NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
PROBABILITY CONSIDERATIONS ON DESTROYING ICBM'S WITH INTERCEPTOR SATELLITES

Herbert Knothe
Qualified requesters may obtain copies of this report from ASTIA. Orders will be expedited if placed through your librarian or other staff member designated to request and receive documents from ASTIA.

Copies of this report are for sale to the general public through the Office of Technical Services, Department of Commerce, Washington 25, D.C.
PROBABILITY CONSIDERATIONS ON DESTROYING ICBM's
WITH INTERCEPTOR SATELLITES

by

Herbert Knothe

Mathematics Division
Directorate of Research Analysis

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
Holloman Air Force Base, New Mexico

November 1961
ABSTRACT

This paper presents a method for calculating the probability that a certain minimum number of a set of ICEM's can be destroyed by a given number of interceptor satellites.

This report is approved for publication.

James H. Ritter
Colonel, USAF
Director, Research Analysis Directorate
The problem, as defined by Dr. Fritz Hoehndorf, may be formulated as follows:

Let \(m \) and \(n \) be the numbers of interceptors and ICBM's, respectively. Each of the \(m \) interceptors is supposed to attack exactly one of the \(n \) ICBM's. One ICBM may be attacked by one or more interceptors. The probability that one interceptor destroys the attacked ICBM is \(p \). The probability \(P_{ik} \) that the \(i^{th} \) interceptor attacks the \(k^{th} \) ICBM shall be independent of \(i, k \).

What is the probability that at least \(n - \mu \) ICBM's are destroyed or, in other words, at most \(\mu \) ICBM's escape destruction?

Let us first answer the question: What is the probability of destroying exactly \(j \) ICBM's? Let \(m_1 \) be the number of interceptors attacking the first ICBM, let \(m_2 \) be the number of interceptors attacking the second ICBM, and finally let \(m_n \) be the number of interceptors attacking the \(n^{th} \) ICBM. It is obvious that the number of different possibilities of attributing \(m_1, m_2, \ldots, m_n \) interceptors to the first, second, \ldots, \(n^{th} \) ICBM is

\[
\frac{m!}{m_1! \cdot m_2! \cdots m_n!}
\]

Released by author, September 1961
Since \(n^m \) is the total number of possible distributions of \(m \) "elements" among \(n \) "boxes," the distribution \(m_1, m_2, \ldots, m_n \) has the probability

\[
\frac{1}{n^m} \frac{m!}{m_1! \cdot m_2! \cdots m_n!}
\]

The probabilities that the first, second, \ldots, \(j \)th ICBM's escape destruction are \(m_1, m_2, \ldots, m_j \), respectively, where \(q = 1 - p \).

The probabilities that the (\(j+1 \))st, \ldots, \(n \)th ICBM's are destroyed are \(1 - q \cdot m_{j+1}, \ldots, 1 - q \cdot m_n \), respectively.

Hence the configuration: first \(j \) ICBM's not destroyed, remaining \(n - j \) ICBM's destroyed, \(i \)th ICBM attacked by \(m_i \) interceptors (\(i = 1, \ldots, n \)), has the probability

\[
\frac{1}{n^m} \frac{m!}{m_1! \cdot m_2! \cdots m_n!} q_1 \cdots q_j (1 - q_{j+1}) \cdots (1 - q_n)
\]

Since there are \(\binom{n}{j} \) possibilities of selecting a set of \(j \) escapes out of the \(n \) ICBM's we obtain

\[
P_j = \binom{n}{j} \frac{1}{n^m} \sum \frac{m!}{m_1! \cdot m_2! \cdots m_n!} q_1 \cdots q_j (1 - q_{j+1}) \cdots (1 - q_n)
\]

(1)

where \(P_j \) is the probability that exactly \(j \) ICBM's escape destruction.
and where the sum has to be extended over all configurations \(m_1, m_2, \ldots, m_n \) so that

\[
m_1 + m_2 + \cdots + m_n = m
\]

The sum in formula (1) may be written in a more convenient form.

