tr>
<tr>
<td>XI</td>
<td>Spherical Error Conversion Factors</td>
<td>52</td>
</tr>
</tbody>
</table>
PREFACE

Optimum utilization of ACIC research and production requires that the accuracy of source material, interim and final products be considered. The accuracy is expressed by an error statement which indicates whether the product is reliable and acceptable or should be used with discretion. Therefore, the error statement must be representative of the product and have a sound statistical basis. The purpose of this paper is to present and explain the theory and procedures for providing a valid and meaningful error statement.

The normal distribution of linear errors is explained in detail because two and three-dimensional error distributions are more easily analyzed statistically, individual treatment of the linear components. The principles of the linear error distribution apply only to independent random errors, assuming that systematic errors have been eliminated or reduced sufficiently to permit treatment as random errors.

Although a truly circular or spherical error distribution seldom occurs in a sample of observations, the concepts are desirable for ease of computation and understanding. Consequently, considerable attention is given to the computation of an approximate circular or spherical error distribution from unequal linear components of a two or three-dimensional error distribution, yet retaining properties such as precision indexes of the truly circular and spherical distributions. Some characteristics of circular and spherical error distributions differ from those of the linear error distribution; however, the distinction is of an academic nature and hence is not emphasized in the text.

Organizations using ACIC charting products should find the discussion helpful in interpreting statements of cartographic accuracy. The formulas and principles can also be applied to weapon system accuracy evaluation and other purposes provided that the assumption of a normal distribution of independent random variables is feasible.

Important functions and equations are presented in the text, while lengthy derivations are relegated to appendixes. Liberal numbers of references are inserted after major headings to facilitate further study.
ABSTRACT

One of the most useful contributions of error theory is the precision index which identifies the error distribution and specifies the probability that the true error in a quantity does not exceed a certain value. This situation is applicable to the evaluation of map and geodetic information, in that it makes possible meaningful accuracy statements having uniform interpretation, and is compatible with established map accuracy standards which specify limits of permissible error in various categories. Standardized procedures and supporting theory for computing linear, circular, and spherical precision indexes are presented. The recommended procedure for computing the circular or spherical standard error from linear standard errors in X and Y, or X, Y, and Z directions, respectively, is to average the linear standard errors. Other precision indexes in the same error distribution are easily computed from the linear, circular, and spherical standard errors -- the most important precision indexes.
1. ONE-DIMENSIONAL (LINEAR) ERRORS

1.1. Introduction. Various aspects of the sciences of geodesy, cartography, and photogrammetry involve the measurement of physical quantities and the utilization of such measurements. Regardless of the precision of the instrument, no measurement device or method gives the true value for the quantity measured. Mechanical imperfections in instruments and the limitations introduced by human factors are such that repeated measurements of the same quantity result in different values. Variations among successive values are caused by errors¹ in the observations.

While the theory of errors does not yield a true value nor improve the quality of observations, it does provide a way of estimating the most probable value for the quantity and of determining the certainty attributable to the estimate. Once this has been established, a least squares adjustment can be used to remove or distribute the observational errors to obtain a solution which is relatively free of discrepancies.

1.2. Classes of Errors. (ref. 6, 19, 22) Errors fall into three general classes which may be categorized by origin as (1) blunders, (2) systematic, and (3) random.

¹The true error of each observation is the difference between the true value of a quantity and the measured value.
Blunders are mistakes caused by misreading scales, transposing figures, erroneous computations, or careless observers. They are usually large and easily detected by repeated measurements. Systematic errors follow some fixed law and are generally constant in magnitude and/or sign within a series of observations. The origin of systematic errors in geodetic measurements is primarily within the instrument or measuring device. Causes of systematic error include faulty instrument calibration, errors inherent in the graduation of scales, and changes in performance resulting from variations in temperature and humidity. Systematic errors can be eliminated or substantially reduced when the cause is known. Random errors are those remaining after blunders and systematic errors have been removed. They result from accidental and unknown combinations of causes beyond the control of the observer. Random errors are characterized by: (1) variation in sign — positive and negative errors occurring with equal frequency, (2) small errors occurring more frequently than large errors, and (3) extremely large errors rarely occurring.

The probability that a random error will not exceed a certain magnitude may be inferred from an analysis of the normal or Gaussian distribution of an infinite number of random variables.

1.3. Basic Concepts of Probability. (ref. 2, 3) Probability is defined as the frequency of occurrence in proportion to the number of possible occurrences, or simply, the ratio of the number of
successes to the number of trials. Let A and B symbolize two completely independent events. Denote \(P(A) \) as the probability of the event "A" and \(P(B) \) as the probability of the event "B". The probability of any event happening must be between zero and one. That is, zero probability means that the particular event will never take place, and a probability of one means that the particular event will occur each trial. For example, the probability of rolling the number 7 with a single die is 0.0 (an impossible event), but the probability of rolling a number from and including 1 through 6 is 1.0.

Rule 1. The probability of event A is equal to or greater than 0 but equal to or less than 1.

\[
0 \leq P(A) \leq 1
\]

Rule 2. The probability of a failure, or the probability of an event not occurring, is 1 minus the probability that it will occur.

\[
1 - P(A) = \text{failure of event A}
\]

Rule 3. The probability of either of two events A or B occurring is equal to the sum of their individual probabilities.

\[
P(A \text{ or } B) = P(A) + P(B)
\]

'Probability is also denoted by a percentage.'
An example is the probability of either a 3 or 4 occurring on the single roll of a die:

\[
P(3 \text{ or } 4) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}
\]

Rule 4. The probability of two events occurring simultaneously is equal to the product of their individual probabilities.

\[
P(A \text{ and } B) = P(A) \cdot P(B).
\]

An example is the probability of both \(A = 3\) and \(B = 4\) occurring in a single roll of 2 dice:

\[
P(3 \text{ and } 4) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}
\]

The probabilities of occurrence of the numbers summed from each of 36 possible combinations resulting from the single roll of two dice are presented in Figure 1. The probability of rolling the number 7, for example, is \(6/36\) or \(1/6\) since there are six combinations which have a sum of seven. A histogram of the data approximates the area under a superimposed smooth curve. If the number of dice in a single roll were increased, the histogram would rapidly approach the smooth curve, called the normal probability density curve.

\[\text{A column is constructed for each number by block, each representing an area equal to } \frac{1}{36} \text{ probability.}\]
<table>
<thead>
<tr>
<th>Number</th>
<th>Probability</th>
<th>Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>(1,1)</td>
</tr>
<tr>
<td>2</td>
<td>1/36</td>
<td>(1,2) (2,1)</td>
</tr>
<tr>
<td>3</td>
<td>2/36</td>
<td>(1,3) (3,1) (2,2)</td>
</tr>
<tr>
<td>4</td>
<td>3/36</td>
<td>(1,4) (4,1) (2,3) (3,2)</td>
</tr>
<tr>
<td>5</td>
<td>4/36</td>
<td>(1,5) (5,1) (2,4) (4,2) (3,3)</td>
</tr>
<tr>
<td>6</td>
<td>5/36</td>
<td>(1,6) (6,1) (2,5) (5,2) (4,3) (3,4)</td>
</tr>
<tr>
<td>7</td>
<td>6/36</td>
<td>(2,6) (6,2) (3,5) (5,3) (4,4)</td>
</tr>
<tr>
<td>8</td>
<td>5/36</td>
<td>(3,6) (6,3) (4,5) (5,4)</td>
</tr>
<tr>
<td>9</td>
<td>4/36</td>
<td>(4,6) (6,4) (5,5)</td>
</tr>
<tr>
<td>10</td>
<td>3/36</td>
<td>(5,6) (6,5)</td>
</tr>
<tr>
<td>11</td>
<td>2/36</td>
<td>(6,6)</td>
</tr>
<tr>
<td>12</td>
<td>1/36</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1

Probabilities of Numbers from the Roll of Two Dice

1 Note that the sum of the probabilities is 1.
1.4. **The Normal Distribution of a Continuous Random Variable.**

(ref. 3, 24) The area under the normal probability density curve (Figure 2a) represents the total probability of the occurrence of the continuous random variable \(x \) and is equal to one, or 100%.

The mathematical expression of the curve is the normal probability density function, \(p(x) \):

\[
p(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}}
\]

(1-1)

where:

\(x \) = the random variable

\(\mu \) = a parameter representing the mean value of \(x \)

\(\sigma \) = a parameter representing the standard deviation, a measure of the dispersion of the random variable from the mean, \(\mu \). (The square of the standard deviation is called the variance.)

\[
\sqrt{2\pi} = 2.5066 \ldots
\]

\(e \) = the base of natural logarithms, 2.71828...

The \(\mu \) parameters are computed from an infinite number of random variables:

\[
\mu = \frac{\sum_{i=1}^{n} x_i}{n}
\]

(1-2)
\[\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}} \] \hspace{1cm} (1-3)

where:

\[n \rightarrow \infty, \quad n = \text{the number of random variables}, \]

The normal probability distribution function determines the probability that the random variable will assume a value within a certain interval and is derived from the normal probability density function by integrating between limits of the desired interval. Letting the limits range from \(-\infty\) to \(x\):

\[P(x) = \int_{-\infty}^{x} p(x) \, dx \]

\[P(x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{2\sigma^2}} \, dx \] \hspace{1cm} (1-4)

The value of \(P(x)\) ranges between 0 and 1, illustrated in Figure 2b. As \(x\) approaches its upper limit, \(P(x)\) approaches 1; as \(x\) approaches its lower limit, \(P(x)\) approaches zero. This is true since \(x\) cannot exceed nor be less than its defined limits.
Normal Probability Density Curve

Normal Probability Distribution Curve
1.5. Application of the Probability Density Function to Random Errors. (ref. 3, 15, 21, 22) The normal probability density curve of an infinite number\(^1\) of measurements of the unknown quantity \(X\) is expressed by parameters analogous to those of equation (1-1). The true value \(\mu_X\) is the mean of the distribution of the observed values \(X_1, X_2, X_3 \ldots X_n\). The curve, illustrated in Figure 3, has the mathematical form:

\[
p(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x - \mu_X)^2}{2\sigma^2}}
\]

(1-5)

where: \(\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu_X)^2}{n}}\)

The normal probability density curve of errors has a mean of zero and is identical in form to that of the observed values. Illustrated in Figure 4, the curve is described by the function:

\[
p(\epsilon) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{\epsilon^2}{2\sigma^2}}
\]

(1-6)

where: \(\epsilon = \text{the true error; } \epsilon = X_1 - \mu_X\)

\(\sigma = \text{the standard deviation of the errors, hereafter designated the standard error; }\)

\(\sigma^2 = \frac{\sum_{i=1}^{n} \epsilon_i^2}{n}\)

\(^1\)The population or universe in statistics.
Since the true value of a quantity cannot be measured and an infinite number of measurements is impractical, estimated values obtained from a finite number or sample of measurements must be substituted for the true value and the parameters of the density function. The most probable value \(\bar{X} \) approximates the true value and is determined from the arithmetic mean of observed values:

\[
\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}
\]

(1-7)

The true error is approximated by the residual \(x' \), hereafter designated the error and defined as the difference between the observed value and the most probable value:

\[
x = x_i - \bar{X}
\]

(1-8)

The standard error computed from a sample \(\sigma_x \) is identified by a subscript and computed from:

\[
\sigma_x = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n-1}} = \sqrt{\frac{\sum x^2}{n-1}}
\]

(1-9)

1As the number of measurements in the sample becomes larger, the reliability of the estimate increases. Often, 30 values provide an adequate estimate.

2See Appendix B.

3The residual is represented by "y" in some texts.

4The standard error derived from a sample is designated in some texts by "s" or "m".
The normal probability density function of errors now becomes:

\[p(x) = \frac{1}{\sigma_x \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma_x^2}} \] \hspace{1cm} (1-10)

The parameters \(\bar{x} \) and \(\sigma_x \) may assume different values as various samples are selected from the same population and are, therefore, random variables with dispersion expressed by similar parameters. The standard error of the mean, \(\sigma_{\bar{x}} \), and the standard error of the standard error, \(\sigma_{\sigma} \), indicate the reliability of the estimate and help "round off" the computed values:

\[\sigma_{\bar{x}} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}} = \frac{\sigma_x}{\sqrt{n}} \] \hspace{1cm} (1-11)

\[\sigma_{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{2(n-1)^2}} = \frac{\sigma_x}{\sqrt{2(n-1)}} \] \hspace{1cm} (1-12)
Figure 3
Normal Probability Density Curve of Observed Values
\[p(\epsilon) \]

\[(X_1 < \mu_X) \quad (X_1 = \mu_X) \quad (X_1 > \mu_X) \]

Population

\[p(x) \]

\[(X_1 < \bar{x}) \quad (X_1 = \bar{x}) \quad (X_1 > \bar{x}) \]

Sample

Figure 4

Normal Probability Density Curve of Errors
1.6. **Precision Indexes.** (ref. 3, 22) A precision index reveals how errors are dispersed or scattered about zero and reflects the limiting magnitude of error for various probabilities. For example, 50% of all errors in a series of measurements do not exceed ±20 feet; 90% do not exceed ±49 feet. Although different errors are given, each expresses the same precision of the measuring process (Figure 5). The standard error and average error (\(\eta \)) are two indexes with theoretical derivations. Common usage has included three additional probability levels which are, in effect, precision indexes: (1) probable error (PE), (2) map accuracy standard (MAS), and (3) the three sigma error (3\(\sigma \)).

The standard error is the most important of the indexes and has the probability of:

\[
P(x_{\sigma}) = \int_{-\sigma_x}^{\sigma_x} p(x) \, dx = 0.6827 \quad (1-13)
\]

Or, 68.27% of all errors will occur within the limits of ± \(\sigma_x \).

