NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Calculations of Signal-To-Noise Ratios For Solar Radar Echoes

by
P. Yoh

Scientific Report No. 2
July 18, 1961

PREPARED UNDER
AIR FORCE CONTRACT AF19(604)-7436

RADIOSCIENCE LABORATORY
STANFORD ELECTRONICS LABORATORIES
STANFORD UNIVERSITY · STANFORD, CALIFORNIA
CALCULATIONS OF SIGNAL-TO-NOISE RATIOS FOR SOLAR RADAR ECHOES

by

P. Yoh

Scientific Report No. 2
July 18, 1961

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Prepared under
Air Force Contract AF19(604)-7436

The research reported in this document has been sponsored by
Air Force Cambridge Research Laboratories
Office of Aerospace Research
United States Air Force
Bedford, Massachusetts

Radioscience Laboratory
Stanford Electronics Laboratories
Stanford University Stanford, California
Requests for additional copies by Agencies of the Department of Defense, their contractors, and other Government agencies should be directed to the:

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

Department of Defense contractors must be established for ASTIA services or have their 'need-to-know' certified by the cognizant military agency of their project or contract.

All other persons and organizations should apply to the:

U.S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D. C.
SUMMARY

The procedure for computing the signal-to-noise ratio of radar echoes from the sun is outlined in this report. The radial distribution of electron density in the corona, the coronal temperature, solar noise, galactic noise, and radar-system parameters are taken into account. Examples are given of computations for two solar radar systems that will soon be in operation.
TABLE OF CONTENTS

I. Introduction .. 1
II. Assumptions and computational procedure 1
 A. Optical depth, τ ... 2
 B. Turning point, ρ_o, of the central ray 5
 C. Radar cross section, σ 9
 D. Solar apparent temperature, T_a 11
 E. Echo power intercepted by the receiving antenna, P_r 13
 F. Galactic noise, P_g' 15
 G. Solar noise, P_s ... 17
 H. Bandwidth, Δf 17
 I. Signal-to-noise ratio, S/N. 18
III. Magnetic field effect .. 21
IV. Conclusion .. 23

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ray trajectory in the solar corona</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Integral part of the expression for optical depth</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Slowly varying function $A_1(2)$ as a function of frequency</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Optical depth vs frequency</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Trajectories and turning points in the solar corona</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Central-ray turning point vs frequency</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>Cross-sectional area vs frequency</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Brightness temperature as a function of distance from the central ray</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>Signal power vs frequency</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Galactic and solar-noise power at receiver vs frequency</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>Bandwidth vs frequency</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>S/N ratio vs frequency, with solar noise as a parameter</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>S/N ratio vs frequency, with electron temperatures and densities as parameters</td>
<td>21</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The first radar contact with the sun [Ref. 1] was made in April 1959. This success marked the beginning of solar radar astronomy, a promising new approach to the study of the solar corona. Some characteristics which may be measured by radar are: (1) the rate of rotation of the corona; (2) the change of the coronal structure with various types of solar activity; (3) the absorption characteristics of the corona; (4) the roughness and mass motion of the corona; (5) the effects of local and general solar magnetic fields. In this report are presented the steps for computing the signal-to-noise ratio of radar echoes from the sun, and examples are given using the parameters of several new solar radar systems. The results give us a rough estimate of the sensitivity of these systems under various conditions, and hence an indication of our ability to measure some of the solar parameters listed above.

II. ASSUMPTIONS AND COMPUTATIONAL PROCEDURE

In the following computations of the radar cross section of the sun, it is assumed that:

1. The corona is a fully ionized region, and its electron density distribution is given by the Allen-Baumbach equation multiplied by a factor n (a numeric):

$$N = n \times 10^{-14} (1.55 \rho^{-6} - 2.99 \rho^{-16}) \text{ electrons/m}^3,$$

where ρ is the radial distance in units of the solar optical radius R_o measured from the center of the sun. The range of n is approximately from 0.5 to 10, its value depending on solar activity.

2. The corona is isothermal at assumed electron temperatures from $5 \times 10^5 \text{K}$ to $3 \times 10^6 \text{K}$. This range of temperature is based on solar radio-astronomy observations.

3. The corona is spherically symmetric and has a smooth reflecting
surface (i.e., directivity = 1). Kerr [Ref. 2] suggests a directivity of 4 because of probable roughness of the contours of constant density. A precise evaluation of this effect must await careful radar studies; therefore, the pessimistic assumption of a directivity of 1 will be used here.