We substitute in equation (1)

\[
m_1 + m_2 + \cdots + m_j = v
\]

Since each term of the sum in equation (1) for which \(m_{j+k} = 0 \) \((k \geq 1)\) vanishes, we have to consider only those configurations for which

\[
m_{j+1} + \cdots + m_n = m - (m_1 + \cdots + m_j) = m - v \geq n - j
\]

or

\[v \leq m - n + j\]

The set of the \(v \) elements \(m_1, m_2, \ldots, m_j \) can be selected in \(\binom{m}{v} \) ways and there are \(j^v \) possibilities of attributing \(v \) interceptors to \(j \) ICBM's. The number of possibilities of attributing the remaining \(m - v \) interceptors to the remaining \(n - j \) ICBM's is

\[
\frac{(m - v)!}{m_{j+1}! \cdots m_n!}
\]
where

\[m_{j+1} + \ldots + m_n = m - v \]

Hence it follows

\[
P_j = \binom{n}{j} \frac{1}{n^m} \sum_{\nu=0}^{m-n+j} \binom{m}{\nu} (j^\nu) \sum_{(m_{j+1})! \ldots m_n!} (1 - q^{m_{j+1}}) \ldots (1 - q^{m_n})
\]

(2)

where the second sum has to be extended over all possible configurations \(m_{j+1} \ldots m_n \) satisfying the condition

\[
m_{j+1} + \ldots + m_n = m - v
\]

(3)

After determining \(P_j \) by means of formula (2) we see that the probability \(p_\mu \) of killing at least \(n - \mu \) ICEM's is

\[
p_\mu = \sum_{0}^{\mu} P_j
\]

In order to estimate the sum

\[
S = \sum \frac{(m - \nu)!}{(m_{j+1})! \ldots m_n!} (1 - q^{m_{j+1}}) \ldots (1 - q^{m_n})
\]

(4)

the following study is useful. In the sum (4) all terms vanish if
any \(m_{j+k} = 0 \) (\(k \geq 1 \)). If we now replace \((1 - q^{m_{j+1}}) \ldots (1 - q^{m_n}) \) by its maximum \(M_\rho \) under the boundary condition (3) we see that

\[
S \leq M_\rho \cdot \sum_{(m - \nu)!}^{(m_{j+1})! \ldots m_n!} \]

(5)

where only those configurations have to be considered for which

\[
m_{j+k} \geq 1
\]

This leads to the following problem: How many possibilities are there to distribute \(\rho \) "elements" to \(\sigma \) "boxes" (\(\rho \geq \sigma \)) so that each box contains at least one of the \(\rho \) elements?

In order to answer this question we shall derive a recursion formula as follows: Let \(\phi_\rho(\sigma, j) \) be the number of possible distributions so that the first \(j \) boxes contain at least one element.

It is evident that \(\phi_\rho(\sigma, j+1) \) equals \(\phi_\rho(\sigma, j) \) minus that number of distributions for which the first \(j \) boxes contain at least one element and for which the \((j+1)^{st}\) box is empty. This number is \(\phi_\rho(\sigma-1, j) \). Therefore:

\[
\phi_\rho(\sigma, j+1) = \phi_\rho(\sigma, j) - \phi_\rho(\sigma-1, j)
\]

(6)

We now have

\[
\phi_\rho(\sigma, 0) = \sigma^\rho
\]

(7)
From equations (6) and (7) we conclude by induction

\[\phi_p(\sigma, \sigma) = \sigma^p - \sigma(\sigma-1)^p + \binom{\sigma}{2} (\sigma-2)^p - \cdots = \sum_{v=0}^{\sigma} (-1)^v \binom{\sigma}{v} (\sigma-v)^p \]

or

\[\phi_p(\sigma, \sigma) = \sum_{v=0}^{\sigma} (-1)^v \binom{\sigma}{v} v^p \]

where \(\phi_p(\sigma, \sigma) \) means the number of possibilities to distribute \(p \) "elements" to \(\sigma \) "boxes" so that each box contains at least one element. It is desirable to express \(\phi_p(\sigma, \sigma) \) in a closed form. For this purpose we write

\[\sum_{v=0}^{\sigma} (-1)^v \binom{\sigma}{v} e^{vx} = (e^x - 1)^\sigma \]