The average error is defined as the mean of the sum of the absolute values of all errors:

\[
\eta = \frac{\sum_{i=1}^{n} |(x_i - \bar{x})|}{n} = \frac{\sum |x_i|}{n} \quad (1-14)
\]

The probability represented by the average error is 0.5751, or 57.51%. The average error is easily computed from the standard error:

\[
\eta = 0.7979 \, \sigma_x \quad (1-15)
\]
The probable error is that error which 50% of all errors in
a linear distribution will not exceed. Specifically, the true error
is equally likely to be larger or smaller than the probable error.
Expressed mathematically:

\[PE = \int_a^b p(x) \, dx = 0.50 \quad (1-16) \]

The probable error is computed from the standard error:

\[PE = 0.6745 \sqrt{\frac{\sum x^2}{n-1}} = 0.6745 \sigma_x \quad (1-17) \]

The U.S. National Map Accuracy Standards specify that no
more than 10% of map elevations (a one-dimensional error) shall be in
error by more than a given limit. The standards are commonly inter-
preted as limiting the size of error of which 90% of the elevations
will not exceed. Therefore, the map accuracy standard is represented
by:

\[MAS = \int_a^b p(x) \, dx = 0.90 \quad (1-18) \]

or, computed from the standard error:

\[MAS = 1.6449 \sigma_x \quad (1-19) \]

The three sigma error, as the name implies, is an error
three times the magnitude of the standard error. The 3\(\sigma\) error is
used because it approaches near-certainty — 0.9973 or 99.73% probability.
Figure 5

Probability Areas
1.7. **Conversion Factors.** (ref. 20, 27) Since all precision indexes are related to the standard error (Table I), factors computed from this relationship (Table II) will convert the error at a given probability to the error at another probability.

Table I

Summary of Linear Precision Indexes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>.5000</td>
<td>0.6745 σ_x</td>
</tr>
<tr>
<td>η</td>
<td>.5751</td>
<td>0.7979 σ_x</td>
</tr>
<tr>
<td>σ_x</td>
<td>.6827</td>
<td>1.0000 σ_x</td>
</tr>
<tr>
<td>MAS</td>
<td>.9000</td>
<td>1.6449 σ_x</td>
</tr>
<tr>
<td>3σ</td>
<td>.9973</td>
<td>3.0000 σ_x</td>
</tr>
</tbody>
</table>

Table II

Linear Error Conversion Factors

<table>
<thead>
<tr>
<th>From</th>
<th>50.00%</th>
<th>57.51%</th>
<th>68.27%</th>
<th>90.00%</th>
<th>99.73%</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00%</td>
<td>1.0000</td>
<td>1.1830</td>
<td>1.4826</td>
<td>2.4387</td>
<td>4.4475</td>
</tr>
<tr>
<td>57.51%</td>
<td>0.8453</td>
<td>1.0000</td>
<td>1.2533</td>
<td>2.0615</td>
<td>3.7599</td>
</tr>
<tr>
<td>68.27%</td>
<td>0.6745</td>
<td>0.7979</td>
<td>1.0000</td>
<td>1.6449</td>
<td>3.0000</td>
</tr>
<tr>
<td>90.00%</td>
<td>0.4101</td>
<td>0.4861</td>
<td>0.6080</td>
<td>1.0000</td>
<td>1.8239</td>
</tr>
<tr>
<td>99.73%</td>
<td>0.2248</td>
<td>0.2660</td>
<td>0.3333</td>
<td>0.5483</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
1.8. **Propagation of Errors.** (ref. 5, 29) A quantity f_1 is computed from two measured quantities a and b, where $f(a,b)$ denotes a function of a and b. The error Δf of f_1 is affected by the errors in both a and b: Δa and Δb. Assuming a and b are independent, and the errors Δa, Δb are randomly distributed, the combined error Δf can be computed by the general equation:

$$\sigma_f = \sqrt{\left(\frac{\partial f}{\partial a}\right)^2 \sigma_a^2 + \left(\frac{\partial f}{\partial b}\right)^2 \sigma_b^2}$$ \hspace{1cm} (1-20)

where:
- σ_f = the standard error of f
- σ_a, σ_b = the standard errors of a and b
- $\frac{\partial f}{\partial a}$, $\frac{\partial f}{\partial b}$ = partial derivatives of f, with respect to a and b.

Application of the general equation to specific conditions produces the following rules\(^1\) for the function $f(a,b)$:

Rule 1. Sum and Difference

$$f = (a + b) \text{ or } f = (a - b)$$

$$\sigma_f = \sqrt{\sigma_a^2 + \sigma_b^2}$$ \hspace{1cm} (1-21)

\(^1\)Derivations in Appendix C.
Rule 2. Product of Factors

\[f = a^m b^n \]

\[\frac{\sigma_f}{f} = \sqrt{m^2 \left(\frac{\sigma_a}{a} \right)^2 + n^2 \left(\frac{\sigma_b}{b} \right)^2} \quad (1-22) \]

Rule 3. Simple Product or Quotient

\[f = a \cdot b \text{ or } f = a/b \]

\[\frac{\sigma_f}{f} = \sqrt{\left(\frac{\sigma_a}{a} \right)^2 + \left(\frac{\sigma_b}{b} \right)^2} \quad (1-23) \]

Indexes other than the standard error can be used to propagate errors. For example, using Rule 1:

\[(PE)_f = -\sqrt{(PE)_a^2 + (PE)_b^2} \]

\[\eta_f = -\sqrt{\eta_a^2 + \eta_b^2} \]

\[\sigma_f = -\sqrt{\sigma_a^2 + \sigma_b^2} \]

\[(MAS)_f = -\sqrt{(MAS)_a^2 + (MAS)_b^2} \]

and \((3\sigma)_f = -\sqrt{(3\sigma)_a^2 + (3\sigma)_b^2} \)

However, note that the index must be consistent throughout the formula. That is:

\[(PE)_f \neq -\sqrt{(PE)_a^2 + \sigma_b^2} \]

19
1.9. **Examples of Linear Errors.** The foregoing discussion demonstrates the use of the normal distribution in the analysis of random errors. There are numerous opportunities for the occurrence of random variables in cartographic and geodetic work. For example, the base lines and measured angles, observed lengths of lines, elevations, etc., resulting from geodetic triangulation, traverse, and leveling all contain error. The same is true of celestial and gravimetric observations as well as distances measured by trilateration. The principles of error theory can be used advantageously to analyze the results in terms of the specifications established for the survey.

In ACIC, the normal linear error distribution has important applications with respect to evaluating the accuracy of positional information. In addition to the one-dimensional errors which exist in such positional data as elevations above mean sea level, the linear error components of two and three-dimensional positions can be analyzed by applying principles of the normal linear error distribution. The following sections contain discussions of the utility of the linear standard error for analyzing two and three-dimensional distributions.
2. TWO-DIMENSIONAL (ELLIPTICAL, CIRCULAR) ERRORS

2.1. Introduction. A two-dimensional error is the error in a quantity defined by two random variables. For example, consider the true geographic position of a point referred to X and Y axes. Each observation of the X and Y coordinates will contain the errors "x" and "y". When assumed random and independent, each error has a probability density distribution of:

\[p(x) = \frac{1}{\sigma_x \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma_x^2}} \]

and:

\[p(y) = \frac{1}{\sigma_y \sqrt{2\pi}} e^{-\frac{y^2}{2\sigma_y^2}} \]

Applying Rule 4 of Section 1.3., the two-dimensional probability density function becomes:

\[p(x,y) = \frac{1}{2\pi \sigma_x \sigma_y} e^{- \frac{1}{2} \left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} \right) } \] (2-1)

Rearranging terms:

\[p(x,y) \sigma_x \sigma_y 2\pi = e^{- \frac{1}{2} \left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} \right) } \]
Therefore:

\[-2 \ln \left[p(x, y) \frac{\sigma_x}{\sigma_y} 2\pi \right] = \frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} \] \hspace{1cm} (2-2)

For given values of \(p(x, y) \), the left side of equation (2-2) is a constant \(K^2 \).

Then:

\[K^2 = \frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} \] \hspace{1cm} (2-3)

For values of \(p(x, y) \) from 0 to \(\infty \), a family of equal probability density ellipses are formed with axes \(K \sigma_x \) and \(K \sigma_y \).

When \(\sigma_x = \sigma_y \), equation (2-2) becomes:

\[-2\sigma_x^2 \ln \left[p(x, y) \frac{\sigma_x^2}{2\pi} \right] = x^2 + y^2 \] \hspace{1cm} (2-4)

For a given value of \(p(x, y) \), the left side of equation (2-4) is a constant which is the square of the radius of an equal probability density circle.

The probability density function integrated over a certain region becomes the probability distribution function which yields the probability that \(x \) and \(y \) will occur simultaneously within that region, or:

\[P(x, y) = \int \int p(x, y) \, dx \, dy \]

However, since both positive and negative values of either "\(x \)" or "\(y \)" will occur with equal frequency, the errors may be considered as radial errors, designated by "\(r \)"; where \(r = \sqrt{x^2 + y^2} \).
2.2. **Elliptical Errors.** (ref. 15, 20) The probability of an ellipse is given by the distribution function:

\[P(x,y) = 1 - e^{-\frac{K^2}{2}} \]

The solution of equation (2-5) with values of K for different probabilities yields the results shown in Table III. For a 39% probability, the axes of the ellipse are 1.0000 σₓ and 1.0000 σᵧ; for a 50% probability, the axes are 1.1774 σₓ and 1.1774 σᵧ.

<table>
<thead>
<tr>
<th>Probability</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.35%</td>
<td>1.0000</td>
</tr>
<tr>
<td>50.00%</td>
<td>1.1774</td>
</tr>
<tr>
<td>63.21%</td>
<td>1.4142</td>
</tr>
<tr>
<td>90.00%</td>
<td>2.1460</td>
</tr>
<tr>
<td>99.00%</td>
<td>3.0349</td>
</tr>
<tr>
<td>99.78%</td>
<td>3.5000</td>
</tr>
</tbody>
</table>

Table III

Values of the Constant K

The use of the error ellipse is complicated by the problem of axes orientation and propagation of elliptical errors. Therefore, the ellipse is commonly replaced by a circular form which is easier to use and understand.

2.3. **Circular Errors.**

2.3.1. **Circular Probability Distribution Function.** (ref. i, 24) The probability distribution function of the radial error expressing the probability that "r" will be equal to or less than radius R, or the probability that the vector xy will be contained within a circle of radius R, is derived in Appendix D and stated as:
A special case of the \(P(R) \) function (2-6) is formed when \(r=R \), and \(\sigma_x=\sigma_y=\sigma_r=\sigma_c \). From Appendix D, part 2:

\[
P(R) = P_c = 1 - e^{-\frac{R^2}{2\sigma_c^2}}
\]

where:

- \(P_c \) = the circular probability distribution function, a special case of \(P(R) \)
- \(R \) = the radius of the probability circle
- \(\sigma_c \) = the circular standard error, a special case of \(\sigma_r \) when \(\sigma_r = \sigma_x = \sigma_y \).

When \(\sigma_x \) and \(\sigma_y \) are not equal, the \(P(R) \) function, (2-6), is modified by letting "a" equal the ratio \(\frac{\sigma_x}{\sigma_y} \) where \(\sigma_x \) is the smaller standard error of the two. Then from Appendix D, part 3:

\[
P(R) = \frac{2a}{1+a^2} \int_0^x e^{-v} I_0(vk) \, dv
\]

where:

\[
x = \frac{R^2}{4\sigma_y^2} \left[1 + \frac{\sigma_x^2}{\sigma_y^2} \right]
\]
\[v = \frac{r^2}{4\sigma_y^2} \left[\frac{1 + \frac{a^2}{a^2}}{\frac{1}{a^2}} \right] \]

\[k = \left(\frac{1 - a^2}{1 + a^2} \right) \]

Equation (2-8) can be solved for different probabilities or values of \(P(R) \) representing precision indexes of the error distribution.

2.3.2. Circular Precision Indexes. (ref. 19, 20, 27) The precision indexes illustrated in Figure 6 are measures of the dispersion of errors in a distribution and represent the error which is unlikely to be exceeded for a given probability. The preferred circular precision indexes, consistent with indexes used in the linear distribution, are: (1) the circular standard error (\(\sigma_c \)), (2) the circular probable error (CPE, CEP), (3) the circular map accuracy standard (CMAS), and (4) the circular near-certainty error, three-standard sigma (3.5 \(\sigma_c \)). The mean square positional error (MSPE), an additional index which has been used at ACIC, is not recommended because the probability represented varies when \(\sigma_x \) and \(\sigma_y \) are not equal.

The probability of the **circular standard error** is found by solving equation (2-7) for \(P_c \) when \(\sigma_c = R \), thus:

\[P_c = 1 - e^{-\frac{\sigma_c^2}{2\sigma_c^2}} \]

\[1 \text{ Described in Appendix D, part 4.} \]
That is, 39.35% of all errors in a circular distribution are not expected to exceed the circular standard error.

For a truly circular distribution, the linear standard errors are equal and identical to the circular standard error \((a_x = a_y = a_c)\). When \(a_x\) and \(a_y\) are not equal, a normal circular error distribution may be substituted for the elliptical distribution. The substitution is satisfactory for error analysis within specified \(\sigma_{\min}/\sigma_{\max}\) ratios. Because of distortion in the error distribution\(^1\) for low ratios, however, the circular concept should be used with discretion.

An approximate circular standard error is determined from equation (2-8) by letting \(P(R) = 39.35\%\) and \(R = a_c\). Values of \(a_c/a_{\max}\) for ratios of \(\sigma_{\min}/\sigma_{\max}\) from 0.0 to 1.0 are contained in Table IV and plotted in Figure 7. For the \(\sigma_{\min}/\sigma_{\max}\) ratio between 1.0 and 0.6, the curve is a straight line with the equation:

\[
- \frac{1}{e^2} = 1 - 0.60653
\]

\[
\therefore P_c = 0.3935 \quad (2-9)
\]

\(^1\) Where \(\sigma_{\min}\) is the minimum or smaller linear standard error of the two.

