NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
ROAD TRANSPORTATION TESTS

STRAIN INVESTIGATION

OF LITTLEJOHN XM-449 TRAILER

By: Charles F. Falkenbach

TECHNICAL MEMORANDUM 971

March 1962

QUALIFIED REQUESTERS MAY
OBTAIN COPIES OF THIS
REPORT FROM:

ARMED SERVICES
TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ATTN: TIPCR
ARLINGTON 12, VIRGINIA

APPROVED:

W. R. Dewell
W. R. Dewell
ACTING DIRECTOR
ELECTRO-MECHANICAL LABORATORIES

RELEASED:

THOMAS E. NESON
LITTLEJOHN PROJECT MANAGER
ORDNANCE MISSION

ELECTRO-MECHANICAL LABORATORIES
ORDNANCE MISSION
WHITE SANDS MISSILE RANGE
NEW MEXICO
ABSTRACT

The Littlejohn XM-449 trailer was monitored for strain during road transportation tests conducted at White Sands Missile Range, New Mexico, during the period October through December 1960.

The test objective was to acquire quantitative data regarding the structural integrity of the Littlejohn XM-449 trailer during road transportation.

The maximum strain level recorded was 872 micro-inches per inch. The structural members of the trailer are capable of withstanding transportation within the limits of this investigation.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>III</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>OBJECTIVE</td>
<td>1</td>
</tr>
<tr>
<td>DESCRIPTION OF TEST</td>
<td>1</td>
</tr>
<tr>
<td>RESULTS</td>
<td>3</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>4</td>
</tr>
<tr>
<td>APPENDIX A. STRAIN GAGE INSTRUMENTATION</td>
<td>5</td>
</tr>
<tr>
<td>TABLE I. Maximum Measured Strains</td>
<td>3</td>
</tr>
<tr>
<td>FIGURES</td>
<td></td>
</tr>
<tr>
<td>1. STRAIN GAGE LOCATION</td>
<td>2</td>
</tr>
<tr>
<td>A-1. STRAIN GAGE BRIDGE</td>
<td>5</td>
</tr>
</tbody>
</table>
INTRODUCTION

This report describes a strain investigation of the Littlejohn XM-449 trailer which was conducted at White Sands Missile Range, New Mexico, during the period October through December 1960. The test was performed under the provisions of "Littlejohn (Phase II) XM-51 Consolidated Engineer-Service Test Plan" (Revision 2), White Sands Missile Range, New Mexico, dated August 1960.

OBJECTIVE

The objective of this test was to acquire quantitative data regarding the structural integrity of the Littlejohn XM-449 trailer during road transportation. The test was not intended to result in a complete structural analysis, but to obtain quantitative data only. It is believed that data obtained from user reports and extended field use will furnish more information related to trailer metal fatigue damage and damage caused by impact loads than would data obtained from a laboratory test.

DESCRIPTION OF TEST

For the conduct of this test, the following environmental qualifications were applied to the trailer:

The trailer was towed by a 3/4-ton military type truck only.

Ambient temperature was between 70°F and 90°F.

Vehicle speeds varied from 5 to 10 miles per hour over cross-country terrain.

The missile was properly secured to the trailer.

The Littlejohn XM-449 trailer was coated with a brittle lacquer. The trailer, with an inert missile, was then towed by a 3/4-ton military type truck over cross-country terrain. The principal axes of strain at selected points were determined by observation of the condition of the lacquer at the end of the test.

Strain gages were applied to the trailer, aligned along the principal axes of strain. Figure 1 presents location and orientation of gages, and a description of the strain gage instrumentation is given in Appendix A. The strain gage bridge is shown in Figure A-1.
NOTE:
1. GAGE LOCATIONS ON RIGHT SIDE ARE THE SAME AS THOSE ON LEFT SIDE.
2. GAGES SUCH AS 13 & 14 ARE LOCATED ON OPPOSITE SIDES OF THE TUBULAR MEMBER.

Fig. 1. Strain Gage Location.
The trailer, with the inert missile, was towed by a 3/4-ton military type vehicle over cross-country terrain at speeds between 5 and 10 miles per hour. The speed and terrain were sufficient to cause the trailer to rebound up to 2.5 feet from the ground.