Differentiating (10) \(\rho \) times with respect to \(x \) we obtain

\[\phi_p(\sigma, \sigma) = \frac{d^\rho}{dx^\rho} (e^x - 1)^\sigma \bigg|_{x=0} \]

which yields \(\phi_p(\sigma, \sigma) \) in the desired closed form.
Equation (11) shows that \(\Phi_p(\sigma, \tau) \) may be written as a contour integral in the Gaussian plane, extended over any closed contour encircling the origin once

\[
\Phi_p(\sigma, \tau) = \frac{\rho_i}{2\pi i} \oint \frac{(e^z - 1)^\sigma}{z^\rho+1} \, dz
\]

(12)

In various ways we can obtain useful estimates for \(\Phi_p(\sigma, \tau) \), for instance choosing the unit circle about the origin as contour. However, we shall not dwell upon this method any longer, because the fundamental formula (2) can be transformed into an interesting and much simpler form, handy above all for computations with a digital computer.

With regard to practical calculations the greatest difficulty in evaluating formula (2) is caused by the factorial terms and, above all, by decomposing \(m \) into a large number of summands. How this can be avoided shall now be investigated.

The second sum on the right-hand side of equation (2) has the structure

\[
\sum \frac{s_1}{s_1! \ldots s_t!} (1 - q^{s_1}) \ldots (1 - q^{s_t})
\]

(13)

where

\[s_1 + \ldots + s_t = s \]
Eliminating the parentheses in (13) we have \(\binom{t}{\alpha} \) products of the kind \(q^{s_1} q^{s_2} \ldots q^{s_\alpha} \). All these \(\binom{t}{\alpha} \) products contribute the same value.

\[
S = (-1)^\alpha \sum \frac{s!}{s_1! \ldots s_t!} q^{s_1} \ldots q^{s_\alpha} \quad \text{(14)}
\]

to the sum in expression (13) if we first keep \(s_1, s_2, \ldots s_\alpha \) fixed. We substitute \(s_1 + s_2 + \ldots + s_\alpha = \tilde{S} \) and write (14) in the form

\[
S = (-1)^\alpha \sum \left(\frac{s!}{(s - \tilde{S})!} q^{\tilde{S}} \right) \left(\frac{(s - \tilde{S})!}{s_1! \ldots s_\alpha!} \right) \left(\frac{(s - \tilde{S})!}{s_{\alpha+1}! \ldots s_t!} \right) \quad \text{(15)}
\]

Keeping first \(s_1, s_2, \ldots s_\alpha \) fixed and summing over \(s_{\alpha+1}, \ldots s_t \), we obtain

\[
S = \sum_{\tilde{S}=0}^{s} (-1)^\alpha (t - \alpha)^{s - \tilde{S}} q^{\tilde{S}} \left(\frac{s!}{\tilde{S}!} \right) \sum \frac{\tilde{S}!}{s_1! \ldots s_\alpha!} \quad \text{(16)}
\]
Summing over \(s_1, \ldots, s_\alpha \), and keeping \(\tilde{s} \) fixed during this summation, we obtain

\[
S = \sum_{\tilde{s}=0}^{\tilde{s}} (-1)^\alpha (t - \alpha)^{\tilde{s}} \frac{q^{\tilde{s}}}{\tilde{s}^s} \alpha^{\tilde{s}}
\]

(17)

or

\[
S = (-1)^\alpha (t - \alpha P)^s
\]

(18)

Equation (18) now leads to the important result

\[
\sum_{s_1, \ldots, s_t} \frac{s!}{s_1! \ldots s_t!} (1 - q^{s_1}) \ldots (1 - q^{s_t})
\]

(19)

\[
= \sum_{\alpha=0}^{t} (-1)^\alpha \binom{t}{\alpha} (t - \alpha P)^s
\]

Equation (19) finally enables us to give an expression for \(P_j \) much more suitable for practical calculations:

\[
P_j = \binom{n}{j} \frac{1}{n^m} \sum_{\nu=0}^{m-j} \binom{m}{\nu} (jq)^\nu \sum_{\alpha=0}^{n-j} (-1)^\alpha \binom{n-j}{\alpha} (n - j - \alpha P)^{m-\nu}
\]