4. An average value of the galactic noise is used. Actually, of course, the galactic noise is higher than average toward the center of the galaxy and lower toward the poles.

5. Solar noise is considered under quiet solar conditions.

6. Magnetic-field effects from both the sun and the earth are neglected.

7. Solar and galactic noise is greater than atmospheric and man-made noise in the frequency range from 20 to 60 Mc.

With the above assumptions, the following quantities are computed in the indicated order:

1. Optical depth, \(\tau \)
2. Central-ray turning point, \(\rho_0 \)
3. Radar cross section, \(\sigma \)
4. Solar apparent temperature, \(T_a \)
5. Echo power intercepted by the receiving antenna, \(P_r \)
6. Galactic noise, \(P_g \)
7. Solar noise, \(P_s \)
8. Band width, \(\Delta f \)
9. Signal-to-noise ratio, \(S/N \).

These quantities are discussed individually below.

A. OPTICAL DEPTH, \(\tau \)

The optical depth, \(\tau \) along a trajectory \(S \) is defined by

\[
\tau = \int_0^\infty \kappa \, ds,
\]

[Ref. 3], where \(\kappa \) is the absorption coefficient of the medium in which the ray travels. From the Lorentz theory, we have
\(\kappa = \frac{\nu x}{c \mu} \), nepers/meter

where

\(c = \) velocity of light,
\(\mu = \) refractive index = \([1 - (f_0^2 / f^2)]^{1/2} \),
\(x = f_0^2 / f^2 \),
\(f_0 = \) plasma frequency = \((e^2 N / 4 \pi \epsilon_0 m)^{1/2} \),
\(f = \) wave frequency,
\(e = \) electron charge,
\(N = \) density of electrons,
\(m = \) electron mass, and
\(v = \) frequency of collisions of electrons with ions

\[
\kappa = 4 e^4 \left[\frac{x}{2m(kT_e)^3} \right]^{1/2} Z^2 N_i A_1(2),
\]

where

\(k = \) Boltzmann's constant,
\(T_e = \) electron kinetic temperature,
\(Z = \) degree of ionization, and
\(N_i = \) positive-ion density.

It seems quite adequate for our purpose to assume the solar atmosphere to be fully ionized hydrogen, so that \(N_i = N \) and \(Z = 1 \). \(A_1(2) \) is given by

FIG. 1. RAY TRAJECTORY IN THE SOLAR CORONA
\[A_1(2) = \ln \left[1 + \left(\frac{4 \, k \, T_e}{Z \, e^2 \, N_1^{1/3}} \right)^2 \right]. \]

(4)

[Ref. 4]. \(A_1(2) \) is a slowly varying function of density and temperature, and, to a good degree of approximation, it can be expressed as

\[A_1(2) \approx 2 \ln \left(\frac{4 \, k \, T_e}{Z \, e^2 \, N_1^{1/3}} \right) \]

\[= 15.567 + 2 \ln T_e - \frac{2}{3} \ln N. \]

(5)

Then Eq. (3) reduces to

\[\nu = \frac{1.816 \, N}{T_e^{3/2}} A_1(2). \]

The term \(ds \) can be expressed as

\[ds = R_0 \left[(d\rho)^2 + \rho^2 (d\theta)^2 \right]^{1/2} \]

(6)

in polar coordinates whose origin is located at the center of the sun (Fig. 1).

Therefore, Eq. (1) can be written as

\[\tau = \frac{R_0}{c} \int_{\rho_a}^{\rho_b} \frac{\nu x}{\sqrt{\mu^2 - (a^2/\rho^2)}} \, d\rho \]

(7)

and Eq. (7) can be reduced as

\[\tau \left(T_e, n, f, a \right) = \frac{5.193 \times 10^4 \, A_1(2) \, f^2}{T_e^{3/2}} I \left(a, \frac{n}{f} \right), \]

(8)
[Ref. 5], where \(I(a, n/r^2) \) is the integral part of the optical depth. The values of \(A_1(2) \) and \(I(a, n/r^2) \) have been replotted in Figs. 2 and 3 [Ref. 6].

The method of evaluating the optical depth through the corona is as follows:

1. Choose the wave frequency \(f \) (Mc) and a density multiplier \(n \).
2. Form the parameter \(n/r^2 \) for the values chosen in item 1.
3. Choose the ray path in terms of \(a \). In our calculation \(a \) was chosen for the central ray, i.e., \(a = 0 \).
4. Find values of \(I \) from Fig. 2 for the selected values of \(a \) and \(n/r^2 \).
5. Choose an assumed coronal temperature \(T_e \).
6. Determine \(A_1(2) \) from the curves in Fig. 3 for the selected values of \(T_e, n, \) and \(f \).

