DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
TCREC TECHNICAL REPORT 61-92

NOISE SURVEY HU-1A HELICOPTER
WITH MODIFIED EXHAUST SYSTEM

Task 9R38-01-017-54
Contract DA44-177-TC-562

July 1961

prepared by:

VERTOL DIVISION
THE BOEING COMPANY
Morton, Pennsylvania
DISCLAIMER NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from

Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia

This report has been released to the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C., for sale to the general public.

The information contained herein will not be used for advertising purposes.

The findings and recommendations contained in this report are those of the contractor and do not necessarily reflect the views of the Chief of Transportation or the Department of the Army.
HEADQUARTERS
U. S. ARMY TRANSPORTATION RESEARCH COMMAND
TRANSPORTATION CORPS
Fort Eustis, Virginia

TCREC-ADS 9R38-01-017-54

SUBJECT: Noise Survey HU-1A Helicopter with Modified Exhaust System

TO: See Distribution List

1. During the course of aircraft research or development programs, modifications are occasionally made which may affect the noise level of the aircraft.

2. A research program was recently conducted which resulted in a modified engine exhaust system for HU-1A helicopter number 9-1632. The purpose of the following report is to present a comparison of noise output of this helicopter with that of a similar helicopter in standard configuration.

3. The conclusions made by the contractor are concurred in by this Command.

4. This report is a supplement to TREC Technical Report 61-72 and is the first report of a continuing program to maintain up-to-date information on the internal and external noise levels of current and future Army aircraft. Additional reports of this type will be submitted as the data become available.

FOR THE COMMANDER:

Approved by:

Everette Forehand Project Engineer

Earl A. Wirth CWO-4 USA
 Adjutant
Task 9136-01-017-54

Contract DA 44-177-TC-562

July 1961

NOISE SURVEY HU-1A HELICOPTER
WITH MODIFIED EXHAUST SYSTEM

REPORT 247

Prepared By
VERTOL DIVISION
THE BOEING COMPANY
MORTON, PENNSYLVANIA

FOR
U. S. ARMY TRANSPORTATION RESEARCH COMMAND
FORT EUSTIS, VIRGINIA
FOREWARD

This report was prepared by the Dynamics Department of Vertol Division of The Boeing Company, under Contract DA44-177-TC-562, Project 9R38-01-017-52, Amendment 4. It was funded by U. S. Army Transportation Research Command, and was under the technical cognizance of Mr. J. Everette Forehand, USA TRECOM, Ft. Eustis, Virginia.

Sound level tests were conducted at Hayes Aircraft Corporation, Birmingham, Alabama. Aircraft Project Engineer was Mr. J. Davenport. Mr. C. Shakespeare of Vertol supervised field measurements.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>iv</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>3</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>4</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>I Illustrations</td>
<td>5</td>
</tr>
<tr>
<td>II Data Sheets</td>
<td>26</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td>33</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HU-1A Helicopter</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Sound Level Recording Equipment</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Measurement Locations - Test 1</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Variation of SPL at 200 ft. Radius</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Microphone Locations - Test 2</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Maximum SPL During Take-off and Landing</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Measurement Locations - Test 3</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Maximum SPL During Flyby 25 ft., 50 ft.</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>Maximum SPL During Flyby 100 ft., 200 ft.</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>Maximum SPL During Flyby 500 ft.</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>Approximate Mic. Location Used for Various Noise Measurements Inside Aircraft</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>Maximum Internal SPL (Pos. 1, 3, 7, 10)</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>Maximum Internal SPL (Pos. 7, 9, 12, 14, 17, 19)</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>Maximum Internal SPL (Pos. 1, 2, 7)</td>
<td>18</td>
</tr>
<tr>
<td>15</td>
<td>Noise Spectrum - Pilot's Ear Level Pos. 7</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>Noise Spectrum - Cabin Pos. 19</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>Noise Spectrum - External Pos. 23</td>
<td>21</td>
</tr>
<tr>
<td>18</td>
<td>Comparison of Sound Pressure Levels - 200 ft. Hover</td>
<td>22</td>
</tr>
<tr>
<td>19</td>
<td>Comparison of Sound Pressure Levels - Overhead Flyby</td>
<td>23</td>
</tr>
<tr>
<td>20</td>
<td>Comparison of Sound Pressure Levels - Overhead Flyby</td>
<td>24</td>
</tr>
<tr>
<td>21</td>
<td>Comparison of Identified Noise Sources</td>
<td>25</td>
</tr>
</tbody>
</table>
MODEL HU-1A