(20)
Let us now represent P_j as a contour integral. For this purpose we apply to the second sum in equation (20) a method analogous to that which led to equation (11). From the relation

\[
\sum_{\alpha=0}^{n-j} (-1)^\alpha \binom{n-j}{\alpha} e^{(n-j-\alpha)p} e^{(n-j)x} = e^{(n-j)x} (1 - e^{-px})^{n-j} \tag{21}
\]

we conclude by differentiating $(m - v)$ times with respect to x, and subsequently substituting $x = 0$

\[
\sum_{\alpha=0}^{n-j} (-1)^\alpha \binom{n-j}{\alpha} (n-j-\alpha)p^{m-v} e^{(n-j)x} (1 - e^{-px})^{n-j}
\]

\[
= \frac{d^{m-v}}{dx} \left. e^{(n-j)x} (1 - e^{-px})^{n-j} \right|_{x=0} \tag{22}
\]

or

\[
\sum_{\alpha=0}^{n-j} (-1)^\alpha \binom{n-j}{\alpha} (n-j-\alpha)p^{m-v} = \frac{(m-v)!}{2ix} \int \frac{e^{(n-j)x}(1 - e^{-px})^{n-j}}{z^{m-v+1}} \, dz \tag{23}
\]

where the contour integral has to be extended over a closed contour about the origin in the Gaussian plane of the complex variable z.
Substituting equation (23) in equation (20) we obtain after some elementary operations:

\[
P_j = \binom{n}{j} \cdot \frac{m!}{n^m} \cdot \frac{1}{2\pi i} \int \sum_{v=0}^{m-n+j} \frac{(jz)^v}{v!} \frac{(1-e^{-pz})^{n-j}}{z^{m+1}} \, dz
\]

The sum

\[
\sum_{v=0}^{m-n+j} \frac{(jz)^v}{v!}
\]

can rigorously be replaced by \(e^{jz}\) because powers of \(jz\) higher than \(m-n+j\) would not yield any residue different from zero in the integral of equation (24). Hence it follows that \(P_j\) can be represented in the form:

\[
P_j = \binom{n}{j} \cdot \frac{m!}{n^m} \cdot \frac{1}{2\pi i} \int e^{(n-jp)z} \frac{(1-e^{-pz})^{n-j}}{z^{m+1}} \, dz
\]

It is appealing to check equation (26) by proving that indeed

\[
\sum_{j=0}^{n} P_j = 1
\]
Since

\[\sum_{j=0}^{n} \binom{n}{j} e^{-jz} \left(1 - e^{-pz}\right)^{n-j} = 1 \]

we obtain from equation (26)

\[\sum_{j=0}^{n} P_j = \frac{m!}{n^m} \cdot \frac{1}{2ix} \int \frac{e^{nz}}{z^{m+1}} \, dz \tag{28} \]

Since

\[\int \frac{e^{nz}}{z^{m+1}} \, dz = 2ix \frac{m^m}{m!} \]

equation (27) has been verified.

Equation (26) can be written in the form

\[P_j = \binom{n}{j} \cdot \frac{1}{n^m} \cdot \frac{mi}{2ix} \int \frac{\left(e^z - e^{qz}\right)^n (e^{pz} - 1)^{-j}}{z^{m+1}} \, dz \tag{29} \]
It suggests eliminating the parentheses in equation (26) in order to calculate the residues. After some elementary transformations we obtain:

\[P_j = \left(1 - \frac{jP}{n}\right)^m \binom{n}{j} \sum_{\mu=0}^{n-j} (-1)^\mu \binom{n-j}{\mu} \left(1 - \frac{\mu P}{n-jP}\right)^m \]

(30)

For practical computations it is always advisable to comprehend two succeeding terms in the sum of equation (30):

\[
\left(\begin{array}{c} n-j \\ \mu \end{array} \right) \left(1 - \frac{\mu P}{n-jP}\right)^m - \left(\begin{array}{c} n-j \\ \mu+1 \end{array} \right) \left(1 - \frac{(\mu+1)P}{n-jP}\right)^m
\]

= \left(\begin{array}{c} n-j \\ \mu \end{array} \right) \left(1 - \frac{\mu P}{n-jP}\right)^m \left\{1 - \frac{n-j-\mu}{\mu+1} \left(1 - \frac{P}{n-jP-\mu P}\right)^m\right\}