With the above procedure, three sets of curves were drawn in Fig. 4, with \(\tau \) vs \(f \) for \(T_e = 5 \times 10^5, 10^6, \) and \(3 \times 10^6 \) K and \(n = 0.5, 1, 2, 5, \) and 10. Several conclusions are apparent from the curves.

1. As \(T_e \) increases, \(\tau \) decreases, \(\tau \propto T_e^{-3/2} \).
2. As \(n \) increases, \(\tau \) increases, \(\tau \propto n^{1/4} \).
3. As \(f \) increases, \(\tau \) increases, \(\tau \propto f^{3/2} \).
4. As \(a \) increases, \(\tau \) decreases.

Result 4 will be shown in later calculations and indicates that the corona is optically thin for large \(a \).

B. TURNING POINT, \(\rho_o \), OF THE CENTRAL RAY

The refractive index \(\mu \) in a medium containing \(N \) free electrons/cubic meter is given by

\[
\mu^2 = 1 - \frac{N e^2}{\varepsilon_0 m(\omega^2 + \nu^2)}
\]

(9)

Expressing Eq. (9) in terms of \(\rho \) and taking \(\omega \gg \nu \), we have
FIG. 2. INTEGRAL PART OF THE EXPRESSION FOR OPTICAL DEPTH (SMERD), PLOTTED AS A FUNCTION OF FREQUENCY, DISTANCE FROM THE CENTRAL RAY, AND THE ELECTRON-DENSITY SCALE FACTOR.

FIG. 3. SLOWLY VARYING FUNCTION $A_1(2)$ (SMERD) PLOTTED AS A FUNCTION OF FREQUENCY.
\[\mu^2 = 1 - 12,400 \, n \, f^{-2} \, \rho^{-6} \, (1 + 1.93 \, \rho^{-10}), \]

(10)

where \(f \) is in Mc and \(\rho \) is the distance from the sun's center in units of the solar photospheric radius (Fig. 5). When \(\rho \gg 1 \), we have the simpler form

\[\mu^2 = 1 - 12,400 \, n \, f^{-2} \, \rho^{-6}. \]

(11)
But the refractive index μ equals zero at the turning point for the central ray. Therefore, Eq. (11) reduces to

$$\rho_0 = 4.8 n^{1/6} f^{-1/3}.$$ \hspace{1cm} (12)

With fixed n and f, ρ_0 is thus determined. A set of curves of ρ_0 for $n = 0.5, 1, 2, 5, 10$ and $f = 10$ to 80 Mc were plotted in Fig. 6. The plot for $n = 1$ agrees with Smerd's results [Ref. 7]. It also agrees with Jaeger's results in his Figure 2B [Ref. 8].

For other than the central ray, we need another important equation

$$\mu_a \rho_a = a$$ \hspace{1cm} (13)

(For the derivation of Eq. (13) see Jaeger's paper [Ref. 8].) Therefore, Eq. (10) can be expressed as

$$1 - \frac{a^2}{\rho_a^2} - 12,400 n f^{-2} \rho_a^{-6} (1 + 1.93 \rho_a^{-10}) = 0.$$ \hspace{1cm} (14)

For $\rho_a \gg 1$ we can simplify the above expression to

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig5}
\caption{Trajectories and turning points in the solar corona}
\end{figure}
For fixed \(n \) and \(f \), the trajectories and loci of turning points can be determined. Jaeger [Ref. 8] has plotted various trajectories for \(f = 60 \) and 100 Mc.

C. RADAR CROSS SECTION, \(\sigma \)

Let \(W \) be the incident power per unit area on the sun. Then the power incident in a cylinder with radius \(aR_0 \) is \(\pi a^2 R_0^2 W \). Let extreme rays of the thin cylinder, on returning to free space after refraction in the corona, form a cone of small semi-vertical angle \(2\theta_a \) (solid angle \(4\pi \theta_a^2 \)) (as in Fig. 1). Let the optical depth of each ray be \(2\tau \), both inside and outside of the corona. Then the returning power \(W_1 \) per steradian is \(e^{-2\tau} \pi a^2 R_0^2 W/4\pi \theta_a^2 \). Hence the radar cross section \(\sigma \) is given by