\(^2\) See Appendix F.
\[\sigma_c \sim (0.5222 \sigma_{\min} + 0.4775 \sigma_{\max}) \] (2-10)

A rapid approximation gives a slightly larger \(\sigma_c \) value for the same \(\sigma_{\min}/\sigma_{\max} \) ratio:

\[\sigma_c \sim 0.5000 (\sigma_x + \sigma_y) \] (2-11)

As \(\sigma_{\min}/\sigma_{\max} \) approaches zero, the 39.35% probability curve follows a transition from circular, through elliptical, to the linear distribution form.\(^1\) The curve does not effectively represent a circular standard error for \(\sigma_{\min}/\sigma_{\max} \) ratios less than 0.6 because it is not compatible with other circular precision indexes. For example, the factor 1.1774 converts a circular error at 39% probability to a circular error at 50% probability when \(\sigma_{\min}/\sigma_{\max} = 1.0 \), but when \(\sigma_{\min} = 0 \), the factor converting a linear error at 39% probability to a linear error at 50% probability is 1.3094.\(^2\) The circular standard error computed from equation (2-11), however, can be converted to other circular precision indexes by constant circular conversion factors\(^3\) for \(\sigma_{\min}/\sigma_{\max} \) ratios between 1.0 and 0.2 and is, therefore, the preferred method for approximating the circular standard error.

\(^1\)When \(\sigma_{\min} = 0 \), the factor 0.5151 converts a linear error at 68% probability to an error at 39.35% probability.

\(^2\)The transition curves of conversion factors are shown in Figures 10 and 11.

\(^3\)Presented in Section 2.3.3.
Although it is not recommended because of limited applicability and extra computation required, an approximate σ_c may be computed by an alternate method:

$$\sigma_c \approx \sqrt{\frac{\sigma_x^2 + \sigma_y^2}{2}}$$

(2-12)

when $\sigma_{\min}/\sigma_{\max}$ is between 1.0 and 0.3

The circular probable error is the circular error which 50% of all errors in a circular distribution will not exceed, or the value of R in equation (2-7) which makes $P_c = 0.5$. The CPE (or CEP) in a truly circular distribution (i.e. $\sigma_x = \sigma_y = \sigma_c$) is computed by:

$$0.5 = 1 - e^{-\frac{R^2}{2\sigma_c^2}}$$

$$1 - 0.5 = e^{-\frac{R^2}{2\sigma_c^2}}$$

$$\ln 0.5 = -\frac{R^2}{2\sigma_c^2}$$

$$R^2 = 0.69315 \ (2\sigma_c^2)$$

$$R = 1.1774 \ \sigma_c$$

$$\text{CPE} = 1.1774 \ \sigma_c$$

(2-13)
When \(\sigma_x \) and \(\sigma_y \) are not equal, an approximate CPE is determined from equation (2-8) by letting \(P(R) = 50.00\% \) and \(R = \text{CPE} \). Values of \(\text{CPE}/\sigma_{\text{max}} \) for ratios of \(\sigma_{\text{min}}/\sigma_{\text{max}} \) from 1.0 to 0.0 are tabulated in Table V. The 50% probability curve plotted in Figure 8 is approximated by a series of straight lines for different ratios \(\sigma/\sigma_{\text{min}}/\sigma_{\text{max}} \) with the equations:

\[
\text{CPE} \sim (0.6142 \sigma_{\text{min}} + 0.5632 \sigma_{\text{max}}) \quad (2-14)
\]
when \(\sigma_{\text{min}}/\sigma_{\text{max}} \) is between 1.0 and 0.3

\[
\text{CPE} \sim (0.4263 \sigma_{\text{min}} + 0.6196 \sigma_{\text{max}}) \quad (2-15)
\]
when \(\sigma_{\text{min}}/\sigma_{\text{max}} \) is between 0.3 and 0.2

A rapid approximation of the CPE plots as a straight line which intersects the 50% probability curve at the point where \(\sigma_{\text{min}}/\sigma_{\text{max}} = 0.2 \) and has the equation:

\[
\text{CPE} \sim 0.5887 (\sigma_x + \sigma_y) \quad (2-16)
\]
when \(\sigma_{\text{min}}/\sigma_{\text{max}} \) is between 1.0 and 0.2

The CPE computed by equation (2-16) is compatible with the circular standard error computed by equation (2-11)¹ and is, therefore, the preferred method for approximating the circular probable error within the specified limits.

¹ That is, the conversion factor of 1.1774 for converting \(\sigma \) to CPE is constant for ratios of \(\sigma_{\text{min}}/\sigma_{\text{max}} \) between 1.0 and 0.2. Note that

\[
1.1774 \times [0.5000 (\sigma_x + \sigma_y)] = 0.5887 (\sigma_x + \sigma_y)
\]
Although a circular error concept is not recommended for \(\sigma_{\text{min}}/\sigma_{\text{max}} \) ratios less than 0.2, a near-linear 50% probability error may be computed to represent a CPE for lower ratios when a comparison of circular errors derived from different sources is required:

\[
\text{CPE} \approx (0.2141 \sigma_{\text{min}} + 0.6621 \sigma_{\text{max}}) \quad (2-17)
\]

when \(\sigma_{\text{min}}/\sigma_{\text{max}} \) is between 0.2 and 0.1

\[
\text{CPE} \approx (0.0900 \sigma_{\text{min}} + 0.6745 \sigma_{\text{max}}) \quad (2-18)
\]

when \(\sigma_{\text{min}}/\sigma_{\text{max}} \) is between 0.1 and 0.0

\[
\text{CPE} \approx 0.6745 \sigma_{\text{max}} \quad (2-19)
\]

when \(\sigma_{\text{min}} = 0 \)

The following alternate methods of computing an approximate CPE are not recommended because of limited applicability:

\[
\text{CPE} \approx 1.1774 \sqrt{\frac{s_x^2 + s_y^2}{2}} \quad (2-20)
\]

and \(\text{CPE} \approx 0.8325 \sqrt{s_x^2 + s_y^2} \quad (2-21) \)

when \(\sigma_{\text{min}}/\sigma_{\text{max}} \) is between 1.0 and 0.8

The mean square positional error (ref. 1, 11) is defined as the radius of the error circle equal to \(1.4142 \sigma_c \) and has little significance in a truly circular error distribution. However, when \(\sigma_x \) and \(\sigma_y \) are approximately equal, the MSP2 defines the error in a geographic position and is computed:

30
The probability represented by the MSPE can be found by solving equation (2-7) for \(P_c \), when \(R = \text{MSPE} \) and \(\sigma_c \) is approximated by equation (2-11), thus:

\[
P_c = 1 - e^{-\frac{R^2}{2\sigma_c^2}} - \frac{(\sigma_x^2 + \sigma_y^2)}{2\sigma_c^2}
\]

(2-23)

When \(\sigma_x = \sigma_y \):

\[
P_c = 1 - e^{-1.0}
\]

= 1 - 0.3679

\[
P_c = 63.21\%
\]

(2-24)

When \(\sigma_x \neq \sigma_y \), the solution of (2-23) yields values of \(P_c \) (plotted in Figure 9) ranging from 64\% when \(\sigma_{\text{min}}/\sigma_{\text{max}} = 0.8 \) to 77\% when \(\sigma_{\text{min}}/\sigma_{\text{max}} = 0.3 \). Because of the variation in probability, the MSPE is not recommended for use as a precision index.

The circular map accuracy standard is based on the percentage level in use by the U.S. National Map Accuracy Standards.
which specify that no more than 10% of the well-defined points in a map will exceed a given error. The standards are commonly interpreted as limiting the size of error which 90% of the well-defined points will not exceed. Therefore, the circular map accuracy standard is represented by the value of R in equation (2-7) when $P_c = 0.90$, and is computed:

$$CMAS = 2.1460 \sigma_c$$

or

$$CMAS = 1.8227 \text{ CPE}$$

The three-five sigma error, representing a circular probability of 99.78%, approaches near-certainty in a circular distribution and has a magnitude 3.5 times that of the circular standard error.
Figure 6

Normal Circular Distribution
Table IV
Solution of P(R) Function for P(R) = 39.35%

<table>
<thead>
<tr>
<th>$\sigma_{\text{min}}/\sigma_{\text{max}}$</th>
<th>$\sigma_\text{c}/\sigma_{\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.8165</td>
<td>0.9063</td>
</tr>
<tr>
<td>0.6547</td>
<td>0.8197</td>
</tr>
<tr>
<td>0.5000</td>
<td>0.7323</td>
</tr>
<tr>
<td>0.3333</td>
<td>0.6327</td>
</tr>
<tr>
<td>0.2294</td>
<td>0.5727</td>
</tr>
<tr>
<td>0.1005</td>
<td>0.5274</td>
</tr>
<tr>
<td>0.0</td>
<td>0.5151</td>
</tr>
</tbody>
</table>

Note: When P(R) = 39.35%, R = σ_c.
Figure 7

Curve of the P(R) Function When P(R) = 39.35%

\[\sigma_c \approx \frac{1}{2} \left(\sigma_x^2 + \sigma_y^2 \right) \]

\[\sigma_c \approx 0.5000 \left(\sigma_x + \sigma_y \right) \]

\[\sigma_c \approx (0.5222 \sigma_{\text{min}} + 0.4778 \sigma_{\text{max}}) \]

39.35% Probability Curve
Table V
Solution of P(R) Function for P(R) = 50.00%

<table>
<thead>
<tr>
<th>$\frac{\sigma_{\text{min}}}{\sigma_{\text{max}}}$</th>
<th>CPE $\frac{\sigma}{\sigma_{\text{max}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>1.1774</td>
</tr>
<tr>
<td>0.8165</td>
<td>1.0683</td>
</tr>
<tr>
<td>0.6547</td>
<td>0.9690</td>
</tr>
<tr>
<td>0.5000</td>
<td>0.8707</td>
</tr>
<tr>
<td>0.3333</td>
<td>0.7696</td>
</tr>
<tr>
<td>0.2294</td>
<td>0.7174</td>
</tr>
<tr>
<td>0.1005</td>
<td>0.6835</td>
</tr>
<tr>
<td>0.0</td>
<td>0.6745</td>
</tr>
</tbody>
</table>

Note: When P(R) = 50.00%, R \sim \text{CPE}
Figure 8

Curve of the P(R) Function When P(R) = 50.00%

Legend

C = \(0.4263 \sigma_{\text{min}} + 0.6196 \sigma_{\text{max}}\)

D = \(0.2141 \sigma_{\text{min}} + 0.6621 \sigma_{\text{max}}\)

E = \(0.0900 \sigma_{\text{min}} + 0.6745 \sigma_{\text{max}}\)

F = 0.5887 \(\sigma_x + \sigma_y\)

G = 1.1774 \(\sqrt{\frac{\sigma_x^2 + \sigma_y^2}{2}}\)

A = 50\% \text{ Probability Curve}

B = \(0.6142 \sigma_{\text{min}} + 0.5632 \sigma_{\text{max}}\)
Figure 9

MSPE Probability Curve

\[\frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} \]
Figure 11

Graph of Conversion Factors
For 50.00% to 39.35% Probability
2.3.3. **Circular Conversion Factors.** (ref. 20, 27) The relationships of the circular standard error to other circular precision indexes are summarized in Table VI. Conversion factors (Table VII) computed from these relationships convert a circular error at a given probability to a circular error at another probability. When a circular error distribution is substituted for an elliptical distribution, the circular conversion factors are retained.

Table VI

Summary of Circular Precision Indexes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_c)</td>
<td>.3935</td>
<td>1.0000 (\sigma_c)</td>
</tr>
<tr>
<td>(\text{CPK, CEP})</td>
<td>.5000</td>
<td>1.1774 (\sigma_c)</td>
</tr>
<tr>
<td>(\text{MSPE})</td>
<td>.6321</td>
<td>1.4142 (\sigma_c)</td>
</tr>
<tr>
<td>(\text{CMAS})</td>
<td>.9000</td>
<td>2.1460 (\sigma_c)</td>
</tr>
<tr>
<td>3.5 (\sigma_c)</td>
<td>.9978</td>
<td>3.5000 (\sigma_c)</td>
</tr>
</tbody>
</table>

Table VII

Circular Error Conversion Factors

<table>
<thead>
<tr>
<th>From</th>
<th>39.35%</th>
<th>50.00%</th>
<th>63.21%</th>
<th>90.00%</th>
<th>99.78%</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.35%</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.00%</td>
<td>0.8493</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.21%</td>
<td>0.7071</td>
<td>0.8325</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.00%</td>
<td>0.4660</td>
<td>0.5486</td>
<td>0.6590</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>99.78%</td>
<td>0.2857</td>
<td>0.3364</td>
<td>0.4040</td>
<td>0.6131</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
2.3.4. Propagation of Circular Errors. (ref. 5, 29) A two-dimensional quantity derived from a number of independent variables has a circular error resulting from the errors in each variable. The total circular error is determined by propagating the linear components in each of the two dimensions by methods described in Section 1.8., and computing the circular form by the procedure shown in Section 2.3.2.