(31)

\[
\approx \left(\begin{array}{c} n-j \\ \mu \end{array} \right) \left(1 - \frac{\mu P}{n-jP}\right)^m \left(1 - \frac{n-j-\mu}{\mu+1} e^{-\frac{\mu P}{n-jP-\mu P}}\right)
\]

This approximation is sufficient for all practical purposes. Finally equation (30) assumes the form:

\[
P_j \approx \binom{n}{j} \left(1 - \frac{jP}{n}\right)^m \sum_{\sigma=0}^{n-j-1} \binom{n-j}{2\sigma} \left(1 - \frac{2\sigma P}{n-jP}\right)^m \left(1 - \frac{n-j-2\sigma}{2\sigma + 1} e^{-\frac{\mu P}{n-jP-2\sigma P}}\right)
\]

(32)
for an odd \((n-j)\). For an even \((n-j)\) the upper limit of the sum equals

\[
\frac{(n-j)}{2}
\]

Professor Harry Carver suggested that we calculate the factorial moments of our distribution function, remarking that the general expressions would probably become very simple.

The \(v\)th factorial moment \(\mu(v)\) is defined as follows:

\[
\mu(v) = \sum_{j=0}^{n} \frac{(j-1) \cdots (j-v+1) P_j}{j!}
\]

or using the notation:

\[
\mu(v) = \sum_{j=0}^{n} \frac{j(j-1) \cdots (j-v+1)}{j!} P_j
\]

we have:

\[
\mu(v) = \sum_{j=0}^{n} \frac{j(v) P_j}{j!}
\]

In order to calculate these moments we make use of formula (26) which we shall write in a slightly modified form:

\[
P_j = \binom{n}{j} \cdot \frac{1}{n} \cdot \frac{m!}{2\pi} \int e^{nqz} \frac{(e^{pz} - 1)^{n-j}}{z^{m+1}} \, dz
\]
From equation (35) we conclude:

$$\mu(\nu) = \frac{m!}{2\pi \nu n^m} \int \frac{e^{\nu qz} (e^{pz} - 1)^n}{z^{m+1}} \sum_{j=0}^{n} j(\nu) \binom{n}{j} (e^{pz} - 1)^{-j} \, dz$$

(36)

The sum in the integrand can easily be evaluated as follows: We substitute,

$$e^{pz} - 1 = x^{-1}$$

Since:

$$\sum_{j=0}^{n} \binom{n}{j} (e^{pz} - 1)^{-j} = \sum_{j=0}^{n} \binom{n}{j} x^j = (1 + x)^n$$

(37)

we obtain by deriving equation (37) \(v\) times with respect to \(x\) and multiplying the result by \(x^v\):

$$\sum_{j=0}^{n} j(\nu) \binom{n}{j} x^j = n(\nu) x^v (1 + x)^{n-v}$$

(38)

or

$$\sum_{j=0}^{n} j(\nu) \binom{n}{j} (e^{pz} - 1)^{-j} = n(\nu) e^{pz(n-v)} (e^{pz} - 1)^{-n}$$

(39)
We now substitute equation (39) in equation (36):

\[\mu(v) = \frac{m! \cdot n(v)}{2\pi n^m} \int \frac{e^{(n - vp)z}}{z^{m+1}} \, dz \]

(40)

Calculating the residue of the integrand of equation (40) we finally obtain:

\[\mu(v) = n(v) \left(1 - \frac{vp}{n} \right)^m \]

(41)

Our next aim is to give an approximation of our distribution function good to any desired degree of accuracy, taking advantage of the simple expressions for the factorial moments.

We are particularly interested in the case where \(n \) is very large i.e., \(n \geq 200 \). In this case it is justified to replace the summation sign in equation (34) by an integral sign:

\[\mu(v) = \int_{j=0}^{n} j(v) P(j) \, dj \]

(42)

We now perform the similarity transformation:

\[j = \frac{n}{2} (x + 1) \]

(43)
which transforms the interval \((0, n)\) into the interval \((-1, 1)\), and obtain:

\[
\mu(v) = \left(\frac{n}{2}\right)^v \int_{-1}^1 \left(1 + x\right)^v \left(1 + x - \frac{2}{n}\right) \left(1 + x - \frac{4}{n}\right) \ldots \left(1 + x - \frac{2v-2}{n}\right) \tilde{P}(x) \, dx
\]

where \(\tilde{P}(x) \, dx\) is the probability that \(x\) lies in the interval \((x, x + dx)\).