\[
\rho_a - a^2 \rho_a - 12,400 n f^{-2} = 0. \quad (15)
\]
\[
\sigma = \frac{4\pi W_1}{W} = e^{-2\pi a R_0^2/\varphi_a^2}
\]
and
\[
\frac{\sigma}{\pi R_0^2} = e^{-2\pi \left(\frac{a}{\varphi_a} \right)^2}
\]
for small values of \(a\) and \(\varphi_a\). Strictly speaking, Eq. (16) should be expressed as
\[
\frac{\sigma}{\pi R_0^2} = e^{-2\pi \left(\frac{1}{d\varphi_a/da} \right)^2} a = 0.
\]
The relationship between \(\varphi_a\) and \(a\) is, for all \(a\),
\[
\varphi_a = a \int_0^\infty \frac{dp}{p_a \rho_a \sqrt{\rho_a^2 - a^2}^{1/2}}
\]
[Ref. 9]. If we calculated \(d\varphi_a/da\) at \(a = 0\), we would have the value needed for \(\varphi_a/a\) in Eq. (16), in which \(\varphi_a\) and \(a\) are small quantities. The method of evaluating the integrand is given by Jeffreys and Jeffrey [Ref. 10].

The approximate answer for Eq. (17) is
\[
\theta = h[3.77 I(\rho_a + h) - 0.96 I(\rho_a + 2h) + 1.12 I(\rho_a + 3h)] + h \sum_{\rho_a + nh}^{\rho_a} I(\rho) + \text{arc sin} \frac{a}{\rho_a + \frac{1}{2}h},
\]
where \(I(\rho) = a \rho^{-1} (\rho^2 - a^2)^{1/2}\). In the present calculation, \(a = 0.1\), \(h = 0.1\), and the first nine terms of \(I(\rho_a + nh)\) were used, where \(n = 1, 2, \ldots, 9\). Figure 7 shows \(\sigma\) for various values of electron temperature, electron density multiplier \(n\), and frequency.
D. SOLAR APPARENT TEMPERATURE, T_a

Three different concepts of temperature will be used. They are:

1. T_e, the electron kinetic temperature, generally called electron temperature in this report.

2. T_b, the brightness temperature, defined as the temperature of a black body which would yield a specific intensity I of thermal radiation equal to that observed, i.e., $I = B(T_b)$, and at radio frequencies $B(T_b)$ is suitably expressed by the Rayleigh-Jeans equation, $B(T) = \frac{2k}{\lambda^2} T$.

FIG. 7. CROSS-SECTONAL AREA VS FREQUENCY.

- 11 -
3. T_a, the apparent temperature, defined as the mean brightness temperature with respect to the photospheric disk.

The characteristics of the radiation at a given frequency are specified by the brightness distribution over the disk. The brightness temperature, T_b, of a ray at emergence is given by

$$T_b = \int_0^{2\tau_p} T_e e^{-\tau} d\tau$$

[Ref. 3], where the integration is taken over the whole path of the ray through the solar atmosphere. The term τ is the optical depth measured back from emergence, and τ_p is its value at the turning point. The factor 2 in the upper limit is due to the symmetry of the trajectory about a radial vector through the turning point.

In the case of uniform temperature, the solution of the above integral of transfer for the ray emerging at a distance aR_e from the central ray is

$$T_b(a) = T_e (1 - e^{-\tau_p a})$$

for rays whose turning points lie in the corona. For the distribution of τ_p and T_b with $T_e = 10^5$ K, $n = 1$, and $f = 18$ MHz, see Figures 7 and 8 in the Bracewell and Preston paper [Ref. 9].

Assuming that the distribution of brightness temperature T_b has circular symmetry, then

$$T_a = 2 \int_0^\infty T_b(a) a da.$$ \hspace{1cm} (21)

Since the integrand of Eq. (21) is quite involved, a simplified method was used, as follows:

1. Calculate the values of $T_b(a)$ for different a, from $a = 0$ to $a = 2.8$, with fixed n, T_e, and f.

- 12 -
2. Plot the values of $T_b(a)$ versus a, as shown in Fig. 8.