For example, the total circular error of a quantity \(C_T \), derived from \(C_T = C_1 + C_2 + \ldots + C_n \), is found by:

\[
\sigma_{x_T} = \sqrt{\sigma_{x_1}^2 + \sigma_{x_2}^2 + \ldots + \sigma_{x_n}^2}
\]

\[
\sigma_{y_T} = \sqrt{\sigma_{y_1}^2 + \sigma_{y_2}^2 + \ldots + \sigma_{y_n}^2}
\]

\[
\sigma_{c_T} = 0.5000 (\sigma_{x_T} + \sigma_{y_T})
\]

(2-27)

An alternate approximate propagation method combines the circular error of each independent variable directly, thus:

\[
\sigma_{c_T} = \sqrt{\sigma_{c_1}^2 + \sigma_{c_2}^2 + \ldots + \sigma_{c_n}^2}
\]

(2-28)

Precision indexes other than the standard error may be used; however, the index must be consistent throughout the computations.
3. THREE-DIMENSIONAL (ELLIPSOIDAL, SPHERICAL) ERRORS

3.1. Introduction. A three-dimensional error is the error in a quantity defined by three random variables. Expanding on the example in Section 2.1., a point is referred to X, Y, and Z axes which establish the spatial position of the point. When random and independent, the errors x, y, and z each have a normal probability distribution. The three-dimensional probability density function is expressed by:

\[p(x,y,z) = \frac{1}{(2\pi)^{\frac{3}{2}} \sigma_x \sigma_y \sigma_z} e^{-\frac{1}{2} \left[\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} + \frac{z^2}{\sigma_z^2} \right]} \]

(3-1)

Similar to Section 2.1., the probability density function can be written:

\[W^2 = \frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} + \frac{z^2}{\sigma_z^2} \]

(3-2)

where:

\[W^2 = -2 \ln \left[p(x,y,z) \sigma_x \sigma_y \sigma_z (2\pi)^{\frac{3}{2}} \right] \]

For values of the constant \(W^2 \) from 0 \(\rightarrow \) \[\infty \], the density function defines a family of ellipsoids of equal probability density.

3.2. Ellipsoidal Errors. (ref. 15, 20) The probability of an error ellipsoid is given by the probability distribution function:

\[F(s) = \sqrt{\frac{2}{\pi}} \int_0^W t^2 e^{-\frac{1}{2} t^2} \, dt \]

(3-3)
where: $s =$ the radial error; $s = \sqrt{x^2 + y^2 + z^2}$

$$t = \frac{s}{\sigma_{rs}}$$

$\sigma_{rs} =$ standard error of the radial error "s"

The solution of equation (3-3) for W yields the values given in Table VIII.

Table VIII

Values for the Constant W

<table>
<thead>
<tr>
<th>Probability</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.9%</td>
<td>1.000</td>
</tr>
<tr>
<td>50</td>
<td>1.538</td>
</tr>
<tr>
<td>60.0</td>
<td>1.732</td>
</tr>
<tr>
<td>90</td>
<td>2.506</td>
</tr>
<tr>
<td>99</td>
<td>3.368</td>
</tr>
<tr>
<td>99.89</td>
<td>4.000</td>
</tr>
</tbody>
</table>

3.3. Spherical Errors.

3.3.1. Spherical Probability Distribution Function. (ref.20)

When $\sigma_x = \sigma_y = \sigma_z = \sigma_{rs} \equiv \sigma_s$, equation (3-1) becomes the spherical probability density function:

$$p(s) = \frac{1}{(2\pi)^{\frac{3}{2}}\sigma_s^3} e^{-\frac{s^2}{2\sigma_s^2}}$$

(3-4)
where: \(\sigma_s = \) spherical standard error

Integrating \(p(s) \) from \(s = 0 \) to \(s = S \), equation (3-4) becomes the spherical probability distribution function:\(^1\)

\[
P(S) = \sqrt{\frac{2}{\pi}} \left[\frac{S}{\sigma_s} \right] - e^{-\frac{S^2}{2\sigma_s^2}} \int_{0}^{S} e^{-\frac{e}{2}} \, ds \tag{3-5}
\]

where: \(S = \) radius of the probability sphere

Equation (3-5) can be solved by an approximation formula (ref. 1, 13):

\[
P(S) \sim \sqrt{\frac{2}{\pi}} \left[1.253 - \frac{C^2}{2} - \frac{e^{-C}}{C + 0.8 e^{-C.4C}} \right] \tag{3-6}
\]

where: \(C = \frac{S}{\sigma_s} \)

3.3.2. **Spherical Precision Indexes.** (ref. 20, 27) A spherical error distribution is represented by indexes similar to those in Sections 1.6. and 2.3.2. Preferred spherical precision indexes include:

1. the spherical standard error \((\sigma_s) \),
2. the spherical probable error \((\text{SPE}) \),
3. the spherical accuracy standard \((\text{SAS}) \), and
4. the spherical near-certainty error, four sigma \((4\sigma_s) \). The mean radial spherical error \((\text{MESE}) \), an index which has been used at ACTC, is not recommended because the probability represented varies when \(\sigma_x, \sigma_y, \) and \(\sigma_z \) are not equal.

\(^1\)See Appendix E.
The probability of an error sphere of radius equal to the spherical standard error is computed by equation (3-6) for the condition \(C = \frac{S}{\sigma_s} = 1 \) as follows:

\[
\sqrt{\frac{2}{\pi}} = 0.7978846
\]
\[
e^{-\frac{1}{2}} = 0.60653
\]
\[
e^{-0.4} = 0.67032
\]
\[
c^{-0.4} \approx 0.53526
\]
\[
P(S) \sim 0.79788 (1.253 - 0.6065 - 0.3948)
\]
\[
\therefore P(S) \sim 0.20 \text{ or } 20\% \tag{3-7}
\]

For a truly spherical distribution, the linear standard errors are equal and identical to the spherical standard error \((\sigma_x = \sigma_y = \sigma_z = \sigma_s)\). When \(\sigma_x, \sigma_y, \text{ and } \sigma_z\) are not equal, the spherical standard error is approximated by:

\[
\sigma_s \sim 0.3333 (\sigma_x + \sigma_y + \sigma_z) \tag{3-8}
\]

when \(\sigma_{\text{min}}/\sigma_{\text{max}}\) is between 1.0 and 0.35

The substitution of a spherical form for an ellipsoidal distribution is not recommended when the \(\sigma_{\text{min}}/\sigma_{\text{max}}\) ratio is less than 0.35.

The following alternate method of approximating \(\sigma_s\) is not recommended because of limited applicability:

\[\text{Figure 12 compares curves computed from equations (3-8) and (3-9).}\]
\[s \approx \sqrt{\frac{\sigma_x^2 + \sigma_y^2 + \sigma_z^2}{3}} \]
(3-9)
when \(\sigma_{\text{min}}/\sigma_{\text{max}} \) is between 1.0 and 0.35.

The \textit{spherical probable error} is defined as the magnitude of the spherical radius \(S \) when the function \(P(S) = 0.5 \) or 50%. Expressed in the form \(S = C s \), the spherical probable error is computed by:

\[\text{SPE} = 1.5382 \, s \]
(3-10)

The \(P(R) \) function for two-dimensional errors is solved by the use of Grad and Solomon's tables.\(^1\) Expanding this method into the spherical distribution, the radius \(S \) for a 50% probability sphere \((S_{50\%}) \) was computed in terms of \(\sigma_{\text{max}} \) for ratios of \(\sigma_{\text{min}}/\sigma_{\text{max}} \) and \(\sigma_{\text{mid}}/\sigma_{\text{max}} \) and tabulated in Table IX.\(^1\) Utilizing these values, an approximation of the spherical probable error can be computed:

\[\text{SPE} \approx 0.5127 (\sigma_x + \sigma_y + \sigma_z) \]
(3-11)
when \(\sigma_{\text{min}}/\sigma_{\text{max}} \) is between 1.0 and 0.35.

The \textit{mean radial spherical error} is the radius of the error sphere equal to \(1.732 \, s \), or \(\sqrt{3} \, s \), in a truly spherical distribution. When \(\sigma_x \neq \sigma_y \neq \sigma_z \), the MRSE is computed by:

\[1.732 \sqrt{0.3333 (\sigma_x + \sigma_y + \sigma_z)} = 0.5127 (\sigma_x - \sigma_y - \sigma_z). \]

\(^1\)See Appendix D.

\(^1\)where: \(\sigma_{\text{min}} \) = the minimum sigma, or smallest standard error of the three,
\(\sigma_{\text{max}} \) = the maximum sigma, and
\(\sigma_{\text{mid}} \) = the middle sigma.

\(^2\)Note that \(1.732 \sqrt{0.3333 (\sigma_x + \sigma_y + \sigma_z)} = 0.5127 (\sigma_x - \sigma_y - \sigma_z). \)
The probabilities represented by the MRSE are computed by equation (3-6). Because of the variation in probability, the MRSE is not recommended for use as a precision index.

The spherical accuracy standard is defined as the magnitude of the spherical radius S when the function $P(S) = 0.9$ or 90%. Expressed in the form $S = C \sigma_s$, the spherical accuracy standard is computed by:

$$SAS = 2.500 \sigma_s$$

(3-13)

The four sigma error, representing a spherical probability of 99.39%, approaches near-certainty in a spherical distribution and has a magnitude four times that of the spherical standard error.

1 Illustrated in Figure 13.

2 When $\sigma_x = \sigma_y = \sigma_z$, the probability is 60.82%; when $\sigma_x = 10$, $\sigma_y = 3$, and $\sigma_z = 6$, the probability is 69.36%.
Table IX
Solution of F(S) Function for F(S) = 50.00%

<table>
<thead>
<tr>
<th>$\sigma_{\text{mid}} / \sigma_{\text{max}}$</th>
<th>$\sigma_{\text{min}} / \sigma_{\text{max}}$</th>
<th>SPE $\sim S_{50%}$</th>
<th>SPE $\sim 0.5127 \left(\sigma_x + \sigma_y + \sigma_z \right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.866</td>
<td>0.866</td>
<td>1.4016 σ_{max}</td>
<td>1.4007</td>
</tr>
<tr>
<td>1.0</td>
<td>0.707</td>
<td>1.3892 σ_{max}</td>
<td>1.3879</td>
</tr>
<tr>
<td>0.775</td>
<td>0.632</td>
<td>1.2341 σ_{max}</td>
<td>1.2341</td>
</tr>
<tr>
<td>0.577</td>
<td>0.577</td>
<td>1.1016 σ_{max}</td>
<td>1.1044</td>
</tr>
<tr>
<td>0.894</td>
<td>0.447</td>
<td>1.2104 σ_{max}</td>
<td>1.2002</td>
</tr>
<tr>
<td>0.707</td>
<td>0.408</td>
<td>1.0894 σ_{max}</td>
<td>1.0844</td>
</tr>
<tr>
<td>0.535</td>
<td>0.378</td>
<td>0.9791 σ_{max}</td>
<td>0.9808</td>
</tr>
<tr>
<td>0.354</td>
<td>0.354</td>
<td>0.8689 σ_{max}</td>
<td>0.8757</td>
</tr>
</tbody>
</table>
Figure 12
Comparison of Spherical Standard Error Approximation Methods

\[\sqrt{\frac{a_x^2 + a_y^2 + a_z^2}{3}} \]

(10, 10, 1) (10, 10, 2) (10, 10, 3) (10, 10, 4) (10, 10, 5) (10, 10, 6) (10, 10, 7) (10, 10, 8) (10, 10, 9) (10, 10, 10)
Figure 13

MRSE Probability Curve

(10, 10, 10) (10, 6, 8) (10, 4, 7) (10, 3, 6)
(10, 7, 9) (10, 5, 8)
3.3.3. **Spherical Conversion Factors.** (ref. 20, 27) The relationships of the spherical standard error to other spherical precision indexes are summarized in Table X. Conversion factors (Table XI) computed from these relationships convert a spherical error at a given probability to a spherical error at another probability.

Table X

Summary of Spherical Precision Indexes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_s</td>
<td>.199</td>
<td>1.000 a_s</td>
</tr>
<tr>
<td>SPE</td>
<td>.50</td>
<td>1.53 a_s</td>
</tr>
<tr>
<td>MRSE</td>
<td>.608</td>
<td>1.732 a_s</td>
</tr>
<tr>
<td>SAS</td>
<td>.90</td>
<td>2.500 a_s</td>
</tr>
<tr>
<td>$4a_s$</td>
<td>.9989</td>
<td>4.000 a_s</td>
</tr>
</tbody>
</table>

Table XI

Spherical Error Conversion Factors

<table>
<thead>
<tr>
<th>From</th>
<th>19.9%</th>
<th>50%</th>
<th>60.8%</th>
<th>90%</th>
<th>99.89%</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.9%</td>
<td>1.00</td>
<td>1.538</td>
<td>1.732</td>
<td>2.500</td>
<td>4.000</td>
</tr>
<tr>
<td>50%</td>
<td>0.650</td>
<td>1.00</td>
<td>1.126</td>
<td>1.625</td>
<td>2.600</td>
</tr>
<tr>
<td>60.8%</td>
<td>0.577</td>
<td>0.888</td>
<td>1.00</td>
<td>1.443</td>
<td>2.309</td>
</tr>
<tr>
<td>90%</td>
<td>0.400</td>
<td>0.615</td>
<td>0.693</td>
<td>1.000</td>
<td>1.600</td>
</tr>
<tr>
<td>99.89%</td>
<td>0.250</td>
<td>0.385</td>
<td>0.433</td>
<td>0.625</td>
<td>1.000</td>
</tr>
</tbody>
</table>
3.3.4. Propagation of Spherical Errors. (ref. 5, 29) A three-dimensional quantity derived from a number of independent variables has a spherical error resulting from the errors in each variable. The total spherical error is determined by propagating the linear components in each of the three dimensions by methods described in Section 1.3., and computing the spherical form by the procedure shown in Section 3.3.2. For example, the total spherical error of a quantity S_T, derived from $S_T = S_1 + S_2 + \ldots + S_n$ is found by:

$$
\sigma_T = \sqrt{\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_n^2}
$$

An alternate approximate propagation method combines the spherical error of each independent variable directly, thus:

$$
\sigma_T = \sqrt{\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_n^2}
$$

An alternate approximate propagation method combines the spherical error of each independent variable directly, thus:

$$
\sigma_T = 0.3333 (\sigma_1 + \sigma_2 + \ldots + \sigma_n)
$$

(3-14)

An alternate approximate propagation method combines the spherical error of each independent variable directly, thus:

$$
\sigma_T = \sqrt{\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_n^2}
$$

(3-15)

Precision indexes other than the standard error may be used; however, the index must be consistent throughout the computations.
4. APPLICATION OF ERROR THEORY TO POSITIONAL INFORMATION

4.1. Positional Errors. By the use of error theory in the evaluation of ACIC positional information, it is possible to establish a meaningful accuracy statement subject to uniform interpretation. To provide a logical and acceptable basis for computation and comparison, positional errors are assumed to follow a normal distribution. The assumption is valid because positional error components generally follow a normal distribution pattern when sufficient data is available.