CONCLUSIONS

Noise levels of Army HU-1A helicopters 9-1632 (equipped with a modified exhaust system) and 58-2080 (standard configuration) were recorded under similar operating and ambient conditions and are, therefore, directly comparable. Some difference exists in the 200 ft directivity patterns of the aircraft in hover, along with an increase in high frequency noise in take-off and landing. The latter may be due to various pilot techniques in achieving the requirements of Test 2. Except for these, however, sound pressure levels of the aircraft, under similar operating conditions, are considered the same. Other differences lie within the envelope of repeatability.

It is, therefore, concluded that the modified exhaust system of HU-1A No. 9-1632 does not significantly affect the acoustic characteristics of the aircraft.
INTRODUCTION

A noise level survey of an Army HU-1A helicopter with a modified exhaust system (Ser. 9-1632) was made in conformance with tests and procedures reported in Reference 1. Data have been presented in a manner similar to Reference 1 and a comparison is made with HU-1A (Ser. 58-2080) noise levels reported therein.

The aircraft and operating conditions were similar, so that sound levels of the two aircraft may be directly compared. Gross weight, engine torque, gas generator rpm and rotor rpm have been compared and found to be similar in each instance.
DISCUSSION

Figure 1 is an illustration of HU-1A S/N 9-1632. Measurement equipment is shown installed in the aircraft in Figure 2.

Sound levels of the HU-1A in hover are shown in Figure 4. A noticeable difference exists in the directivity pattern in the high frequencies (1200 - 2400 cps, 2400 - 4800 cps and 4800 - 10,000 cps octave bands) on the port side of the aircraft. The remaining differences, however, are not of real significance, and are felt to lie in the range of repeatability.

Take-off and landing noise is shown in Figure 6. No large differences are noted between aircraft except in the high frequency (2400 - 4800 cps and 4800 - 10,000 cps) bands where HU-1A Serial 9-1632 shows an increase (about 10 db) at locations 1 and 2.

Noise levels of the aircraft in flyby are plotted in Figures 8, 9 and 10. Again, no significant difference is noted.

Internal sound levels are plotted in Figures 12, 13 and 14. While sound pressure levels inside aircraft 9-1632 are less than aircraft 58-2080, this may be due to a difference in interior configurations of the aircraft. Aircraft 58-2080 contained an auxiliary, range-extension fuel tank which considerably altered the internal acoustics of the aircraft. As a result, sound levels inside the two aircraft are not directly comparable. Comparison plots of the two aircraft are presented for hover and overhead flyby conditions in Figures 18, 19 and 20, respectively. Each spectrum level in Figure 18 represents an average value of three locations. This was done so that no one point would indicate a false trend. Note that the aft locations for 9-1632 have a somewhat higher SPL. Finally, overhead flyby comparisons do not indicate any significant trend, although at the 500 ft. altitudes, 9-1632 does have a lower SPL.

Figures 15, 16 and 17 are narrow band (continuous spectrum) charts which are directly comparable with those appearing in Reference 1.

Figure 21 is a comparison of fundamental frequencies and harmonics for each identifiable noise source at position 23, Test 1.
BIBLIOGRAPHY

APPENDIX I

ILLUSTRATIONS
HU-1A HELICOPTER
S/N 91632

FIGURE 1

SOUND LEVEL RECORDING EQUIPMENT

FIGURE 2
MEASUREMENT LOCATIONS - TEST 1

FIGURE 3

- 7 -
VARIATION OF SOUND PRESSURE LEVEL AT 200 FT. RADIUS

ENGINE SPEED 6400 rpm
ROTOR SPEED 320 rpm
MAP _____ in. Hg

KEY
Symbol Octave Band - CPS
A 20-75
B 75-150
C 150-300
D 300-600
E 600-1200
F 1200-2400
G 2400-4800
H 4800-10 KC

NOTE: Broken lines are for clarity only.