3. Use graphical integration to calculate T_a.

$$T_{a1} = T_1 a_1^2$$

$$T_{a2} = T_2 (a_2^2 - a_1^2)$$

$$\vdots$$

$$\vdots$$

$$T_{an} = T_n (a_n^2 - a_{n-1}^2), \text{ and}$$

$$T_a = \sum_{n=1}^{N} T_{an}$$ \hspace{1cm} (22)

E. ECHO POWER INTERCEPTED BY THE RECEIVING ANTENNA, P_r

Stanford University and the Stanford Research Institute are preparing a new radar system for solar radar studies, and the MIT Lincoln Laboratory will also soon be studying the sun with a very large system in Texas. Characteristics of these systems are as follows:
1. STANFORD SYSTEM

Log-periodic antenna

Power averages 300 kw

Gain is approximately 25 db for frequencies from 20 to 60 Mc, independent of frequency

150-ft steerable parabolic-dish antenna

Power averages 300 kw

Aperture is \(\pi R^2 \), which is approximately 1650 m\(^2\)

(It is assumed, for the present, that this antenna is 100 percent efficient at all frequencies available from the transmitter--20 - 60 Mc).

These two systems have the same antenna gain at about 40 Mc. Thus, it is favorable to operate the 150 ft dish for frequencies higher than 40 Mc and to operate the log-periodic antenna for lower frequencies.

2. LINCOLN LABORATORY SYSTEM

Power averages 500 kw

Gain is approximately 35 db

This system is to be operated at a fixed frequency, 38 Mc.

If we assume that the pulse length exceeds the spread in delay time of the sun echo, we can use the standard radar equation,

\[
P_r = \frac{P G_t}{4 \pi R^2} \frac{1}{4 \pi R^2} \frac{G_r \lambda^2}{4 \pi} \sigma,
\]

where

- \(P \) = radiated power in watts,
- \(G_t \) = transmitting-antenna gain,
- \(G_r \) = receiving-antenna gain,
- \(\sigma \) = radar cross section of the sun, in square meters,
- \(R \) = solar mean distance \(\approx 1.49 \times 10^{11} \) meters, and
- \(\lambda \) = wavelength in meters.

For a constant-aperture system, with the same antenna used for transmission and receiving, Eq. (23) could be rewritten as
4. SYSTEM

\[P_r = \frac{P}{4\pi R^2} \frac{A^2}{\lambda^2} \sigma, \]

(24)

where \(A = \) effective antenna area = \(\frac{0.025}{4\pi} \). The values of \(P_r \) as a function of frequency for \(n = 1 \) and \(T_e = 5 \times 10^5, 10^6, \) and \(3 \times 10^6 \) \(\circ K \) are plotted in Fig. 9 for the systems under consideration.

F. GALACTIC NOISE, \(P_g \)

The equation for galactic noise is given by
\[P_g = 4 \times 10^{-21} (F + \frac{T_c}{T_o}) \text{ watts/cps.} \]

(25)

[Ref. 11], where \(F \) = the receiver-noise factor, and \(\frac{T_c}{T_o} \) = average galactic-noise factor \(\approx 0.25 \lambda^2.3 \).

In the 20 to 60-Mc frequency band, \(T_c/T_o \gg F \), and (25) reduces to

\[P_g = 10^{-21} \lambda^2.3 \text{ watts/cps.} \]

(26)

Under the assumption of uniform galactic-temperature distribution in the sky, all antennas see the same amount of galactic noise, since \(P_g \) is a function of operating frequency only. \(P_g \) is plotted in Fig. 10.

FIG. 10. GALACTIC AND SOLAR-NOISE POWER AT RECEIVER VS FREQUENCY.
G. SOLAR NOISE, P_s

The equation for P_s is given by

$$P_s = \frac{k T_s}{\lambda^2} \Omega_s \frac{\lambda^2 G}{4\pi} \text{watts/cps} \quad (27)$$

[Ref. 2] for the log-periodic antenna, and

$$P_s = k A \Omega_s \frac{T_a}{\lambda^2} \text{watts/cps} \quad (28)$$

for the 150-ft dish. In these expressions,

- $k = \text{Boltzmann's constant}$
- $\Omega_s = \text{solid angle subtended by the sun's optical disk (steradian)}$
- $T_a = \text{solar apparent temperature (see Sec. II-D)}$
- $A = \text{antenna aperture in square meters, and}$
- $G = \text{antenna gain}.$

From Eq. (27) and (28), we can see that P_s for the 150-ft dish varies with respect to frequency much faster than P_s for the log-periodic antenna. The reasons are that

$$P_s \propto T_a \quad \text{for the log-periodic antenna and}$$

$$P_s \propto T_a f^2 \quad \text{for the 150-ft dish.}$$

Curves for P_s versus f are plotted in Fig. 10 for $n = 1$ and $T_e = 10^6 \text{OK}.$

H. BAND WIDTH, Δf

It is expected that the corona is rough, fluctuating, and rotating, so that the received echo will be spread in frequency. The center
frequency of the reflected signal will also be shifted relative to the transmitting frequency, because of the earth's orbital motion and rotation. This latter effect is of little concern here, since it can easily be computed and compensated for in the tuning of the receiver.

