THE ROLE OF DILUTE BINARY TRANSITION ELEMENTS ON THE RECRYSTALLIZATION OF TITANIUM

TECHNICAL REPORT NO. WAL TR 830.3/6

BY

ERNEST P. ABRAHAMSON, II

DATE OF ISSUE - NOVEMBER 1961

WATERTOWN ARSENAL
WATERTOWN 72, MASS.
The Role of Dilute Binary Transition Elements on the Recrystallization of Titanium

Technical Report No. WAL TR 830.3/6

By
Ernest P. Abrahamson, II

Date of Issue - November 1961

OMS Code 5010.11.8050051
General Materials Problems, Research and Investigation
D/A Project 5593-32-001

WATERTOWN ARSENAL
WATERFORD 72, MASS.
TITLE
THE ROLE OF DILUTE BINARY TRANSITION ELEMENTS ON THE RECRYSTALLIZATION OF TITANIUM

ABSTRACT
The effect of transition element binary solid solution additions upon the recrystallization temperature of titanium has been investigated. All additions, except columbium and tungsten, raised the recrystallization temperature. A correlation is obtained between the logarithm of the absolute rate of change of recrystallization temperature with atomic percent solute and the number of outer d shell electrons attributed to the free atom of the solute element in its ground state.

ERNEST P. ABRAHAMSON, II
Supervisory Physical Metallurgist

APPROVED:

J. F. SULLIVAN
Director
Watertown Arsenal Laboratories
INTRODUCTION

The work of Abrahamson, et al.,1-6 on dilute binary solid solution alloys indicated a correlation between the free atom ground state electron configuration of the solute and both the brittle-ductile transition and recrystallization temperature. It is shown in these studies that the number of outer s and d electrons in the solute are of prime importance in determining the absolute rate of change of recrystallization or transition temperature with composition. Furthermore, the limit of initial linearity (in the curve of recrystallization temperature versus atomic percent solute) has been shown to be a function of the number of d shell electrons in the solute for dilute iron and vanadium base alloys.

To date no complete systematic recrystallization study of dilute binary titanium base alloys has been made.

This study together with that of zirconium base alloys6 will provide the data for the comparison of the effect of the same solutes upon two solvents with the same number of outer d shell electrons.

PROCEDURE

All alloys were made using 99.9+% iodide Ti with 0.005 Si, 0.001 Al, 0.001 Mg, 0.005 Mn, 0.004 Mo, 0.0005 Fe, 0.02 C, 0.005 N and 0.026 O (60 Rockwell F). The solute elements were 99.9+% pure. According to the published binary phase diagrams7,8 and metallographic examinations at 750X, all alloys used were in solid solution.

The alloys were arc melted and remelted six times in the form of cubic 200-gram buttons under an argon atmosphere. They were then hot pressed at 950°C to 0.450 inch, upset pressed to 0.350 inch and annealed at 1000°C for 45 minutes. The specimens were then Blanchard ground to 0.250 inch, removing 0.050 inch from each side. The grain size of the material at this stage was found to be 80 ± 10 grains per square millimeter. The specimen were then cold rolled to 0.130 inch and cold pressed to 0.125 inch, yielding 50 ± 1% cold work. All alloys were then analyzed chemically for the principal addition. When checked, the interstitial contents of random alloy specimens remained at the values of the starting material.

The rolled sheet was cut into 6.75 x 0.25-inch lengths and heat treated in a gradient furnace for one hour. The gradient was 275 to 850°C over the six-inch length, recorded continuously by six thermocouples resting on each specimen. Control was ± 3°C, accomplished at the hot end.

The recrystallization temperature was determined metallographically using polarized light. The criterion chosen was the point on the specimen showing the first recrystallized grain at a constant magnification, 200X. Duplicate specimens were tested and the agreement was found to be ± 3°C.
RESULTS

Five different pure titanium specimens were tested, and the recrystallization temperature was found to be 490 ± 3°C. Figures 1 through 3 show the effect of the transition elements on the recrystallization of titanium. Columbium and tungsten lowered the recrystallization temperature, while the other elements raised the recrystallization temperature.