The statistical treatment of errors is applied to measurable quantities found in the sources of positioning information. The differences between the surveyed coordinates of ground control and the scaled coordinates of the same control symbolized on maps are considered to be the errors in the geodetic base of the map. Analysis of the linear components — latitude and longitude or grid Northing and Easting — provides a two-dimensional expression of the accuracy of the geodetic base. When all the linear standard errors occurring during map construction are combined and converted to a circular distribution, the final map accuracy statement is expressed in terms of circular errors.

Among the positioning errors in maps, there are often those which are not measurable and which must be estimated by empirical methods. When this is necessary, an additional assumption must be made to the effect that such data is compatible with computed data and that empirically derived error data will also follow the theoretical error distribution.
Various types of points require different parameters to establish precise positions. These have been discussed as one, two, or three-dimensional coordinates. For example, a vertical position (elevation) requires only a one-dimensional coordinate — the height of the point above a reference datum; a geodetic position is expressed by two-dimensional coordinates — latitude and longitude referred to a specific datum; and spatial positions require three-dimensional coordinates such as the x, y, z coordinates in a rectangular system. The errors accumulated in the process of determining the various positions must be evaluated in the same dimensions required to express the position. Errors for vertical positioning can be assumed to follow a normal linear distribution; those for a geodetic position — a circular distribution; and the errors for a spatial point can be assumed to follow a normal spherical distribution.

4.2. The Accuracy Statement. Two major groups of data fall within Air Force positioning requirements: (1) maps, charts, and other graphics; and (2) specific points. By the use of error theory, a horizontal accuracy evaluation of the graphic as a whole can be obtained, i.e., a specified probability that the true errors in well-defined planimetry will not exceed the given quantity. Map accuracy can also be interpreted as percentage — the percentage of well-defined points which will not contain errors exceeding the given magnitude. Similarly, vertical accuracy is stated as a given probability that the linear errors in vertical position are not likely to exceed a specified value.
The accuracy of a specific point is expressed also by a statement of probability and error magnitude. The accuracy statement does not mean that the error in position is exactly the value shown, rather it expresses the probability that the true error in position will not be larger than the error given.

Positional error should be expressed by precision indexes which immediately identify the form and probability represented by a given error. For example, let the circular probable error (CPE) of a geodetic position equal 100 feet. Then the form is circular. The magnitude 100 feet and the probability (50% by definition of CPE) are derived from a statistical treatment of known or estimated error components comprising the total positional error. The statement infers a 50-50 chance that the geodetic position in question does not vary more than 100 feet from the true geodetic position. When the error magnitude is increased by a statistical factor, greater probability is achieved. Multiplying 100 feet by 1.8227 yields a 90% probability that the positional error will not exceed 182 feet.

Errors in different forms are more easily understood when precision indexes common to linear, circular, and spherical error distributions are used. Precision indexes suitable for expressing positional error include (1) the linear, circular, and spherical standard errors representing 68.27%, 39.35%, and 19.9% probabilities, respectively, (2) the linear probable error, circular probable error, and spherical probable error representing 90% probability in each distribution, (3) the map accuracy standard, circular map accuracy standard, and spherical accuracy.
standard representing a 90% probability level, and (b) a probability level approaching near-certainty for each distribution which the positional error is theoretically unlikely to exceed; (a) three sigma (linear, 99.73%), (b) three-five sigma (circular, 99.78%), and (c) four sigma (spherical, 99.89%). Since error values are easily converted from one precision index to another in the same distribution, the use of any index is largely a matter of choice. However, in presenting positional information, the positional error is best expressed by either the 50% or 90% probability precision index or both.
Summary of Formulas and Conversion Factors

Linear Error Formulas

<table>
<thead>
<tr>
<th>Precision Index</th>
<th>Symbol</th>
<th>Percentage</th>
<th>Probability</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Error</td>
<td>σ</td>
<td>68.27%</td>
<td>68.27%</td>
<td>$\sigma_x = \sqrt{\frac{1}{n-1} \sum (x_i - \bar{x})^2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\sigma = \sqrt{\frac{1}{n-1} \sum x^2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>where: x_i = a measured value of the quantity X; $X_1, X_2, ..., X_n$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\bar{X} = the most probable value (arithmetic mean) of X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$x = \bar{X}$ = $\frac{\sum X_i}{n}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n = number of measurements</td>
</tr>
</tbody>
</table>

Probable Error	PE	50%	50%	$PE = 0.6745 \sigma_x$
Map Accuracy	MAS	90%	90%	$MAS = 1.6449 \sigma_x$
Standard				
Near-Certainty	3 σ	99.73%	99.73%	$3 \sigma = 3.0000 \sigma_x$
Error (Three sigma)				

Linear Error Conversion Factors

<table>
<thead>
<tr>
<th>From</th>
<th>50%</th>
<th>68.27%</th>
<th>90%</th>
<th>99.73%</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>1.000</td>
<td>1.4826</td>
<td>2.4387</td>
<td>4.4475</td>
</tr>
<tr>
<td>68.27</td>
<td>0.6745</td>
<td>1.0000</td>
<td>1.6449</td>
<td>3.0000</td>
</tr>
<tr>
<td>99.73</td>
<td>0.2264</td>
<td>0.6686</td>
<td>1.0000</td>
<td>1.8239</td>
</tr>
</tbody>
</table>

Subscripts denote the standard error computed from a sample ($\sigma_x', \sigma_y', \sigma_z'$).
Circular Error Formulas

<table>
<thead>
<tr>
<th>Precision Index</th>
<th>Symbol</th>
<th>Percentage Probability</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular Standard Error</td>
<td>(a_c)</td>
<td>39.35%</td>
<td>(a_c = 0.5000 (a_x + a_y)) when (a_{\text{min}}/a_{\text{max}} \geq 0.2)</td>
</tr>
<tr>
<td>Circular Probable Error</td>
<td></td>
<td>50%</td>
<td>(\text{CPE} = 1.1774 a_c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{CPE} = 0.5887 (a_x + a_y)) when (a_{\text{min}}/a_{\text{max}} \geq 0.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{CPE} \sim (0.2141 a_{\text{min}} + 0.6681 a_{\text{max}})) when (0.1 \leq a_{\text{min}}/a_{\text{max}} \leq 0.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{CPE} \sim (0.0900 a_{\text{min}} + 0.6745 a_{\text{max}})) when (0.0 \leq a_{\text{min}}/a_{\text{max}} \leq 0.1)</td>
</tr>
<tr>
<td>Circular Map Accuracy Standard</td>
<td>CMAS</td>
<td>90%</td>
<td>(\text{CMAS} = 2.1460 a_c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{CMAS} = 1.0730 (a_x + a_y)) when (a_{\text{min}}/a_{\text{max}} \geq 0.2)</td>
</tr>
<tr>
<td>Circular Near-Certainty Error</td>
<td></td>
<td>99.78%</td>
<td>(3.5 a_c)</td>
</tr>
<tr>
<td>(Three-five sigma)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Circular Error Conversion Factors

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>39.35%</th>
<th>50%</th>
<th>63%</th>
<th>90%</th>
<th>99.78%</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.35%</td>
<td>1.0000</td>
<td>1.1774</td>
<td>1.4142</td>
<td>2.1460</td>
<td>3.5000</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.8493</td>
<td>1.0000</td>
<td>1.2011</td>
<td>1.8297</td>
<td>2.9726</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>0.7071</td>
<td>0.8325</td>
<td>1.0000</td>
<td>1.5174</td>
<td>2.4749</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.4660</td>
<td>0.5466</td>
<td>0.6590</td>
<td>1.0000</td>
<td>1.6309</td>
<td></td>
</tr>
<tr>
<td>99.78%</td>
<td>0.2357</td>
<td>0.3364</td>
<td>0.4040</td>
<td>0.6131</td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>

Where \(a_{\text{min}}\) is the minimum or smaller linear standard error of the two.

A circular error concept is not recommended for \(a_{\text{min}}/a_{\text{max}}\) ratios less than 0.2. However, a near-linear 50% probability error may be computed to represent a CPE for lower ratios when a comparison of circular errors derived from different sources is required.
Spherical Error Formulas

<table>
<thead>
<tr>
<th>Precision Index</th>
<th>Symbol</th>
<th>Percentage Probability</th>
<th>Probability Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spherical Standard Error</td>
<td>(\sigma_S)</td>
<td>19.9%</td>
<td>(\sigma_S = 0.3333(\sigma_x + \sigma_y + \sigma_z)) when (\sigma_{\text{min}}/\sigma_{\text{max}} > 0.35)</td>
</tr>
<tr>
<td>Spherical Probable Error</td>
<td>SPE</td>
<td>50%</td>
<td>(\text{SPE} = 1.5382 \sigma_S)</td>
</tr>
<tr>
<td></td>
<td>SPE</td>
<td>(50% (\sigma_S) when (\sigma_{\text{min}}/\sigma_{\text{max}} > 0.35)</td>
<td></td>
</tr>
<tr>
<td>Spherical Accuracy Standard</td>
<td>SAS</td>
<td>90%</td>
<td>(\text{SAS} = 2.5003 \sigma_S)</td>
</tr>
<tr>
<td></td>
<td>SAS</td>
<td>(90% (\sigma_S) when (\sigma_{\text{min}}/\sigma_{\text{max}} > 0.35)</td>
<td></td>
</tr>
<tr>
<td>Spherical Near-Certainty Error (Four sigma)</td>
<td>(4\sigma_S)</td>
<td>99.89%</td>
<td>(4.0000 \sigma_S)</td>
</tr>
</tbody>
</table>

Spherical Error Conversion Factors

<table>
<thead>
<tr>
<th>From</th>
<th>19.9%</th>
<th>50%</th>
<th>61%</th>
<th>90%</th>
<th>99.89%</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.9%</td>
<td>1.000</td>
<td>1.538</td>
<td>1.732</td>
<td>2.500</td>
<td>4.000</td>
</tr>
<tr>
<td>50</td>
<td>0.650</td>
<td>1.000</td>
<td>1.126</td>
<td>1.625</td>
<td>2.600</td>
</tr>
<tr>
<td>61</td>
<td>0.577</td>
<td>0.888</td>
<td>1.000</td>
<td>1.143</td>
<td>2.309</td>
</tr>
<tr>
<td>90</td>
<td>0.400</td>
<td>0.615</td>
<td>0.693</td>
<td>1.000</td>
<td>1.600</td>
</tr>
<tr>
<td>99.89</td>
<td>0.250</td>
<td>0.385</td>
<td>0.433</td>
<td>0.625</td>
<td>1.000</td>
</tr>
</tbody>
</table>

\(\text{A spherical concept is not recommended when } \sigma_{\text{min}}/\sigma_{\text{max}} \text{ is less than 0.35.} \)
Appendix A

PERCENTAGE PROBABILITY FOR
STANDARD ERROR INCREMENTS

The following table presents the increments of linear (σ_x),
circular (σ_c), and spherical (σ_s) standard errors for intervals of
one percent probability. Percentage levels corresponding to pre-
cision indexes are underlined.

Factors for converting the error at one percentage probability
to another within the same distribution are derived by dividing the
standard error increment of the new percentage probability by the
standard error increment of the given percentage probability. An
example is the conversion from the circular map accuracy standard
(90%) to the circular probable error (50%):

\[
\text{CPE} = 1.1774 \sigma_c \\
\text{CMAS} = 2.1460 \sigma_c \\
\text{CPE} = \frac{1.1774}{2.1460} \text{CMAS} \\
\therefore \text{CPE} = 0.5436 \text{CMAS}
\]

<table>
<thead>
<tr>
<th>%</th>
<th>σ_x</th>
<th>σ_c</th>
<th>σ_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0.0600</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>01</td>
<td>0.0125</td>
<td>0.1413</td>
<td>0.3329</td>
</tr>
<tr>
<td>02</td>
<td>0.0251</td>
<td>0.2010</td>
<td>0.4299</td>
</tr>
</tbody>
</table>