Now we take advantage of the simple expressions for the factorial moments in order to expand \(\tilde{P}(x)\) into a series of Legendre polynomials. For this purpose we eliminate the parentheses in equation (44):

\[
\mu(v) = \left(\frac{n}{2}\right)^v \left[\int_{-1}^1 (1 + x)^v \tilde{P}(x) \, dx - \frac{2}{n} s_1(v-1) \int_{-1}^1 (1 + x)^{v-1} \tilde{P}(x) \, dx \right.
\]

\[
+ \frac{2^2}{n^2} s_2(v-1) \int_{-1}^1 (1 + x)^{v-2} \tilde{P}(x) \, dx \ldots + \frac{(-2)^{v-1}}{n^{v-1}} \left. \right]
\]

where \(s_i(v-1)\) means the \(i\)th elementary symmetric function of the first \(v - 1\) integers.
For practical applications we shall list the first four symmetric functions \(s_1(n) \), \(s_2(n) \), \(s_3(n) \), \(s_4(n) \):

\[
\begin{align*}
 s_1(n) &= \frac{n(n + 1)}{2} \\
 s_2(n) &= \frac{n(n + 1)(n - 1)(3n + 2)}{24} \\
 s_3(n) &= \frac{n^2(n + 1)^2(n - 2)(n - 1)}{48} \\
 s_4(n) &= \frac{n(n + 1)(n - 1)(n - 2)(n - 3)(15n^3 + 15n^2 - 10n - 8)}{27 \cdot 3^2 \cdot 5}
\end{align*}
\]

Equation (45) suggests expanding the expression \((1 + x)^n\) into a sum of Legendre polynomials. As will be shown in the Appendix, we find:

\[
(1 + x)^n = \sum_{i=0}^{n} I_{in} \overline{P}_i
\]

where \(\overline{P}_i \) is the \(i^{th} \) Legendre polynomial normalized so that:

\[
\int_{-1}^{1} \overline{P}_i^2 \, dx = 1
\]

18
and

\[I_{in} = \sqrt{\frac{2i + 1}{2}} \]

(49)

\[\frac{2^{n+1} (n!)^2}{(2i + 1)! \left[(n+1)n - (i+1)i \right] \left[n(n-1) - (i+1)i \right] \ldots \left[(i+2)(i+1) - (i+1)i \right]} \]

Let us now expand \(\tilde{P}(x) \) into a series of Legendre polynomials:

\[\tilde{P}(x) = \sum_{0}^{\infty} a_j \tilde{P}_j(x) \]

(50)

We now substitute equations (41), (47), and (50) in equation (45):

\[n^{(v)} \left(1 - \frac{y \pi}{n} \right)^m = \left(\frac{n}{2} \right)^v \sum_{i=0}^{v-1} I_{iv} a_i - \frac{2}{n} s_1^{(v-1)} \sum_{i=0}^{v-1} I_{iv-1} a_i \]

\[+ \frac{2^2}{n^2} s_2^{(v-1)} \sum_{i=0}^{v-2} I_{iv-2} a_i \ldots \]

(51)

Equation (51) enables us to calculate easily the coefficients \(a_i \) successively, and is above all suitable for large numbers \(n \) and \(m \).

Although equation (51) apparently is complicated, it permits computation of the coefficients \(a_i \) without solving a system of linear equations. The numerical evaluation of equation (51) can be performed by means of a desk calculator.
APPENDIX

In order to prove formula (49), page 19, we start from the differential equation for Legendre's polynomials:

\[
\frac{d}{dx} \left[(x^2 - 1) P_i \right] = i(i + 1) P_i \tag{1}
\]