Figure 4

- 8 -
Figure 5 - Microphone Locations Test 2

Airplane
- Runway
- Microphone locations: 1, 2, 3
- 100' above ground
- Touch ground
- Start roll
- 200' distance
- Take-off: L-20, 500', L-23, 800', U-1A, 456'
- Landing

Helicopter
- Take-off: 100', 50'
- L-20, 500'
- Take-off
- Flare
- Landing

Plan View
MAXIMUM SOUND PRESSURE LEVELS DURING TAKEOFF AND/OR LANDING

A/C-TEST

HU-IA-2

Figure 6
MEASUREMENT LOCATIONS - TEST 3

FIGURE 7
MAXIMUM EXTERNAL SOUND PRESSURE LEVELS MEASURED AT GROUND STATION

A/C-TEST
HU-IA-3

ALTITUDE = 25'

FREQUENCY BAND ~ CYCLES PER SECOND

ALTITUDE = 50'

DISTANCES

- 0'
- 100'
- 200'
- 500'

Figure 8

- 12 -
MAXIMUM EXTERNAL SOUND PRESSURE LEVELS MEASURED AT GROUND STATION

A/C-TEST
HU-IA-3

DISTANCES
0' -
100' -
200' -
500' -

Figure 9
MAXIMUM EXTERNAL SOUND PRESSURE

LEVELS MEASURED AT GROUND STATION

A/C - TEST

HU-IA-3

DISTANCES

0' - , 100' - , 200' - , 500' -

Figure 10
APPROXIMATE MICROPHONE POSITIONS USED FOR VARIOUS NOISE MEASUREMENTS INSIDE AIRCRAFT

FIGURE 11
- 15 -
A/C-TEST
HU-IA-4

PILOT'S EAR LEVEL LOCATION

[Graph showing sound pressure levels in decibels re 0.0002 dynes/cm² for different modes: cruise, hover, and autorotation.]

WINDOW LOCATIONS

[Graph showing sound pressure levels at different window locations (1, 3, 10).]

Figure 12
- 16 -
Figure 13
- 17 -
A/C-TEST
HU-IA-4

VARIOUS LOCATIONS - WINDOWS OPEN

Figure 14
HU-IA NOISE SPECTRUM
POSITION 23 EXTERNAL

FIGURE 17
COMPARISON OF
EXTERNAL SOUND PRESSURE LEVELS
AT 200 FT. RADII

FORWARD LOCATIONS - 17 27 24
S/N 58-2080
S/N 9-1632

STRB. LOCATIONS - 18 19 20
S/N 58-2080
S/N 9-1632

AFT LOCATIONS - 21 22 23
S/N 58-2080
S/N 9-1632

PORT LOCATIONS - 24 25 26
S/N 58-2080
S/N 9-1632

DECIBELS RE 0.0002 DYNE/CM²

SOUND PRESSURE LEVEL IN BAND

FREQUENCY BAND CYCLES PER SECOND

FIGURE 18
COMPARISON OF OVERHEAD FLYBYS
Measurement Location Directly Under Aircraft

S/N 58-2080 S/N 9-1632

ALTITUDE 25 FT.

ALTITUDE 50 FT.
COMPARISON OF OVERHEAD FLYBYS

Measurement Location Directly Under Aircraft

S/N 58-2080 S/N 3-1632

ALTITUDE 100 FT.

FREQUENCY BAND - CYCLES PER SECOND

SOUND PRESSURE LEVEL IN POUND - DECIBELS REF 0.0002 POUND/CF

ALTITUDE 500 FT.

FREQUENCY BAND - CYCLES PER SECOND

FIGURE 20
IDENTIFICATION OF NOISE SOURCES

HU-1A

EXTERNAL POSITION 23

S/N 58-2080

S/N 9-1632

S/N 58-2080

S/N 9-1632

FREQUENCY CPS

FIGURE 21

- 25 -
APPENDIX II
DATA SHEETS
OCTAVE-BAND ANALYSIS SHEET

Specimen Information
- A/C - TB9T
- HU-1A-1
- Octave-Band Pressure Levels
- Re., 10000 microbar