1 Reference 27.
<table>
<thead>
<tr>
<th>%</th>
<th>σ_x</th>
<th>σ_c</th>
<th>σ_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>0.0376</td>
<td>0.2468</td>
<td>0.4851</td>
</tr>
<tr>
<td>04</td>
<td>0.0502</td>
<td>0.2857</td>
<td>0.5479</td>
</tr>
<tr>
<td>05</td>
<td>0.0627</td>
<td>0.3203</td>
<td>0.5938</td>
</tr>
<tr>
<td>06</td>
<td>0.0773</td>
<td>0.3518</td>
<td>0.6334</td>
</tr>
<tr>
<td>07</td>
<td>0.0878</td>
<td>0.3810</td>
<td>0.6699</td>
</tr>
<tr>
<td>08</td>
<td>0.1004</td>
<td>0.4004</td>
<td>0.7035</td>
</tr>
<tr>
<td>09</td>
<td>0.1130</td>
<td>0.4213</td>
<td>0.7342</td>
</tr>
<tr>
<td>10</td>
<td>0.1257</td>
<td>0.4590</td>
<td>0.7644</td>
</tr>
<tr>
<td>11</td>
<td>0.1393</td>
<td>0.4828</td>
<td>0.7924</td>
</tr>
<tr>
<td>12</td>
<td>0.1510</td>
<td>0.5056</td>
<td>0.8192</td>
</tr>
<tr>
<td>13</td>
<td>0.1637</td>
<td>0.5278</td>
<td>0.8447</td>
</tr>
<tr>
<td>14</td>
<td>0.1764</td>
<td>0.5492</td>
<td>0.8694</td>
</tr>
<tr>
<td>15</td>
<td>0.1891</td>
<td>0.5701</td>
<td>0.8932</td>
</tr>
<tr>
<td>16</td>
<td>0.2019</td>
<td>0.5905</td>
<td>0.9162</td>
</tr>
<tr>
<td>17</td>
<td>0.2147</td>
<td>0.6105</td>
<td>0.9386</td>
</tr>
<tr>
<td>18</td>
<td>0.2275</td>
<td>0.6300</td>
<td>0.9605</td>
</tr>
<tr>
<td>19</td>
<td>0.2404</td>
<td>0.6492</td>
<td>0.9813</td>
</tr>
<tr>
<td>19.9</td>
<td></td>
<td></td>
<td>1.0000</td>
</tr>
<tr>
<td>20</td>
<td>0.2533</td>
<td>0.6680</td>
<td>1.0026</td>
</tr>
<tr>
<td>21</td>
<td>0.2663</td>
<td>0.6866</td>
<td>1.0230</td>
</tr>
<tr>
<td>22</td>
<td>0.2793</td>
<td>0.7049</td>
<td>1.0430</td>
</tr>
<tr>
<td>23</td>
<td>0.2924</td>
<td>0.7230</td>
<td>1.0627</td>
</tr>
<tr>
<td>24</td>
<td>0.3055</td>
<td>0.7409</td>
<td>1.0821</td>
</tr>
<tr>
<td>25</td>
<td>0.3186</td>
<td>0.7585</td>
<td>1.1012</td>
</tr>
<tr>
<td>26</td>
<td>0.3319</td>
<td>0.7760</td>
<td>1.1200</td>
</tr>
<tr>
<td>27</td>
<td>0.3451</td>
<td>0.7934</td>
<td>1.1396</td>
</tr>
<tr>
<td>28</td>
<td>0.3585</td>
<td>0.8106</td>
<td>1.1570</td>
</tr>
<tr>
<td>29</td>
<td>0.3719</td>
<td>0.8276</td>
<td>1.1751</td>
</tr>
<tr>
<td>30</td>
<td>0.3853</td>
<td>0.8446</td>
<td>1.1932</td>
</tr>
<tr>
<td>31</td>
<td>0.3989</td>
<td>0.8615</td>
<td>1.2110</td>
</tr>
<tr>
<td>32</td>
<td>0.4125</td>
<td>0.8783</td>
<td>1.2283</td>
</tr>
<tr>
<td>33</td>
<td>0.4261</td>
<td>0.8950</td>
<td>1.2464</td>
</tr>
<tr>
<td>34</td>
<td>0.4399</td>
<td>0.9116</td>
<td>1.2638</td>
</tr>
<tr>
<td>35</td>
<td>0.4538</td>
<td>0.9282</td>
<td>1.2812</td>
</tr>
<tr>
<td>36</td>
<td>0.4677</td>
<td>0.9448</td>
<td>1.2985</td>
</tr>
<tr>
<td>37</td>
<td>0.4817</td>
<td>0.9613</td>
<td>1.3158</td>
</tr>
<tr>
<td>38</td>
<td>0.4959</td>
<td>0.9778</td>
<td>1.3330</td>
</tr>
<tr>
<td>39</td>
<td>0.5101</td>
<td>0.9943</td>
<td>1.3501</td>
</tr>
<tr>
<td>39.35</td>
<td></td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.5244</td>
<td>1.0103</td>
<td>1.3672</td>
</tr>
<tr>
<td>41</td>
<td>0.5388</td>
<td>1.0273</td>
<td>1.3842</td>
</tr>
<tr>
<td>42</td>
<td>0.5530</td>
<td>1.0438</td>
<td>1.4013</td>
</tr>
<tr>
<td>43</td>
<td>0.5641</td>
<td>1.0603</td>
<td>1.4183</td>
</tr>
<tr>
<td>44</td>
<td>0.5723</td>
<td>1.0769</td>
<td>1.4354</td>
</tr>
<tr>
<td>45</td>
<td>0.5978</td>
<td>1.0935</td>
<td>1.4524</td>
</tr>
</tbody>
</table>

A-2
<table>
<thead>
<tr>
<th>%</th>
<th>σ_x</th>
<th>σ_c</th>
<th>σ_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>0.6123</td>
<td>1.1101</td>
<td>1.4695</td>
</tr>
<tr>
<td>47</td>
<td>0.6280</td>
<td>1.1263</td>
<td>1.4866</td>
</tr>
<tr>
<td>48</td>
<td>0.6433</td>
<td>1.1436</td>
<td>1.5037</td>
</tr>
<tr>
<td>49</td>
<td>0.6588</td>
<td>1.1605</td>
<td>1.5209</td>
</tr>
<tr>
<td>50</td>
<td>0.6745</td>
<td>1.1774</td>
<td>1.5382</td>
</tr>
<tr>
<td>51</td>
<td>0.6903</td>
<td>1.1944</td>
<td>1.5555</td>
</tr>
<tr>
<td>52</td>
<td>0.7063</td>
<td>1.2116</td>
<td>1.5729</td>
</tr>
<tr>
<td>53</td>
<td>0.7225</td>
<td>1.2288</td>
<td>1.5904</td>
</tr>
<tr>
<td>54</td>
<td>0.7388</td>
<td>1.2462</td>
<td>1.6080</td>
</tr>
<tr>
<td>55</td>
<td>0.7554</td>
<td>1.2637</td>
<td>1.6257</td>
</tr>
<tr>
<td>56</td>
<td>0.7722</td>
<td>1.2814</td>
<td>1.6436</td>
</tr>
<tr>
<td>57</td>
<td>0.7892</td>
<td>1.2992</td>
<td>1.6616</td>
</tr>
<tr>
<td>57.51</td>
<td>0.7979</td>
<td>1.3172</td>
<td>1.6797</td>
</tr>
<tr>
<td>58</td>
<td>0.8064</td>
<td>1.3354</td>
<td>1.6980</td>
</tr>
<tr>
<td>59</td>
<td>0.8239</td>
<td>1.3537</td>
<td>1.7164</td>
</tr>
<tr>
<td>60</td>
<td>0.8416</td>
<td>1.3735</td>
<td>1.7351</td>
</tr>
<tr>
<td>60.82</td>
<td>0.8596</td>
<td>1.3911</td>
<td>1.7540</td>
</tr>
<tr>
<td>61</td>
<td>0.8779</td>
<td>1.4091</td>
<td>1.7730</td>
</tr>
<tr>
<td>62</td>
<td>0.8965</td>
<td>1.4172</td>
<td>1.7924</td>
</tr>
<tr>
<td>63</td>
<td>0.9154</td>
<td>1.4254</td>
<td>1.8119</td>
</tr>
<tr>
<td>64</td>
<td>0.9346</td>
<td>1.4430</td>
<td>1.8318</td>
</tr>
<tr>
<td>65</td>
<td>0.9542</td>
<td>1.4609</td>
<td>1.8519</td>
</tr>
<tr>
<td>66</td>
<td>0.9741</td>
<td>1.4789</td>
<td>1.8724</td>
</tr>
<tr>
<td>67</td>
<td>0.9945</td>
<td>1.4969</td>
<td>1.8932</td>
</tr>
<tr>
<td>68</td>
<td>1.0000</td>
<td>1.5142</td>
<td>1.8932</td>
</tr>
<tr>
<td>69</td>
<td>1.0152</td>
<td>1.5305</td>
<td>1.8932</td>
</tr>
<tr>
<td>70</td>
<td>1.0364</td>
<td>1.5518</td>
<td>1.8932</td>
</tr>
<tr>
<td>71</td>
<td>1.0581</td>
<td>1.5735</td>
<td>1.8932</td>
</tr>
<tr>
<td>72</td>
<td>1.0803</td>
<td>1.5956</td>
<td>1.8932</td>
</tr>
<tr>
<td>73</td>
<td>1.1031</td>
<td>1.6172</td>
<td>1.8932</td>
</tr>
<tr>
<td>74</td>
<td>1.1264</td>
<td>1.6394</td>
<td>1.8932</td>
</tr>
<tr>
<td>75</td>
<td>1.1503</td>
<td>1.6615</td>
<td>1.8932</td>
</tr>
<tr>
<td>76</td>
<td>1.1750</td>
<td>1.6846</td>
<td>1.8932</td>
</tr>
<tr>
<td>77</td>
<td>1.2004</td>
<td>1.7077</td>
<td>1.8932</td>
</tr>
<tr>
<td>78</td>
<td>1.2265</td>
<td>1.7309</td>
<td>1.8932</td>
</tr>
<tr>
<td>79</td>
<td>1.2536</td>
<td>1.7541</td>
<td>1.8932</td>
</tr>
<tr>
<td>80</td>
<td>1.2816</td>
<td>1.7774</td>
<td>1.8932</td>
</tr>
<tr>
<td>81</td>
<td>1.3106</td>
<td>1.8007</td>
<td>1.8932</td>
</tr>
<tr>
<td>82</td>
<td>1.3408</td>
<td>1.8241</td>
<td>1.8932</td>
</tr>
<tr>
<td>83</td>
<td>1.3722</td>
<td>1.8485</td>
<td>1.8932</td>
</tr>
<tr>
<td>84</td>
<td>1.4051</td>
<td>1.8729</td>
<td>1.8932</td>
</tr>
<tr>
<td>85</td>
<td>1.4395</td>
<td>1.9479</td>
<td>2.3039</td>
</tr>
<tr>
<td>%</td>
<td>(\sigma_x)</td>
<td>(\sigma_c)</td>
<td>(\sigma_b)</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>86</td>
<td>1.4758</td>
<td>1.9830</td>
<td>2.3404</td>
</tr>
<tr>
<td>87</td>
<td>1.5141</td>
<td>2.0200</td>
<td>2.3767</td>
</tr>
<tr>
<td>88</td>
<td>1.5548</td>
<td>2.0593</td>
<td>2.4153</td>
</tr>
<tr>
<td>89</td>
<td>1.5932</td>
<td>2.1011</td>
<td>2.4563</td>
</tr>
<tr>
<td>90</td>
<td>1.6449</td>
<td>2.1460</td>
<td>2.5033</td>
</tr>
<tr>
<td>91</td>
<td>1.6954</td>
<td>2.1945</td>
<td>2.5478</td>
</tr>
<tr>
<td>92</td>
<td>1.7507</td>
<td>2.2475</td>
<td>2.5928</td>
</tr>
<tr>
<td>93</td>
<td>1.8119</td>
<td>2.3062</td>
<td>2.6571</td>
</tr>
<tr>
<td>94</td>
<td>1.8808</td>
<td>2.3721</td>
<td>2.7216</td>
</tr>
<tr>
<td>95</td>
<td>1.9600</td>
<td>2.4477</td>
<td>2.7955</td>
</tr>
<tr>
<td>96</td>
<td>2.0537</td>
<td>2.5373</td>
<td>2.8829</td>
</tr>
<tr>
<td>97</td>
<td>2.1701</td>
<td>2.6432</td>
<td>2.9912</td>
</tr>
<tr>
<td>98</td>
<td>2.3263</td>
<td>2.7971</td>
<td>3.1365</td>
</tr>
<tr>
<td>99</td>
<td>2.5758</td>
<td>3.0349</td>
<td>3.3683</td>
</tr>
<tr>
<td>99.73</td>
<td>3.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.78</td>
<td></td>
<td>3.5000</td>
<td>4.0000</td>
</tr>
<tr>
<td>99.89</td>
<td></td>
<td></td>
<td>4.0345</td>
</tr>
<tr>
<td>99.9</td>
<td>3.2905</td>
<td>3.7169</td>
<td>4.6094</td>
</tr>
<tr>
<td>99.99</td>
<td>3.8905</td>
<td>4.2919</td>
<td>4.6094</td>
</tr>
</tbody>
</table>
Appendix B

THE MOST PROBABLE VALUE

Since the true value of a measured quantity is never known, the most probable value of the quantity must be determined from the observed values. The following proof (ref. no. 5) will show that the arithmetic mean of the observed values is the most probable value of the quantity:

Symbols:

\[X = \text{an unknown quantity} \]

\[X_1 = \text{the observed values of the unknown quantity; } X_1 = X_1, X_2, X_3 \ldots X_n \quad (1) \]

\[\bar{X} = \text{the arithmetic mean of the observed values; } \bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad (2) \]

\[x_i = \text{the error in an observation; } x_i = X_i - \bar{X} \quad (3) \]

Proof:

\[x_1 = X_1 - \bar{X} \]

\[x_2 = X_2 - \bar{X} \]

\[\ldots \]

\[x_n = X_n - \bar{X} \]

\[\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} X_i - n\bar{X} \]

B-1
From equation (2);
\[\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i = 0 \] \hspace{1cm} (4)

This shows that the sum of the differences about the mean is zero, which was expected, but if equation (3) is squared and then summed:
\[x_1^2 = x_1^2 - 2x_1 \bar{x} + \bar{x}^2 \] \hspace{1cm} (5)
\[x_2^2 = x_2^2 - 2x_2 \bar{x} + \bar{x}^2 \]
\[\vdots \]
\[x_n^2 = x_n^2 - 2x_n \bar{x} + \bar{x}^2 \]
\[\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i^2 - 2\bar{x} \sum_{i=1}^{n} x_i + n\bar{x}^2 \] \hspace{1cm} (6)

The most probable value will be found when \(\sum_{i=1}^{n} x_i^2 = 0 \), or the most probable value of \(\bar{x} \) will be that which makes \(\sum_{i=1}^{n} x_i^2 = \) a minimum.