RESULTS

A maximum strain of 872 micro-inches per inch was measured from Strain Gage 15 (Fig. 1). Table I shows the maximum compression and tension levels experienced by the corresponding strain gage. The trailer did not suffer visible damage.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>MAXIMUM MEASURED STRAINS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Gage</th>
<th>Strain*</th>
<th>Baldwin-Lima Hamilton Gage Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compression (in micro-inches per inch)</td>
<td>Tension (in micro-inches per inch)</td>
</tr>
<tr>
<td>1</td>
<td>138</td>
<td>288 A-16</td>
</tr>
<tr>
<td>2</td>
<td>609</td>
<td>641 A-16</td>
</tr>
<tr>
<td>3</td>
<td>505</td>
<td>432 A-16</td>
</tr>
<tr>
<td>4</td>
<td>255</td>
<td>59 A-16</td>
</tr>
<tr>
<td>5</td>
<td>336</td>
<td>532 EBF-13D+</td>
</tr>
<tr>
<td>6</td>
<td>274</td>
<td>217 A-16</td>
</tr>
<tr>
<td>7</td>
<td>209</td>
<td>209 A-16</td>
</tr>
<tr>
<td>8</td>
<td>162</td>
<td>54 EBF-13D+</td>
</tr>
<tr>
<td>9</td>
<td>172</td>
<td>235 EBF-13D+</td>
</tr>
<tr>
<td>10</td>
<td>642</td>
<td>345 A-16</td>
</tr>
<tr>
<td>11</td>
<td>170</td>
<td>64 A-16</td>
</tr>
<tr>
<td>12</td>
<td>262</td>
<td>77 A-16</td>
</tr>
<tr>
<td>13</td>
<td>243</td>
<td>144 A-16</td>
</tr>
<tr>
<td>14</td>
<td>218</td>
<td>206 A-16</td>
</tr>
<tr>
<td>15</td>
<td>454</td>
<td>872 A-16</td>
</tr>
<tr>
<td>16</td>
<td>138</td>
<td>148 EBF-13D+</td>
</tr>
<tr>
<td>17</td>
<td>142</td>
<td>88 A-16</td>
</tr>
<tr>
<td>18</td>
<td>199</td>
<td>220 A-16</td>
</tr>
<tr>
<td>19</td>
<td>194</td>
<td>76 CBD-7</td>
</tr>
<tr>
<td>20</td>
<td>315</td>
<td>136 CBD-7</td>
</tr>
<tr>
<td>21</td>
<td>285</td>
<td>70 CBD-7</td>
</tr>
<tr>
<td>22</td>
<td>262</td>
<td>72 A-16</td>
</tr>
</tbody>
</table>

* Resultant strains caused by a combination of bending loads plus compression and/or tensile loads.
CONCLUSIONS

The maximum strain measured was 872 micro-inches per inch, which is equivalent to 8,720 psi of loading.

Since the minimum yield strength of 6061-T4 or T6 aluminum (the type of aluminum used in the trailer) is 40,000 psi at 75°F, it is concluded that the structural members of the trailer are capable of withstanding transportation within the limits as stated herein. No means were available to determine the strength of the welds.
APPENDIX A

STRAIN GAGE INSTRUMENTATION

Strain gages were mounted on the specimen with Eastman 910 adhesive. Each active gage was wired into a bridge circuit as shown in Figure A-1. The temperature compensating gage was mounted on an aluminum tab and attached to the specimen.

The bridge circuit was monitored with a CEC (Consolidated Electro-Dynamics Corporation) Model 113-B carrier amplifier. Note that two legs of the bridge circuit were incorporated within the amplifier.

The amplifier response was monitored with a CEC Model 5-114 oscillograph recorder.

A 28v d.c.-110v a.c., 400 cps portable generator was used to supply the necessary electrical power.

* R_3 and R_4 are contained in the amplifier.

Fig. A-1. Strain Gage Bridge.

GUIDED MISSILE TECHNICAL INFORMATION DISTRIBUTION LIST 200/23

REPORTS, Part A

ABSTRACT CARDS, Part C

SUPPLEMENTARY

<table>
<thead>
<tr>
<th>WHITE SANDS MISSILE RANGE</th>
<th>Copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW MEXICO (ORDBS)</td>
<td></td>
</tr>
</tbody>
</table>

ORDNANCE MISSION

| OM-SS Honest John-Littlejohn Project Manager (Record Copy) | 1 |
| OM-ST Honest John-Littlejohn Project Officer | 2, 3 |

OM-EML

E&G Br	4
STRUCTURES Br	5
PROPULSION Br	6

OM-WSWL-SSM | 7 |

OM-FSO | 8 |

PLANS AND OPERATIONS | 9 |

POST HISTORIAN | 10 |

ABMA-FOB (WSMR) | 11 |

COMMANDING GENERAL
U.S. Army Ordnance Missile Command
Redstone Arsenal, Alabama
ATTN: ORDXM-RL | 12 |

IQ | 13 |

IEJ | 14 |
DISTRIBUTION (CONT)

Commanding General
U.S. Army Ordnance Missile Command
Redstone Arsenal, Alabama
ATTN: ORDMX-IEE ------------------------------- 15
 SER -- 16
 ORDMX-RTL -------------------------------- 17

Director
Missile Division, U.S. Army Artillery Board
Fort Bliss, Texas -------------------------------- 18

Commanding General
Ordnance Weapons Command
Rock Island, Illinois --------------------------------- 19