Analyzed By

<table>
<thead>
<tr>
<th>LOC</th>
<th>UOND</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HOVER</td>
<td>96</td>
<td>90</td>
<td>90</td>
<td>86</td>
<td>82</td>
<td>75</td>
<td>68</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>HOVER</td>
<td>100</td>
<td>94</td>
<td>94</td>
<td>87</td>
<td>84</td>
<td>78</td>
<td>70</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HOVER</td>
<td>100</td>
<td>98</td>
<td>100</td>
<td>92</td>
<td>90</td>
<td>84</td>
<td>76</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>HOVER</td>
<td>98</td>
<td>98</td>
<td>101</td>
<td>96</td>
<td>92</td>
<td>76</td>
<td>76</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>HOVER</td>
<td>99</td>
<td>94</td>
<td>94</td>
<td>87</td>
<td>86</td>
<td>72</td>
<td>70</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>HOVER</td>
<td>101</td>
<td>96</td>
<td>92</td>
<td>85</td>
<td>82</td>
<td>70</td>
<td>71</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>HOVER</td>
<td>99</td>
<td>93</td>
<td>95</td>
<td>90</td>
<td>88</td>
<td>83</td>
<td>73</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>HOVER</td>
<td>98</td>
<td>94</td>
<td>96</td>
<td>94</td>
<td>88</td>
<td>82</td>
<td>73</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>HOVER</td>
<td>96</td>
<td>92</td>
<td>94</td>
<td>93</td>
<td>86</td>
<td>80</td>
<td>71</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>HOVER</td>
<td>95</td>
<td>90</td>
<td>94</td>
<td>91</td>
<td>85</td>
<td>78</td>
<td>70</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>HOVER</td>
<td>98</td>
<td>96</td>
<td>92</td>
<td>86</td>
<td>83</td>
<td>75</td>
<td>70</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>HOVER</td>
<td>98</td>
<td>94</td>
<td>90</td>
<td>86</td>
<td>78</td>
<td>73</td>
<td>67</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>HOVER</td>
<td>106</td>
<td>102</td>
<td>99</td>
<td>100</td>
<td>95</td>
<td>90</td>
<td>80</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>HOVER</td>
<td>103</td>
<td>101</td>
<td>98</td>
<td>96</td>
<td>92</td>
<td>88</td>
<td>82</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>HOVER</td>
<td>101</td>
<td>98</td>
<td>101</td>
<td>97</td>
<td>95</td>
<td>93</td>
<td>80</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>HOVER</td>
<td>106</td>
<td>98</td>
<td>96</td>
<td>95</td>
<td>90</td>
<td>83</td>
<td>76</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>HOVER</td>
<td>85</td>
<td>78</td>
<td>81</td>
<td>76</td>
<td>67</td>
<td>63</td>
<td>60</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>HOVER</td>
<td>84</td>
<td>80</td>
<td>79</td>
<td>74</td>
<td>68</td>
<td>61</td>
<td>58</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>
Octave-Band Analysis Sheet

<table>
<thead>
<tr>
<th>Loc.</th>
<th>Cond.</th>
<th>20-75</th>
<th>75-150</th>
<th>150-300</th>
<th>300-600</th>
<th>600-1200</th>
<th>1200-2400</th>
<th>2400-4800</th>
<th>above 4800</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Hover</td>
<td>83</td>
<td>87</td>
<td>85</td>
<td>80</td>
<td>73</td>
<td>66</td>
<td>61</td>
<td>54</td>
</tr>
<tr>
<td>20</td>
<td>Hover</td>
<td>83</td>
<td>85</td>
<td>81</td>
<td>85</td>
<td>80</td>
<td>72</td>
<td>64</td>
<td>56</td>
</tr>
<tr>
<td>21</td>
<td>Hover</td>
<td>84</td>
<td>84</td>
<td>87</td>
<td>86</td>
<td>82</td>
<td>75</td>
<td>64</td>
<td>56</td>
</tr>
<tr>
<td>22</td>
<td>Hover</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>82</td>
<td>76</td>
<td>72</td>
<td>63</td>
<td>52</td>
</tr>
<tr>
<td>23</td>
<td>Hover</td>
<td>86</td>
<td>83</td>
<td>90</td>
<td>87</td>
<td>81</td>
<td>72</td>
<td>64</td>
<td>56</td>
</tr>
<tr>
<td>24</td>
<td>Hover</td>
<td>82</td>
<td>85</td>
<td>90</td>
<td>86</td>
<td>81</td>
<td>73</td>
<td>62</td>
<td>58</td>
</tr>
<tr>
<td>25</td>
<td>Hover</td>
<td>83</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>73</td>
<td>68</td>
<td>60</td>
<td>52</td>
</tr>
<tr>
<td>26</td>
<td>Hover</td>
<td>83</td>
<td>81</td>
<td>80</td>
<td>77</td>
<td>72</td>
<td>67</td>
<td>63</td>
<td>56</td>
</tr>
<tr>
<td>27</td>
<td>Hover</td>
<td>86</td>
<td>87</td>
<td>81</td>
<td>75</td>
<td>71</td>
<td>66</td>
<td>62</td>
<td>55</td>
</tr>
<tr>
<td>28</td>
<td>Hover</td>
<td>86</td>
<td>85</td>
<td>84</td>
<td>78</td>
<td>70</td>
<td>65</td>
<td>60</td>
<td>54</td>
</tr>
</tbody>
</table>
OCTAVE-BAND ANALYSIS SHEET