In order to find this minimum, differentiate equation (6) with respect to \(\bar{x} \) and equate to 0:
\[\frac{d}{d\bar{x}} \sum_{i=1}^{n} x_i^2 = -2 \sum_{i=1}^{n} x_i + 2n \bar{x} = 0 \]
\[\therefore \bar{x} = \sum_{i=1}^{n} \frac{x_i}{n} \] \hspace{1cm} (7)

Equation (7) proves that the mean value \(\bar{x} \) is the most probable value of a set of independent observations. Therefore, in the determination of the residual value it is correct to use the mean value for an approximation of the true value.
Appendix C

PROPAGATION OF ERRORS

A quantity f_i is computed from two measured quantities a and b, where $f(a, b)$ denotes a function of a and b. The error Δf of f_i is affected by the errors in both a and b: Δa and Δb. Assuming a and b are independent, and the errors Δa, Δb are randomly distributed, the combined error Δf can be computed. (ref. nos. 5, 15)

Let:

$$f_1 = f(a_1, b_1)$$

$$f_2 = f(a_2, b_2)$$

$$\cdots \cdots \cdots$$

$$f_n = f(a_n, b_n) \quad (1)$$

The measured values of a and b may be averaged, obtaining the values \bar{a} and \bar{b}. The most probable value of f is \bar{f}, (from appendix B), where:

$$\bar{f} = f(\bar{a}, \bar{b})$$

and:

$$\Delta f_1 = f_1 - \bar{f} \quad (2)$$

In order to find the value of Δf_1, take the partial derivative of f_1:

$$\Delta f_1 = \frac{\partial f_1}{\partial a_1} \Delta a_1 + \frac{\partial f_1}{\partial b_1} \Delta b_1 \quad (3)$$
From Appendix B, \(\sum_{i=1}^{n} \Delta f_i = 0 \)

Computing the sum of the squares of equation (3):

\[
(\Delta f_1)^2 = \left(\frac{\partial f_1}{\partial a_1} \right)^2 \Delta a_1^2 + 2 \left(\frac{\partial f_1}{\partial a_1} \right) \left(\frac{\partial f_1}{\partial b_1} \right) \Delta a_1 \Delta b_1 + \left(\frac{\partial f_1}{\partial b_1} \right)^2 \Delta b_1^2
\]

\[
(\Delta f_2)^2 = \left(\frac{\partial f_2}{\partial a_2} \right)^2 \Delta a_2^2 + 2 \left(\frac{\partial f_2}{\partial a_2} \right) \left(\frac{\partial f_2}{\partial b_2} \right) \Delta a_2 \Delta b_2 + \left(\frac{\partial f_2}{\partial b_2} \right)^2 \Delta b_2^2
\]

\[
(\Delta f_n)^2 = \left(\frac{\partial f_n}{\partial a_n} \right)^2 \Delta a_n^2 + 2 \left(\frac{\partial f_n}{\partial a_n} \right) \left(\frac{\partial f_n}{\partial b_n} \right) \Delta a_n \Delta b_n + \left(\frac{\partial f_n}{\partial b_n} \right)^2 \Delta b_n^2
\]

Since:

\[
\frac{\partial f_1}{\partial a_1} = \frac{\partial f_2}{\partial a_2} = \frac{\partial f_n}{\partial a_n} = \text{a constant;}
\]

also:

\[
\frac{\partial f_1}{\partial b_1} = \frac{\partial f_2}{\partial b_2} = \frac{\partial f_n}{\partial b_n} = \text{a constant;}
\]

\[
\sum_{i=1}^{n} \Delta f_i^2 = \left(\frac{\partial f_i}{\partial a_i} \right)^2 \sum_{i=1}^{n} \Delta a_i^2 + 2 \left(\frac{\partial f_i}{\partial a_i} \right) \left(\frac{\partial f_i}{\partial b_i} \right) \sum_{i=1}^{n} \Delta a_i \Delta b_i + \left(\frac{\partial f_i}{\partial b_i} \right)^2 \sum_{i=1}^{n} \Delta b_i^2
\]

\[
(4)
\]

C-2
Dividing through by n:

$$
\sum_{i=1}^{n} \frac{\Delta f_i^2}{n} = \left(\frac{\partial f_i}{\partial a_i} \right)^2 \sum_{i=1}^{n} \frac{\Delta a_i^2}{n} + 2 \left(\frac{\partial f_i}{\partial a_i} \right) \left(\frac{\partial f_i}{\partial b_i} \right) \sum_{i=1}^{n} \frac{\Delta a_i \Delta b_i}{n} \\
+ \left(\frac{\partial f_i}{\partial b_i} \right)^2 \sum_{i=1}^{n} \frac{\Delta b_i^2}{n} \quad (5)
$$

By definition:

$$
\sum_{i=1}^{n} \frac{\Delta f_i^2}{n} = \sigma_f^2 \quad ; \quad \sum_{i=1}^{n} \frac{\Delta a_i^2}{n} = \sigma_a^2 \quad ; \quad \sum_{i=1}^{n} \frac{\Delta b_i^2}{n} = \sigma_b^2 \quad (6)
$$

Since a and b are independent:

$$
\left(\frac{\partial f_i}{\partial a_i} \right) \left(\frac{\partial f_i}{\partial b_i} \right) \sum_{i=1}^{n} \frac{\Delta a \Delta b}{n} = 0 \quad (7)
$$

Therefore:

$$
\sigma_f^2 = \sqrt{\left(\frac{\partial f_i}{\partial a_i} \right)^2 \sigma_a^2 + \left(\frac{\partial f_i}{\partial b_i} \right)^2 \sigma_b^2} \quad (8)
$$

Equation (8) is the general form for the propagation of independent errors, and can be expanded to cover any number of quantities (a, b, c, d, ...). It is imperative that each element represent the same precision index in the equation.

C-3
Special Rules for Error Propagation

Rule 1. Sum and Difference: \(f = (a + b + \ldots) \) or \(f = (a - b - \ldots) \)

\[
\frac{\partial f}{\partial a} = 1, \quad \frac{\partial f}{\partial b} = 1 \tag{9}
\]

Placing (9) in the general equation (8):

\[
\sigma_f = \sqrt{\sigma_a^2 + \sigma_b^2 + \ldots} \tag{10}
\]

The absolute standard error of a quantity computed from the sum or difference of measured quantities is equal to the square root of the sum of the squared standard errors of the measured quantities.

This is the form most frequently encountered.

Rule 2. Product of Factors Raised To Various Powers: \(f = a^m b^n \)

\[
\frac{\partial f}{\partial a} = ma^{m-1} b^q \quad \text{and} \quad \frac{\partial f}{\partial b} = a^m q b^{q-1} \tag{11}
\]

Placing (11) into equation (8):

\[
\sigma_f = \sqrt{m^2 a^{2m-2} b^{2q} \sigma_a^2 + a^{2m} q^2 b^{2q-2} \sigma_b^2} \tag{12}
\]

Dividing through by \(f = \sqrt{a^{2m} b^{2q}} \):

\[
\frac{\sigma_f}{f} = \sqrt{\frac{m^2 a^{2m-2} b^{2q} \sigma_a^2}{a^{2m} b^{2q}} + \frac{a^{2m} q^2 b^{2q-2} \sigma_b^2}{a^{2m} b^{2q}}} \tag{13}
\]

\[
\frac{\sigma_f}{f} = \sqrt{m^2 \left(\frac{\sigma_a}{a} \right)^2 + q^2 \left(\frac{\sigma_b}{b} \right)^2}
\]

C-4
Rule 3. Simple Product or Quotient: From the preceding rule,

\[f = a^m b^n \text{, let } m = 1, q = \pm 1. \]

Then, \(f = ab \), or \(f = a/b \).

From Equation (13):

\[\frac{\sigma_f}{f} = \sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2} \quad (14) \]

where \(\sigma_f/f \) is the fractional standard error.
Appendix D

DERIVATION AND SOLUTION OF THE TWO-DIMENSIONAL PROBABILITY DISTRIBUTION FUNCTION

1. **Derivation.** (ref. no. 24) The probability density functions of the independent errors "x" and "y" are:

\[
p(x) = -\frac{1}{\sigma_x \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma_x^2}}, \quad \text{and} \quad p(y) = -\frac{1}{\sigma_y \sqrt{2\pi}} e^{-\frac{y^2}{2\sigma_y^2}}
\]

Using Rule 4, Section 1.3:

\[
p(x,y) = -\frac{1}{2\pi \sigma_x \sigma_y} e^{-\frac{1}{2} \left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} \right)}
\]

\[
p(x,y) = \frac{1}{2\pi \sigma_x \sigma_y} \int \int_x y e^{-\frac{1}{2} \left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} \right)} \, dx \, dy \quad \text{(1)}
\]

Using polar coordinates:

\[
x^2 = r^2 \cos^2 \theta
\]

\[
y^2 = r^2 \sin^2 \theta
\]

where \(r \) is the radial error and \(r = \sqrt{x^2 + y^2} \)

\[
P(r) = P \left(r = \sqrt{x^2 + y^2} \leq R \right) = P \left(xy < R \right) \quad \text{(2)}
\]

where \(R \) is the radius of the probability circle.
The two-dimensional probability distribution function is:

\[
P(R) = \frac{1}{2\pi \sigma_x \sigma_y} \int_0^R \int_0^{2\pi} e^{-\frac{r^2}{2} \left[\frac{\sin^2 \varphi}{\sigma_y^2} + \frac{\cos^2 \varphi}{\sigma_x^2} \right]} r \, dr \, d\varphi
\]

Using identities:

- \[
\sin^2 \varphi = \frac{1}{2} (1 - \cos 2\varphi)
\]
- \[
\cos^2 \varphi = \frac{1}{2} (1 + \cos 2\varphi)
\]

\[
P(R) = \frac{1}{2\pi \sigma_x \sigma_y} \int_0^R \int_0^{2\pi} e^{-\frac{r^2}{4} \left[\frac{1 - \cos 2\varphi}{\sigma_y^2} + \frac{1 + \cos 2\varphi}{\sigma_x^2} \right]} r \, dr \, d\varphi
\]

Rearranging terms:

\[
P(R) = \frac{1}{2\pi \sigma_x \sigma_y} \int_0^R e^{-\frac{r^2}{4} \left[\frac{1}{\sigma_y^2} + \frac{1}{\sigma_x^2} \right]} \left[\int_0^{2\pi} e^{-\frac{r^2}{4} \left[\frac{1 - \cos 2\varphi}{\sigma_y^2} + \frac{1 + \cos 2\varphi}{\sigma_x^2} \right]} d\varphi \right] r \, dr
\]

Let \(\varphi = 2\varphi\),

\(d\varphi = 2d\varphi\):
Then:

\[P(R) = \frac{1}{2\pi \sigma_x \sigma_y} \int_{r=0}^{R} r e^{-\frac{r^2}{4\sigma_x^2}} \int_{\phi=0}^{\pi} \left[\frac{1}{\sigma_y^2} \left(\frac{1}{\sigma_y^2} + \frac{1}{\sigma_x^2} \right) \right] \frac{r^2}{4} \left[\frac{1}{\sigma_x^2} - \frac{1}{\sigma_y^2} \right] \cos \phi \]

Rearranging terms:

\[P(R) = \frac{1}{\sigma_x \sigma_y} \int_{r=0}^{R} \left(\frac{r^2}{4\sigma_x^2} \left[1 + \frac{\sigma_y^2}{\sigma_x^2} \right] \right) \int_{\phi=0}^{\pi} e^{-\frac{r^2}{4\sigma_y^2}} \left[\frac{1}{\sigma_y^2} \left(\frac{1}{\sigma_y^2} - 1 \right) \right] \cos \phi \]

Let:

\[\left[\frac{1}{\pi} \int_{0}^{\pi} e^{-\frac{r^2}{4\sigma_y^2}} \left[\frac{\sigma_y^2}{\sigma_x^2} \right] \cos \phi \right] = I_0 \left[\frac{r^2}{4\sigma_y^2} \left(\frac{\sigma_y^2}{\sigma_x^2} - 1 \right) \right] \]

where \(I_0 \) is a Bessel Function, zero order, modified first kind.