Commanding General
Rock Island Arsenal
Rock Island, Illinois
ATTN: ORDBC-9310 --------------------------------- 20
 5100 -- 21
 9340 -- 22

Armed Services Technical Information Agency
Arlington Hall Station
ATTN: TIPCR
Arlington 12, Virginia ------------------------------- 23 thru 32

ORDBS-OM-PRES Distribution Section (Vellum)

Initial Printing: 132 Copies.
<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
<th>UNCLASSIFIED</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD ACCESSION NR</td>
<td>AD ACCESSION NR</td>
<td>AD ACCESSION NR</td>
</tr>
<tr>
<td>ELECTRO-MECHANICAL LABORATORIES, ORDNANCE MISSION, WHITE SANDS MISSILE RANGE, NEW MEXICO.</td>
<td>ELECTRO-MECHANICAL LABORATORIES, ORDNANCE MISSION, WHITE SANDS MISSILE RANGE, NEW MEXICO.</td>
<td>ELECTRO-MECHANICAL LABORATORIES, ORDNANCE MISSION, WHITE SANDS MISSILE RANGE, NEW MEXICO.</td>
</tr>
<tr>
<td>UNCLASSIFIED REPORT</td>
<td>UNCLASSIFIED REPORT</td>
<td>UNCLASSIFIED REPORT</td>
</tr>
<tr>
<td>The Littlejohn XM-449 trailer was monitored for strain during road transportation tests conducted at White Sands Missile Range, New Mexico, during period October thru December 1960. The test objective was to acquire quantitative data regarding the structural integrity of the Littlejohn XM-449 trailer during road transportation. The maximum strain level recorded was 872 micro-inches per inch.</td>
<td>The Littlejohn XM-449 trailer was monitored for strain during road transportation tests conducted at White Sands Missile Range, New Mexico, during period October thru December 1960. The test objective was to acquire quantitative data regarding the structural integrity of the Littlejohn XM-449 trailer during road transportation. The maximum strain level recorded was 872 micro-inches per inch.</td>
<td>The Littlejohn XM-449 trailer was monitored for strain during road transportation tests conducted at White Sands Missile Range, New Mexico, during period October thru December 1960. The test objective was to acquire quantitative data regarding the structural integrity of the Littlejohn XM-449 trailer during road transportation. The maximum strain level recorded was 872 micro-inches per inch.</td>
</tr>
</tbody>
</table>

AD ACCESSION NR

1. LITTLEJOHN.
2. ROAD TRANSPORTATION SHOCKS.
3. STRESSCONE ANALYSIS.
4. DA-517-07-035.
5. OMS CODE Nh 5520.12.418.

Qualified Requesters May Obtain Copies of This Report From:

Armed Services
Technical Information Agency
Arlington Hall Station
Attn: TIPCR
Arlington 12, Virginia
UNCLASSIFIED

AD ACCESSION NR

Electro-Mechanical Laboratories, Ordnance Mission, White Sands Missile Range, New Mexico.

UNCLASSIFIED

ROAD TRANSPORTATION TESTS, STRAIN INVESTIGATION OF LITTLEJOHN XM-449 TRAILER, by Charles F. Falkenbach, Technical Memorandum 971, March 1962, 5 pp incl illus, DA 517-07-035, OMS Code Nr 5520.12.418.

UNCLASSIFIED

QUALIFIED REQUESTERS MAY OBTAIN COPIES OF THIS REPORT FROM:

Armed Services
Technical Information Agency
Arlington Hall Station
Attn: TIPCR
Arlington 12, Virginia

UNCLASSIFIED

The Littlejohn XM-449 trailer was monitored for strain during road transportation tests conducted at White Sands Missile Range, New Mexico, during period October thru December 1960.

The test objective was to acquire quantitative data regarding the structural integrity of the Littlejohn XM-449 trailer during road transportation.

The maximum strain level recorded was 572 micro-inches per inch.

AD ACCESSION NR

Electro-Mechanical Laboratories, Ordnance Mission, White Sands Missile Range, New Mexico.

UNCLASSIFIED

ROAD TRANSPORTATION TESTS, STRAIN INVESTIGATION OF LITTLEJOHN XM-449 TRAILER, by Charles F. Falkenbach, Technical Memorandum 971, March 1962, 5 pp incl illus, DA 517-07-035, OMS Code Nr 5520.12.418.

UNCLASSIFIED

QUALIFIED REQUESTERS MAY OBTAIN COPIES OF THIS REPORT FROM:

Armed Services
Technical Information Agency
Arlington Hall Station
Attn: TIPCR
Arlington 12, Virginia

UNCLASSIFIED

The Littlejohn XM-449 trailer was monitored for strain during road transportation tests conducted at White Sands Missile Range, New Mexico, during period October thru December 1960.

The test objective was to acquire quantitative data regarding the structural integrity of the Littlejohn XM-449 trailer during road transportation.

The maximum strain level recorded was 572 micro-inches per inch.