<table>
<thead>
<tr>
<th>LOC</th>
<th>COND.</th>
<th>Octave-Band Pressure Levels Re. 0002 microbar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20-75</td>
</tr>
<tr>
<td>1</td>
<td>TAKE OFF</td>
<td>94</td>
</tr>
<tr>
<td>1</td>
<td>LAND</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>TAKE OFF</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>LAND</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>TAKE OFF</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>LAND</td>
<td>86</td>
</tr>
</tbody>
</table>
OCTAVE-BAND ANALYSIS SHEET

<table>
<thead>
<tr>
<th>LOC.</th>
<th>COND.</th>
<th>Octave-Band Pressure Levels Re. 0.0002 microbar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20-75</td>
</tr>
<tr>
<td>1</td>
<td>CRUISE</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>CRUISE</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>CRUISE</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>CRUISE</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>CRUISE</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>CRUISE</td>
<td>86</td>
</tr>
<tr>
<td>7</td>
<td>CRUISE</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>CRUISE</td>
<td>91</td>
</tr>
<tr>
<td>9</td>
<td>CRUISE</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>CRUISE</td>
<td>84</td>
</tr>
<tr>
<td>11</td>
<td>CRUISE</td>
<td>86</td>
</tr>
<tr>
<td>12</td>
<td>CRUISE</td>
<td>83</td>
</tr>
<tr>
<td>13</td>
<td>CRUISE</td>
<td>79</td>
</tr>
<tr>
<td>14</td>
<td>CRUISE</td>
<td>78</td>
</tr>
<tr>
<td>15</td>
<td>CRUISE</td>
<td>76</td>
</tr>
<tr>
<td>16</td>
<td>CRUISE</td>
<td>76</td>
</tr>
<tr>
<td>LOC.</td>
<td>COND.</td>
<td>20-75</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>CRUISE</td>
<td>106</td>
</tr>
<tr>
<td>2</td>
<td>CRUISE</td>
<td>106</td>
</tr>
<tr>
<td>3</td>
<td>CRUISE</td>
<td>105</td>
</tr>
<tr>
<td>4</td>
<td>CRUISE</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>CRUISE</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>CRUISE</td>
<td>103</td>
</tr>
<tr>
<td>7</td>
<td>CRUISE</td>
<td>101</td>
</tr>
<tr>
<td>8</td>
<td>CRUISE</td>
<td>99</td>
</tr>
<tr>
<td>9</td>
<td>CRUISE</td>
<td>104</td>
</tr>
<tr>
<td>10</td>
<td>CRUISE</td>
<td>101</td>
</tr>
<tr>
<td>11</td>
<td>CRUISE</td>
<td>101</td>
</tr>
<tr>
<td>12</td>
<td>CRUISE</td>
<td>102</td>
</tr>
<tr>
<td>13</td>
<td>CRUISE</td>
<td>101</td>
</tr>
<tr>
<td>14</td>
<td>CRUISE</td>
<td>104</td>
</tr>
<tr>
<td>15</td>
<td>CRUISE</td>
<td>103</td>
</tr>
<tr>
<td>16</td>
<td>CRUISE</td>
<td>102</td>
</tr>
<tr>
<td>17</td>
<td>CRUISE</td>
<td>102</td>
</tr>
<tr>
<td>18</td>
<td>CRUISE</td>
<td>104</td>
</tr>
</tbody>
</table>
OCTAVE-BAND ANALYSIS SHEET