Therefore:

\[P(R) = \frac{1}{\sigma_x \sigma_y} \int_{r=0}^{R} \left(\frac{r^2}{4\sigma_x^2} \left[1 + \frac{\sigma_y^2}{\sigma_x^2} \right] \right) I_0 \left[\frac{r^2}{4\sigma_y^2} \left(\frac{\sigma_y^2}{\sigma_x^2} - 1 \right) \right] dr \quad (3) \]

2. Special Case of Two-Dimensional Probability Distribution Function.

When \(\sigma_x = \sigma_y = \sigma_r \) (ref. nos. 18, 24), from equation (3):

\[\text{D-3} \]
\[P(R) = \frac{1}{\sigma_r} \int_0^R re^{-\frac{r^2}{2\sigma_r^2}} I_0 \left(\frac{r^2}{4\sigma_r^2} \left(\frac{\sigma_r^2}{\sigma_r^2} - 1 \right) \right) dr \]

\[P(R) = \frac{1}{\sigma_r^2} \int_0^R re^{-\frac{r^2}{2\sigma_r^2}} I_0 (0) \, dr \]

\[I_0(0) = 1 \]

\[P(R) = \int_0^R -\frac{r^2}{2\sigma_r^2} \, dr \]

Since:
\[\frac{d}{dr} e^{-\frac{r^2}{2\sigma_r^2}} = -\frac{r}{\sigma_r^2} e^{-\frac{r^2}{2\sigma_r^2}} \]

Then:
\[\int_0^R -\frac{r^2}{2\sigma_r^2} \, dr = -\frac{R^2}{2\sigma_r^2} \]

\[P(R) = -e^{-\frac{R^2}{2\sigma_r^2}} \]

\[- \frac{R^2}{2\sigma_r^2} - \frac{R^2}{2\sigma_r^2} = 1 - e^{-\frac{R^2}{2\sigma_r^2}} \]

\[P(R) = 1 - e^{-\frac{R^2}{2\sigma_r^2}} \] (4)

3. Modified Form of the Two-Dimensional Probability Distribution Function. (ref. no. 24) To solve equation (3) by the use of tables, the equation must be modified. From S.O. Rice's "Properties of Sine
Modifying equation (3):

$$
\frac{1}{\sigma_x \sigma_y} \int_{r=0}^{R} \frac{r^2}{k \sigma_y^2} \left[\frac{1}{1 + \frac{\sigma_y^2}{\sigma_x^2}} \right] J_0 \left[\frac{r^2}{4 \sigma_y^2} \left(\frac{\sigma_y^2}{\sigma_x^2} - 1 \right) \right] \, dr
$$

Step A

Letting:

$$
\nu = \frac{r^2}{4 \sigma_y^2} \left(1 + \frac{\sigma_y^2}{\sigma_x^2} \right)
$$

$$
d\nu = \frac{2r}{4 \sigma_y^2} \left(1 + \frac{\sigma_y^2}{\sigma_x^2} \right) \, dr
$$

$$
4 \sigma_y^2 \, d\nu = 2r \left(1 + \frac{\sigma_y^2}{\sigma_x^2} \right) \, dr
$$

$$
r\, dr = \frac{2 \sigma_y^2}{\sigma_x^2} \left(1 + \frac{\sigma_y^2}{\sigma_x^2} \right) \, d\nu
$$

Step B

To get the quantity

$$
\left[\frac{r^2}{4 \sigma_y^2} \left(\frac{\sigma_y^2}{\sigma_x^2} - 1 \right) \right]
$$

in the form of \((\nu k)\):
\[v = \frac{r^2}{4\sigma_y^2} \left(1 + \frac{u_y^2}{\sigma_x^2} \right) \]

\[\left(\frac{\sigma_y^2}{\sigma_x^2} - 1 \right) = \left(1 + \frac{u_y}{\sigma_y^2} \right) \]

\[k = \frac{\left(\frac{\sigma_y^2}{\sigma_x^2} - 1 \right)}{\left(1 + \frac{u_y}{\sigma_y^2} \right)} \]

Let \(a = \frac{\sigma_x}{\sigma_y} \) where \(\sigma_x \) is the smaller of the two:

\[k = \frac{\left(\frac{\sigma_y^2}{\sigma_x^2} - \frac{\sigma_x^2}{\sigma_x^2} \right)}{\left(1 + \frac{1}{a^2} \right)} = \frac{\left(\frac{\sigma_y^2}{\sigma_x^2} - \frac{\sigma_x^2}{\sigma_x^2} \right)}{\left(1 + \frac{1}{a^2} \right)} = \frac{\left(\frac{1 - a^2}{a^2} \right)}{\left(\frac{1 + a^2}{a^2} \right)} = \frac{1 - a^2}{1 + a^2} \]

(6)

Step C

Getting \(\sigma_x \) and \(u_y \) in terms of \(a \):

\[\frac{1}{\sigma_x \sigma_y} \cdot \frac{2\sigma_y^2}{\left(1 + \frac{\sigma_y^2}{\sigma_x^2} \right)} = 2 \left[\frac{1}{\sigma_x \sigma_y} \cdot \frac{\sigma_y^2}{\sigma_x^2 + \sigma_y^2} \right] = 2 \left[\frac{1}{\sigma_x \sigma_y} \cdot \frac{\sigma_x^2 \sigma_y^2}{\sigma_x^2 + \sigma_y^2} \right] \]
\[
\begin{align*}
2 \left[\frac{1}{\sigma_y^2} - \frac{1}{\sigma_y} \right] &= 2 \left[\frac{1}{\sigma_x^2} - \frac{1}{\sigma_y} \right] = 2 \left[\frac{1}{\sigma_x^2} + \frac{1}{\sigma_y^2} \right] = \frac{2a}{a^2 - 1} \\
(7)
\end{align*}
\]

Step 2

\[
\begin{align*}
1 + \frac{a_y^2}{\sigma_x^2} &= \frac{a_x^2 + a_y^2}{\sigma_x^2} = \left[\frac{1}{\sigma_x^2} - \frac{1}{\sigma_y} \right] = \left[\frac{1}{\sigma_x^2} + \frac{1}{\sigma_y^2} \right] = \frac{a^2 + 1}{a^2} \\
(8)
\end{align*}
\]

Combining Steps A, B, C, D and equation (3):

\[
P(R) = \frac{2a}{1 + a^2} \int_0^x e^{\frac{r^2}{4\sigma_y^2} \left[\frac{1}{a^2} \right]} \cdot e^{\frac{r^2}{4\sigma_y^2} \left[\frac{1}{a^2} \right]} \cdot I_0 \left[\frac{r^2}{4\sigma_y^2} \left[\frac{1}{a^2} \right] \left[\frac{1}{a^2} \right] \right] dv.
\]

Rewriting equation (9):

\[
P(R) = \frac{2a}{1 - a^2} \int_0^x e^{-v} \cdot I_0 (vk) dv
\]

where:

\[
x = \frac{R^2}{4\sigma_y^2} \left[\frac{1 + a^2}{c^2} \right] ; \quad v = \frac{r^2}{4\sigma_y^2} \left[\frac{1 + a^2}{a^2} \right] ; \quad k = \frac{1 - a^2}{1 + a^2}
\]

\[\therefore\]
4. Solution of Modified Function. (ref. nos. 12, 23) To compute the CPE (CPE = R when \(P(R) = 0.5 \)) for values of \(\sigma_y = \sqrt{0.6} \) and \(\sigma_x = \sqrt{0.4} \), two methods are available:

Method 1:

To determine the value for \(x \) by Rice's table of \(I_e(\nu k) \) dv, enter the table with values of \(k \) and the required probability.

- \(P(R) = 50\% \) probability; \(a = \frac{\sigma_x}{\sigma_y} = 0.8165; a^2 = 0.6667; k = \frac{1-a^2}{1+a^2} = 0.2 \)

\[
P(R) = \frac{2a}{1+a^2} \int_0^x e^{-v} I_0(\nu k) \, dv
\]

\[
\frac{.50 \left(1 + a^2 \right)}{2a} = \int_0^x e^{-v} I_0(\nu k) \, dv
\]

\[
0.5103 = \int_0^x e^{-v} I_0(\nu k) \, dv
\]

Enter the tables with \(k = 0.2 \) and interpolate for 0.5103 to get the value of \(x \).

\[
\begin{array}{c|c|c}
\nu & 4517 & 5103 \\
--- & --- & --- \\
\nu & 5516 \\
\end{array}
\]

\[
\therefore x = 0.71732
\]

\[
x = \frac{R^2}{4\sigma_y^2} \left[\frac{1+a^2}{a^2} \right] = 0.71732
\]

D-8
\[\frac{R}{\sigma_y} = 1.0713 \]

The radius of the 50% probability circle (CPE) resulting from \(\sigma_x, \sigma_y \) is
\[R = 1.0713 \sigma_y. \]

Method 2:

Using tables computed by Arthur Grad and Herbert Solomon:

From equation (2):
\[P(R) = P \left(\sqrt{x^2 + y^2} \leq R \right) = P \left(x^2 + y^2 \leq R^2 \right) \]

Since \(x \) and \(y \) have unit standard errors, they can be written as:
\[x = \sigma_x x \quad \text{and} \quad y = \sigma_y y. \]

Therefore:
\[P(R) = P \left(\sigma_y^2 y^2 + \sigma_x^2 x^2 \leq R^2 \right) \]
\[= P \left(y^2 + \frac{\sigma_x^2}{\sigma_y^2} x^2 \leq \frac{R^2}{\sigma_y^2} \right) \quad (11) \]

From Grad and Solomon Tables:
\[P \left(a_1 y_1^2 + a_2 y_2^2 \leq t \right) \quad a_1 + a_2 = 1 \]
\[P \left(y_2^2 + \frac{a_1}{a_2} y_1^2 \leq \frac{t}{a_2} \right) \quad (12) \]

Correlation between equations (11) and (12) will permit use of the tabulated values.

\[\frac{\sigma_x}{\sigma_y} = \sqrt{\frac{a_1}{a_2}} ; \quad \frac{R}{\sigma_y} = \sqrt{\frac{t}{a_2}} \]

D-9
Enter the tables with values of a_1, a_2 and the required probability.

Then interpolate for values of $\frac{R}{\sigma_y \sqrt{a_2}}$.

Since $\frac{\sigma_x}{\sigma_y} = \sqrt{\frac{R}{a_2}}$, then $a_1 = .4; a_2 = .6$

\[
\begin{align*}
t & = .6 & = 4559 \\
 & = .7 & = 5080
\end{align*}
\]

\[
\frac{t}{a_2} = \frac{0.68464}{.6} = \frac{R^2}{\sigma_y^2}
\]

\[
\frac{R}{\sigma_y} = \sqrt{\frac{0.68464}{.6}} = 1.068
\]

\[
R = 1.068 \sigma_y
\]
Appendix E

DERIVATION OF THE SPHERICAL PROBABILITY DISTRIBUTION FUNCTION

The combined probability density distribution function of the independent errors x, y, and z are:

$$p(x,y,z) = \frac{1}{\sigma_x \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma_x^2}} \cdot \frac{1}{\sigma_y \sqrt{2\pi}} e^{-\frac{y^2}{2\sigma_y^2}} \cdot \frac{1}{\sigma_z \sqrt{2\pi}} e^{-\frac{z^2}{2\sigma_z^2}}$$ (1)

In the spherical case where $\sigma_x = \sigma_y = \sigma_z = \sigma$:

$$p(x,y,z)dx \, dy \, dz = \frac{1}{\sigma^3 (2\pi)^{3/2}} \cdot \frac{1}{2\sigma_s^2} \cdot (-\frac{x^2 + y^2 + z^2}{2\sigma_s^2})^3 \cdot dx \, dy \, dz$$ (2)

Converting to 3-dimensional coordinates:

$$x^2 = s^2 \cos^2 \psi \cos^2 \lambda$$

$$y^2 = s^2 \cos^2 \psi \sin^2 \lambda$$

$$z^2 = s^2 \sin^2 \psi$$

$$x^2 + y^2 + z^2 = s^2 \cos^2 \psi \cos^2 \lambda + s^2 \cos^2 \psi \sin^2 \lambda + s^2 \sin^2 \psi$$

$$= s^2 \cos^2 \psi (\cos^2 \lambda + \sin^2 \lambda) + s^2 \sin^2 \psi$$

$$= s^2$$

E-1
Let \(S = \) radius of sphere, replacing radial error \(s \).

Then:

\[
\begin{align*}
\text{d}S &= \sqrt{2} S \cos \psi \, \text{d}\lambda \, \text{d}S \\
\text{P}(S) &= \int_{S=0}^{S} \int_{\lambda=0}^{2\pi} \int_{\psi=0}^{\pi} \frac{1}{\sqrt{2}} \left(\frac{S^2}{2 \sigma_s^2} \right) e^{-\frac{S^2}{2 \sigma_s^2}} \cos \psi \, \text{d}\lambda \, d\psi \, dS \\
\text{P}(S) &= \frac{1}{3} \left(\frac{2\pi}{2\pi} \right) \int_{S=0}^{S} \frac{s^2}{\sigma_s^2} e^{-\frac{s^2}{2 \sigma_s^2}} \, ds \\
\text{P}(S) &= \sqrt{\frac{s^2}{\pi}} \int_{0}^{S} \frac{s^2}{\sigma_s^2} e^{-\frac{s^2}{2 \sigma_s^2}} \, ds
\end{align*}
\]
Integrating by parts:

Let \(u = \frac{5}{\sigma^2} \), \(dv = \frac{5}{\sigma^2} e^{-\frac{x^2}{2}} dS \)

\[
\begin{align*}
du &= \frac{dS}{\sigma^2}, \\
v &= e^{-\frac{x^2}{2}} \\
\int P(S) = \sqrt{\pi} &\left[\left(-\frac{s^2}{2\sigma^2} \right) - \frac{S}{\sigma^2} - \frac{s^2}{2\sigma^2} \right] dS \\
&= \int_0^\infty \frac{e^{-\frac{c^2}{2}}}{\sigma^2} - \frac{S}{\sigma^2} e^{-\frac{c^2}{2}} dC
\end{align*}
\]

In order to use approximation formula (Mathematical Tables and Other Aids to Computations, Vol. XI, No. 60, October 1957, pp 265, "A Formula for the Approximation of Definite Integrals of the Normal Distribution Function"), \(P(S) \) must be transformed to the integral of \(e^{-\frac{t^2}{2}} dt \).

Letting \(C = \frac{3}{\sigma^2} \), \(dS = \sigma^2 dC \), where \(\sigma^2 = \text{constant} \):

\[
P(S) = \sqrt{\pi} \left[-Ce^{-\frac{c^2}{2}} + \int_{C=0}^{C=\infty} \frac{S}{\sigma^2} e^{-\frac{c^2}{2}} dC \right]
\]

From above reference when \(x \geq 0 \):

\[
\int_{x}^{\infty} e^{-\frac{t^2}{2}} dt \sim \frac{e^{-\frac{x^2}{2}}}{x + 0.3 e^{-0.4x}}
\]

E-3
\[
\int_{0}^{\infty} e^{-\frac{c^2}{2}} \, dc = 1.253 \\
\int_{0}^{x} = \int_{0}^{\infty} - \int_{x}^{\infty}
\]

\[P(s) = \sqrt{\frac{2}{\pi}} \left[-c e^{-\frac{c^2}{2}} + 1.253 \cdot \frac{e^{-\frac{c^2}{2}}}{c + 0.8 e^{-0.4c}} \right] \quad (8)\]
Appendix F

SUBSTITUTION OF THE CIRCULAR FORM FOR ELLIPTICAL ERROR DISTRIBUTIONS

\[
\frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} = 0.9
\]

\[
\frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} = 0.8
\]

\[
\frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} = 0.7
\]

\[
\frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} = 0.6
\]
\[\frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} = 0.3 \quad \text{and} \quad \frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} = 0.1 \]
REFERENCES