We now multiply equation (1) by \((1 + x)^n\) and integrate from -1 to +1:

\[
i(i + 1) \int_{-1}^{+1} (1 + x)^n P_i \, dx = \int_{-1}^{1} \frac{d}{dx} \left[(x^2 - 1) P'_i \right] (1 + x)^n \, dx
\]

\[
= -n \int_{-1}^{1} (x^2 - 1) (1 + x)^{n-1} P'_i \, dx = -n \int_{-1}^{1} (x - 1) (1 + x)^n P'_i \, dx
\]

\[
= n \int_{-1}^{1} (1 + x)^n P_i \, dx + n^2 \int_{-1}^{1} (x - 1) (1 + x)^{n-1} P_i \, dx
\]

\[
= (n + n^2) \int_{-1}^{1} (1 + x)^n P_i \, dx - 2n^2 \int_{-1}^{1} (1 + x)^{n-1} P_i \, dx
\]

From equation (2) we derive the recursion formula:

\[
I_{in} = \frac{2n^2}{n^2 + n - i^2 + 1} I_{in-1} \tag{3}
\]
We apply formula (3) successively until we reach I_{11}, which is:

$$I_{11} = \int_{-1}^{1} (1 + x)^i P_i \, dx = \int_{-1}^{1} x^i P_i \, dx$$ \hspace{1cm} (4)$$

The integral (4) is well known and may be taken from any textbook*, and from it we then obtain, after some elementary transformations, equation (49), page 19.

*W. Magnus and F. Oberhettinger, Formeln und Satze für die speziellen Funktionen der mathematischen Physik.
Signal Corps Engineering Laboratory
(SIGFM/EL-RPO)
Fort Monmouth, NJ

Linda Hall Library
ATTN: Documents Division
5109 Cherry Street
Kansas City 10, Mo

HQ USAF (AFCIN-3T)
Wash 25, DC

HQ USAF (AFDRD-HF)
Wash 25, DC

CIA (OCR Mail Room)
2430 E Street NW
Wash 25, DC

Dept of the Navy
Bureau of Ordnance (Sp-401)
Wash 25, DC

AFMTO (Tech Library MU-135)
Patrick AFB, Fla

APGC (PGTRIL)
Eglin AFB, Fla

AFSWC (SWOI)
Kirtland AFB, NMex

AU (AUL-6008)
Maxwell AFB, Ala

RADC (ROOII-2)
Griffiss AFB, NY

Dept of the Navy
Naval Research Laboratory
ATTN: Director, Code 5360
Wash 25, DC

Commanding Officer
Diamond Ordnance Fuse Laboratories
ATTN: Technical Reference Section
(ORDTL 06.33)
Wash 25, DC

USAFA (DLIB)
U.S. Air Force Academy
Colo

Analytic Services, Inc.
1101 North Royal Street
Alexandria, Va

School of Aeronautical and Engineering Sciences
Purdue University
ATTN: Aero and ES Library
Lafayette, Ind

Space Technology Laboratories, Inc.
ATTN: Information Services
Document Acquisition Group
P. O. Box 95001
Los Angeles 45, Calif

Commanding General
ATTN: ORDBS-OM-TL 312
White Sands Missile Range
NMex

Lt Col K. B. Dobson
Ordinance Mission
British Liaison Office
White Sands Missile Range
NMex

New Mexico State University of Agriculture, Engineering, and Science
ATTN: Library
University Park, NMex

University of New Mexico
Government Publications Division
University of New Mexico Library
Albuquerque, NMex

LOCAL
NLO
SRL
SRLT
SRLTL

1 2 15 3
<table>
<thead>
<tr>
<th>Directorate of Research Analysis</th>
<th>Directorate of Research Analysis</th>
<th>Directorate of Research Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Aerospace Research</td>
<td>Office of Aerospace Research</td>
<td>Office of Aerospace Research</td>
</tr>
<tr>
<td>Holloman AFB, New Mexico</td>
<td>Holloman AFB, New Mexico</td>
<td>Holloman AFB, New Mexico</td>
</tr>
<tr>
<td>This paper presents a method for calculating the probability that a certain minimum number of a set of ICBM's can be destroyed by a given number of inter- ceptor satellites.</td>
<td>This paper presents a method for calculating the probability that a certain minimum number of a set of ICBM's can be destroyed by a given number of intercepto r satellites.</td>
<td>This paper presents a method for calculating the probability that a certain minimum number of a set of ICBM's can be destroyed by a given number of intercepto r satellites.</td>
</tr>
</tbody>
</table>