<table>
<thead>
<tr>
<th>LOC.</th>
<th>COND.</th>
<th>20-75</th>
<th>75-150</th>
<th>150-300</th>
<th>300-600</th>
<th>600-1200</th>
<th>1200-2400</th>
<th>2400-4800</th>
<th>above 4800</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>CRUISE</td>
<td>106</td>
<td>101</td>
<td>99</td>
<td>96</td>
<td>88</td>
<td>82</td>
<td>82</td>
<td>71</td>
</tr>
<tr>
<td>20</td>
<td>CRUISE</td>
<td>104</td>
<td>101</td>
<td>96</td>
<td>95</td>
<td>87</td>
<td>85</td>
<td>84</td>
<td>74</td>
</tr>
<tr>
<td>1</td>
<td>PILOT WINDOW COPILOT OPEN</td>
<td>109</td>
<td>106</td>
<td>102</td>
<td>96</td>
<td>90</td>
<td>82</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>109</td>
<td>106</td>
<td>100</td>
<td>96</td>
<td>91</td>
<td>83</td>
<td>75</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>106</td>
<td>105</td>
<td>96</td>
<td>93</td>
<td>87</td>
<td>83</td>
<td>77</td>
<td>76</td>
</tr>
<tr>
<td>7-HOVER</td>
<td></td>
<td>99</td>
<td>95</td>
<td>92</td>
<td>92</td>
<td>83</td>
<td>78</td>
<td>72</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>CLIMB OUT</td>
<td>100</td>
<td>93</td>
<td>91</td>
<td>102</td>
<td>80</td>
<td>77</td>
<td>73</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>Vmax</td>
<td>102</td>
<td>105</td>
<td>102</td>
<td>100</td>
<td>94</td>
<td>86</td>
<td>79</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>Auto Rotation</td>
<td>102</td>
<td>95</td>
<td>91</td>
<td>91</td>
<td>83</td>
<td>75</td>
<td>68</td>
<td>66</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

Commanding General
United States Continental Army Command
ATTN: Materiel Developments
Fort Monroe, Virginia

The Surgeon General
Department of the Army
Main Navy Building
Washington 25, D. C.

Commanding General
United States Army Infantry Center
ATTN: Transportation Officer
Fort Benning, Georgia

Commandant
U. S. Army Aviation School
ATTN: Combat Developments Office
Fort Rucker, Alabama

President
United States Army Armor Board
Fort Knox, Kentucky

President
United States Army Aviation Board
ATTN: ATBG-DG
Fort Rucker, Alabama

Headquarters
U. S. Army Aviation Test Office
ATTN: FTZAT
Edwards Air Force Base, California

Deputy Chief of Staff for Logistics
ATTN: Requirements Division
Department of the Army
Washington 25, D. C.

Deputy Chief of Staff for Military Operations
ATTN: Director of Organization and Training, Doctrines and Combat Developments Division
Department of the Army
Washington 25, D. C.
DISTRIBUTION LIST (Continued)

Army Research Office
Office of the Chief of Research and Development
ATTN: Research Support Division
Department of the Army
Washington 25, D.C. (1)

Office of Chief of R&D
ATTN: Air Mobility Division
Department of the Army
Washington 25, D.C. (1)

Officer in Charge
U. S. Army Transportation Aviation Field Office
ATTN: ALO - Room 1716
Bureau of Naval Weapons, Department of the Navy
Washington 25, D.C. (1)

Commander
Naval Air Test Center
ATTN: U.S. Army Liaison Officer (1)
ATTN: Technical Library (1)
Patuxent River, Maryland

Commanding General
U. S. Army Ordnance Missile Command
ATTN: ORDM-T (1)
Redstone Arsenal, Alabama

Deputy President
The Ordnance Board
ATTN: Library
Aberdeen Proving Ground, Maryland (1)

Commanding General
Quartermaster Research and Engineering Command, U. S. Army
ATTN: Technical Library
Natick, Massachusetts (1)

President
U. S. Army Signal Board
Fort Monmouth, New Jersey (1)

Chief of Transportation
ATTN: TCDRD (2)
ATTN: TCAW (1)
ATTN: TCREG (1)
ATTN: TCSOP (1)
ATTN: TCCAD (1)
Department of the Army
Washington 25, D. C.
DISTRIBUTION LIST (Continued)

Commanding Officer
U. S. Army Transportation Combat Development Group
Fort Eustis, Virginia (1)

Commanding General
U. S. Army Transportation Materiel Command
ATTN: TCMAC-APU
P. O. Box 209, Main Office
St. Louis 66, Missouri (2)

Commandant
U. S. Army Transportation School
ATTN: Adjutant
Fort Eustis, Virginia (3)

Commanding Officer
U. S. Army Transportation Research Command
ATTN: Executive for Programs (2)
ATTN: Research Reference Center (4)
ATTN: Editorial Branch (2)
ATTN: Aviation Directorate (5)
ATTN: Military Liaison & Advisory Office (4)
ATTN: Deputy Commander for Aviation (1)
Fort Eustis, Virginia

Commanding Officer
U. S. Army Transportation Research Command Liaison Office
ATTN: MCLATS (1)
Wright-Patterson Air Force Base, Ohio

Commander
Air Research & Development Command
ATTN: RDR-LA (1)
Andrews Air Force Base
Washington 25, D. C.