If one considers the absolute slopes of the curves in Figures 1 through 3, a definite periodicity can be noted. Figure 4 demonstrates this periodicity when the logarithm of this parameter is plotted versus the free atom ground state electron configuration of the solutes. The elements shown as dotted points are based on less than the desired amount of data to sufficiently determine the slope. However, these points are used to indicate the general shape of the curves.

DISCUSSION

As with previous recrystallization as well as brittle-ductile transition studies,1-6 the absolute change in recrystallization temperature does correlate with the number of outer d shell electrons in the solute for titanium base alloys. The curves presented in Figure 4 in the form of inverse V's exhibit an apex at tantalum, 4d35s2. This is in agreement with prior observations5,6 that the apex occurs for the s = 2 curve at those elements having one more d shell electron than the solvent, Ti-3d24s2.

Comparing Figure 4 with similar correlation curves for zirconium,6 it is observed that the results are almost identical. Both zirconium and titanium have the same number of outer d shell electrons. Thus it is evident that not only do solutes with like configurations behave similarly in the same solvent, but also solutes behave similarly in solvents with the same electron configuration.

It will be noted that two elements lowered the recrystallization temperature of titanium, while all elements raised the recrystallization temperature of zirconium.6

Prior work3,4 has shown that the breaks from linearity observed in Figures 1 through 3 are also functions of the number of solute d shell electrons. The data in this study, however, are insufficient to establish any such correlation.

CONCLUSIONS

1. A correlation is noted between the absolute value of the slope of the recrystallization temperature versus atomic percent solute curve and the number of outer d shell electrons attributed to the solute atom in the ground state. The curve is in the form of an inverse V with an apex at tantalum on the s = 2 electrons curve.
2. Columbium and tungsten lower the recrystallization temperature of titanium while the other transition elements raise it.

3. Solvent elements having a like number of outer d shell electrons accomplish a like absolute change in recrystallization temperature when alloyed with the same solute elements.

ACKNOWLEDGMENT

Grateful acknowledgment is made for the assistance given by J. A. Alexander, J. M. Dhosi, and Dr. F. Rhines through their many helpful discussions.
RECRYSTALLIZATION TEMPERATURE OF TITANIUM AS A FUNCTION OF THE ATOMIC PERCENT BINARY SOLUTE ADDITION FROM THE FIRST TRANSITION SERIES
Recrystallization temperature of titanium as a function of the atomic percent binary solute addition from the second transition series.

Figure 2
RECRYSTALLIZATION TEMPERATURE OF TITANIUM AS A FUNCTION OF
THE ATOMIC PERCENT BINARY SOLUTE ADDITION FROM THE THIRD
TRANSITION SERIES

FIGURE 3
NUMBER OF GROUND STATE OUTER d SHELL ELECTRONS

RATE OF CHANGE OF RECRYSTALLIZATION TEMPERATURE PER
ATOMIC PERCENT SOLUTE AS A FUNCTION OF THE GROUND
STATE ELECTRON CONFIGURATION OF THE SOLUTE

FIGURE 4
REFERENCES

-10-
TECHNICAL REPORT DISTRIBUTION

Report No.: WAL TR 830.3/6
November 1961
Title: The Role of Dilute Binary Transition Elements on the Recrystallization of Titanium

Distribution List approved by Ordnance Materials Research Office,
1 December 1960