Commander
Wright Air Development Division (WWAD Library) (1)
ATTN: WCLSY-V (1)
Wright-Patterson Air Force Base, Ohio

Hq USAF (AFDFD)
Washington 25, D. C. (1)
DISTRIBUTION LIST (Continued)

Chief of Naval Research
Code 461, Maj. L. C. Robertson
Washington 25, D. C. (1)

Chief, Bureau of Naval Weapons (R-38)
Department of the Navy
Washington 25, D. C. (1)

Commandant
U. S. Army Transportation School
ATTN: Marine Corps Liaison Officer
Fort Eustis, Virginia (1)

Commandant
U. S. Coast Guard
ATTN: Chief, Testing and Development Division
1300 "E" Street, N.W.
Washington 25, D. C. (1)

National Aviation Facilities Experimental Center
ATTN: Library
Atlantic City, New Jersey (1)

National Aeronautics and Space Administration
ATTN: Bertram A. Mulcahy
Assistant Director for Technical Information
1520 H Street, N.W.
Washington 25, D. C. (2)

British Joint Services Mission (Army Staff)
ATTN: Lt. Col. R. J. Wade, RE
DAQMG (Mov & Tn)
3100 Massachusetts Avenue, N.W.
Washington 8, D. C. (3)

Commander
Armed Services Technical Information Agency
ATTN: TIPCR
Arlington Hall Station
Arlington 12, Virginia (10)

Office of Technical Services
Acquisition Section
Department of Commerce
Washington 25, D. C. (2)
DISTRIBUTION LIST (Continued)

Librarian
Langley Research Center
National Aeronautics & Space Administration
Langley Field, Virginia (3)

Ames Research Center
National Aeronautics and Space Agency
ATTN: Library
Moffett Field, California (1)

National Aeronautics & Space Administration
Lewis Research Center
ATTN: Library
21000 Brookpark Road
Cleveland 35, Ohio (1)

Dr. C. B. Cambrell, Chairman
Department of Industrial Engineering
Arizona State University
Tempe, Arizona (1)

Douglas Aircraft Company, Incorporated
El Segundo, California
ATTN: Advanced Design Section (1)

National Aircraft Noise Abatement Council
Room 413, Associations Building
1145 19th Street, N.W.
ATTN: Jack R. Cram, President
Washington 6, D. C. (1)

Bell Helicopter Company
Fort Worth, Texas (1)

Doak Aircraft Company, Incorporated
22309 South Western Avenue
Torrance, California (1)

Hiller Aircraft Corporation
Palo Alto, California (1)

Sikorsky Aircraft Division
United Aircraft Corporation
Stratford, Connecticut (1)

Chief, Aviation Medicine Division
United States Army Hospital
Fort Rucker, Alabama (1)
DISTRIBUTION LIST (Continued)

Commanding Officer
U. S. Army Medical Research & Development Command
ATTN: Neuropsychiatry & Psychology Branch
Washington 25, D. C. (1)

Commanding General
U. S. Army Quartermaster Research & Engineering Command
ATTN: Environmental Protection Research Division
Natick, Massachusetts (1)

Director
National Aeronautical Space Administration
Langley Research Center
ATTN: Mr. Harvey Hubbard
Hampton, Virginia (1)

Chief of Research & Development
Office, Chief of Staff
Department of the Army
ATTN: Executive Secretary, Army Scientific Panel
Washington 25, D. C. (1)

Engineering Data Services
North American Aviation Incorporated
4300 East 5th Avenue
Columbus 16, Ohio
ATTN: RFD 30184 (1)

Chief
U. S. Army R&D Liaison Group (9851 DU)
ATTN: USATRECOM Liaison Officer
APO 757, New York, New York

Director
Human Resources Research Office
Washington 7, D. C. (1)

U. S. Army Transportation Research Command Liaison Office
Airborne & Electronic Board
Fort Bragg, North Carolina (1)

President
U. S. Army Transportation Board
Fort Eustis, Virginia (1)
Vertol Division - The Boeing Company
Morton, Pa.
NOISE SURVEY HU-IA HELICOPTER WITH
MODIFIED EXHAUST SYSTEM,
Serial No. 9-1632 by R. H. Spencer and
H. Sternfeld, Jr.
TREC Report No. 61-92, Vertol Report
Contract DA 44-177-TC-562 (Amend. 4)

Unclassified Report

Internal and external noise levels measured
during typical operations of an Army type
HU-IA helicopter, Serial No. 9-1632 are pre-
sented. A comparison of sound levels is
made with HU-IA Serial No. 58-2080. The
sound pressure levels of the two aircraft
during similar operating conditions are
found to be essentially the same.

Vertol Division - The Boeing Company
Morton, Pa.
NOISE SURVEY HU-IA HELICOPTER WITH
MODIFIED EXHAUST SYSTEM,
Serial No. 9-1632 by R. H. Spencer and
H. Sternfeld, Jr.
TREC Report No. 61-92, Vertol Report
Contract DA 44-177-TC-562 (Amend. 4)

Unclassified Report

Internal and external noise levels measured
during typical operations of an Army type
HU-IA helicopter, Serial No. 9-1632 are pre-
sented. A comparison of sound levels is
made with HU-IA Serial No. 58-2080. The
sound pressure levels of the two aircraft
during similar operating conditions are
found to be essentially the same.
Vertol Division - The Boeing Company
Morton, Pa.
NOISE SURVEY - HU-1A HELICOPTER WITH
MODIFIED EXHAUST SYSTEM.
Serial No. 9-1632 by R. H. Spencer and
H. Sternfeld, Jr.
TCREC Report No. 61-92, Vertical Report
No. 247, July 1961, 38 pp-illus.
Contract DA 44-177-TC-562 (Amend. 4)

Unclassified Report

1. Noise
HU-1A Helicopter
(S/N 9-1632)
2. Helicopters
Sound Survey of
HU-1A (S/N 9-1632)
3. Contract DA
44-177-TC-562
(Amendment 4)

Vertol Division - The Boeing Company
Morton, Pa.
NOISE SURVEY - HU-1A HELICOPTER WITH
MODIFIED EXHAUST SYSTEM.
Serial No. 9-1632 by R. H. Spencer and
H. Sternfeld, Jr.
TCREC Report No. 61-92, Vertical Report
No. 247, July 1961, 38 pp-illus.
Contract DA 44-177-TC-562 (Amend. 4)

Unclassified Report

1. Noise
HU-1A Helicopter
(S/N 9-1632)
2. Helicopters
Noise Survey of
HU-1A (S/N 9-1632)
3. Contract DA
44-177-TC-562
(Amendment 4)

Vertol Division - The Boeing Company
Morton, Pa.
NOISE SURVEY - HU-1A HELICOPTER WITH
MODIFIED EXHAUST SYSTEM.
Serial No. 9-1632 by R. H. Spencer and
H. Sternfeld, Jr.
TCREC Report No. 61-92, Vertical Report
No. 247, July 1961, 38 pp-illus.
Contract DA 44-177-TC-562 (Amend. 4)

Unclassified Report

Internal and external noise levels measured
during typical operations of an Army type
HU-1A helicopter, Serial No. 9-1632 are pre-
sented. A comparison of sound levels is
made with HU-1A Serial No. 58-2080. The
sound pressure levels of the two aircraft
during similar operating conditions are
found to be essentially the same.

Vertol Division - The Boeing Company
Morton, Pa.
NOISE SURVEY - HU-1A HELICOPTER WITH
MODIFIED EXHAUST SYSTEM.
Serial No. 9-1632 by R. H. Spencer and
H. Sternfeld, Jr.
TCREC Report No. 61-92, Vertical Report
No. 247, July 1961, 38 pp-illus.
Contract DA 44-177-TC-562 (Amend. 4)

Unclassified Report

Internal and external noise levels measured
during typical operations of an Army type
HU-1A helicopter, Serial No. 9-1632 are pre-
sented. A comparison of sound levels is
made with HU-1A Serial No. 58-2080. The
sound pressure levels of the two aircraft
during similar operating conditions are
found to be essentially the same.