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Commander, Armed Services Technical Information Agency, Arlington Hall Station, Arlington 12, Virginia</td>
</tr>
<tr>
<td>1</td>
<td>Director, Army Research Office, Department of the Army, Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, U. S. Army Research Office (Durham), Box CM, Duke Station, Durham, North Carolina</td>
</tr>
<tr>
<td>1</td>
<td>Chief of Ordnance, Department of the Army, Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, Aberdeen Proving Ground, Maryland</td>
</tr>
<tr>
<td>3</td>
<td>Commanding General, Army Ballistic Missile Agency, Redstone Arsenal, Alabama</td>
</tr>
<tr>
<td></td>
<td>Commanding General, Ordnance Tank-Automotive Command, Detroit Arsenal, Center Line, Michigan</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, Ordnance Weapons Command, Rock Island, Illinois</td>
</tr>
<tr>
<td>2</td>
<td>Commanding General, U. S. Army Ordnance Special Weapons Ammunition Command, Dover, New Jersey</td>
</tr>
</tbody>
</table>
Commanding General, U. S. Rocket and Guided Missile Agency, Redstone Arsenal, Alabama
1 ATTN: ORDAB-DV
5 ORDXR-RGA, Mr. R. L. Wetherington
1 ORDXR-RMO, Lt. E. J. Wilson

Commanding Officer, Detroit Arsenal, Center Line, Michigan
1 ATTN: ORDMX-BMW
1 ORDMX-AL

Commanding Officer, Diamond Ordnance Fuze Laboratories, Washington 25, D. C.
1 ATTN: ORDTL .012, Technical Reference Branch

Commanding Officer, Frankford Arsenal, Philadelphia 37, Pennsylvania
2 ATTN: Pitman-Dunn Laboratories

Commanding Officer, Ordnance Materials Research Office, Watertown Arsenal, Watertown 72, Massachusetts
1 ATTN: RFD

Commanding Officer, Picatinny Arsenal, Dover, New Jersey
1 ATTN: Feltman Research Laboratories

Commanding Officer, Rock Island Arsenal, Rock Island, Illinois
1 ATTN: Laboratory

Commanding Officer, Springfield Armory, Springfield 1, Massachusetts
1 ATTN: ORDBD-TX

Commanding Officer, Watervliet Arsenal, Watervliet, New York
1 ATTN: ORDBF-RT

Commanding General, Corps of Engineers, Fort Belvoir, Virginia
1 ATTN: Eng. R&D Laboratories

Chief, Bureau of Ships, Department of the Navy, Washington 25, D. C.
1 ATTN: Code 341

Chief, Bureau of Naval Weapons, Department of the Navy, Room 2225, Munitions Building, Washington 25, D. C.
1 ATTN: RMMP

Chief, Office of Naval Research, Department of the Navy, Washington 25, D. C.
1 ATTN: Code 423
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chief, Naval Engineering Experimental Station, Department of the Navy, Annapolis, Maryland</td>
</tr>
<tr>
<td>1</td>
<td>Commander, Naval Ordnance Test Station, China Lake, California</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Code 5557</td>
</tr>
<tr>
<td>1</td>
<td>Director, Naval Research Laboratory, Anacostia Station, Washington, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Technical Information Officer</td>
</tr>
<tr>
<td>1</td>
<td>Commander, Naval Weapons Laboratory, Dahlgren, Virginia</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: A & P Laboratory</td>
</tr>
<tr>
<td>5</td>
<td>Commander, Wright Air Development Division, Wright-Patterson Air Force Base, Ohio</td>
</tr>
<tr>
<td>15</td>
<td>U.S. Atomic Energy Commission, Office of Technical Information Extension, P.O. Box 62, Oak Ridge, Tennessee</td>
</tr>
<tr>
<td>1</td>
<td>Army Reactor Branch, Division of Research Development, Atomic Energy Commission, Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>National Aeronautics and Space Administration, 1520 H Street, N.W., Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Director, Jet Propulsion Laboratory, California Institute of Technology, Pasadena 3, California</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Dr. L. Jaffe</td>
</tr>
<tr>
<td>5</td>
<td>Dr. W. R. Lucas, George C. Marshall Space Flight Center, Huntsville, Alabama</td>
</tr>
<tr>
<td>5</td>
<td>ATTN: M-S&M-M</td>
</tr>
<tr>
<td>1</td>
<td>Mr. W. A. Wilson, George C. Marshall Space Flight Center, Huntsville, Alabama</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: M-F&E-M, Building 4720</td>
</tr>
<tr>
<td>1</td>
<td>Chief, Bureau of Mines, Eastern Experiment Station, College Park, Maryland</td>
</tr>
<tr>
<td>1</td>
<td>Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio</td>
</tr>
</tbody>
</table>
No. of Copies

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>TO</th>
</tr>
</thead>
</table>
| 4 | | British Joint Services Mission, 1600 K Street, N. W., Washington, D. C.
 | | ATTN: Technical Services Department |
| 3 | | Canadian Army Staff, 2450 Massachusetts Avenue, Washington 8, D. C.
 | | ATTN: GSO-I, A&R Section |
| 5 | | Commanding Officer, Watertown Arsenal, Watertown 72, Massachusetts
 | | ATTN: ORDBE-LXM, Technical Information Section |
| 1 | | Author |

92 -- TOTAL COPIES DISTRIBUTED
AD: Accession No.
Warttown Arsenal Laboratories, Watertown T2, Mass.
THE ROLE OF DIOTHER BINARY TRANSITION ELEMENTS ON THE
RECRYSTALLIZATION OF TITANIUM - Ernest P. Abrahamson, II
OIS Code 5010.11.800001, D/A Project 8592-82-001
Unclassified Report

The effect of transition element binary solid solution additions upon the recrystallization temperature of
titanium has been investigated. All additions, except
columbium and tungsten, raised the recrystallization
temperature. A correlation is obtained between the
logarithm of the absolute rate of change of recrystal-
lization temperature with atomic percent solute and the
number of outer d shell electrons attributed to the
free atom of the solute element in its ground state.

NO DISTRIBUTION LIMITATIONS

AD: Accession No.
Warttown Arsenal Laboratories, Watertown T2, Mass.
THE ROLE OF DIOTHER BINARY TRANSITION ELEMENTS ON THE
RECRYSTALLIZATION OF TITANIUM - Ernest P. Abrahamson, II
OIS Code 5010.11.800001, D/A Project 8592-82-001
Unclassified Report

The effect of transition element binary solid solution additions upon the recrystallization temperature of
titanium has been investigated. All additions, except
columbium and tungsten, raised the recrystallization
temperature. A correlation is obtained between the
logarithm of the absolute rate of change of recrystal-
lization temperature with atomic percent solute and the
number of outer d shell electrons attributed to the
free atom of the solute element in its ground state.

NO DISTRIBUTION LIMITATIONS

AD: Accession No.
Warttown Arsenal Laboratories, Watertown T2, Mass.
THE ROLE OF DIOTHER BINARY TRANSITION ELEMENTS ON THE
RECRYSTALLIZATION OF TITANIUM - Ernest P. Abrahamson, II
OIS Code 5010.11.800001, D/A Project 8592-82-001
Unclassified Report

The effect of transition element binary solid solution additions upon the recrystallization temperature of
titanium has been investigated. All additions, except
columbium and tungsten, raised the recrystallization
temperature. A correlation is obtained between the
logarithm of the absolute rate of change of recrystal-
lization temperature with atomic percent solute and the
number of outer d shell electrons attributed to the
free atom of the solute element in its ground state.

NO DISTRIBUTION LIMITATIONS

AD: Accession No.
Warttown Arsenal Laboratories, Watertown T2, Mass.
THE ROLE OF DIOTHER BINARY TRANSITION ELEMENTS ON THE
RECRYSTALLIZATION OF TITANIUM - Ernest P. Abrahamson, II
OIS Code 5010.11.800001, D/A Project 8592-82-001
Unclassified Report

The effect of transition element binary solid solution additions upon the recrystallization temperature of
titanium has been investigated. All additions, except
columbium and tungsten, raised the recrystallization
temperature. A correlation is obtained between the
logarithm of the absolute rate of change of recrystal-
lization temperature with atomic percent solute and the
number of outer d shell electrons attributed to the
free atom of the solute element in its ground state.

NO DISTRIBUTION LIMITATIONS