To a first approximation, we assume that the sphere seen at a particular operating frequency has a radius of ρ_o, where ρ_o is the distance of the turning point for a central ray from the center of the sun, and the rate of rotation of the corona is that of the solar photosphere. Thus the maximum band width is

$$\Delta f = \frac{2 \rho_o \omega_o}{c} f, \quad (29)$$

where

- ω_o = the angular velocity of the sun at the equator
 $\approx 2.7 \times 10^{-6}$ radians/sec
- c = velocity of light, and
- f = transmitting frequency in cps.

The values of ρ_o at various frequencies and values of n were obtained in Sec. II-B.

Curves for Δf versus f for $n = 1$ and 5 are plotted in Fig. 11. They are approximately linear, as the variation of ρ_o with respect to frequency is very close to linear (see Fig. 7).

I. SIGNAL-TO-NOISE RATIO, S/N

The signal-to-noise ratio is obtained from the above computed quantities from

$$S/N = \frac{P_r}{(P_s + P_g) \Delta f} \quad (30)$$

Figures 12 and 13 were plotted for the systems mentioned above. In Fig. 12 there are two sets of curves; the solid lines represent $n = 1$ and $T_e = 10^6$ $^\circ$K, and the dotted lines represent an extra 10 db of solar noise as an indication of the effect of non-quiet sun conditions.
FIG. 11. BANDWIDTH VS FREQUENCY.

In Fig. 13 there are three sets of curves, representing three different electron temperatures—$T_e = 5 \times 10^5$, 10^6, and 3×10^6°K—with $n = 1$ and 5. The general characteristics of the curves in Fig. 13 are:

1. The variation for S/N of the log-periodic antenna is almost linear with different T_e and n.

2. The S/N ratios for the two Stanford Antennas are equal at about 38 Mc. (Note that the noise is not entirely proportional to gain.)

From Secs. II-F and II-G we have

\[P_s = T_a G, \]
\[P_g = 1/f^{2.3}, \]

and total noise $P_N = P_s + P_g$.

- 19 -
3. The S/N is better for higher T_e. This effect is entirely due to the large radar cross section for higher T_e (see Sec. II-C). Although T_a increases for higher T_e, the rate of increase of cross section with respect to increasing electron temperature is greater than the rate of change of T_a (see Secs. II-C and II-D).

4. The change of n has little effect on S/N (see Secs. II-A and II-C).
III. MAGNETIC FIELD EFFECT

In the presence of a magnetic field, the incident wave is split into two waves of equal strength, the ordinary and extraordinary waves.
The refractive index of the ordinary wave is the same as for the free-field case. The refractive index of the extraordinary wave is different; the zero refractive index of the extraordinary wave of the central ray is

\[x = 1 + y \quad \text{for quasi-transverse} \]
\[x = 1 - y \quad \text{for quasi-longitudinal} \]

where

\[x = \frac{f_0^2}{f^2}, \]
\[y = \frac{f_h}{f} \]

\[f_0 = \text{plasma-frequency} = \left(\frac{e^2 N}{4\pi^2 \varepsilon_o m^2} \right)^{1/2} \]
\[f_h = \text{gyro-frequency} = \frac{eB}{2\pi m}, \text{ and} \]
\[f = \text{wave frequency}. \]

Assuming a magnetic dipole moment \(M \) at the center of the sun, the general magnetic field as a function of distance is

\[H(\rho) = \frac{M}{R_\odot^3 \rho^3} \]

\[H_0 = \frac{M}{R_\odot^3} \]

where \(H_0 \) is the surface field at the equator. Then the gyro-frequency can be expressed as

\[f_h = \frac{eB H(\rho)}{2\pi m}. \]
Substituting \(f_o, f_h, \) and \(f \) into (31) and (32), we can express the distance of zero refractive level as

\[
\rho_o = \left(\frac{1.4 H_o}{f} + \sqrt{\frac{1.96 H_o^2 + 12,400}{f^2}} \right)^{1/3}
\]

for quasi-transverse

and

\[
\rho_o = \left(\frac{1.4 H_o}{f} + \sqrt{\frac{1.96 H_o^2 + 12,400}{f^2}} \right)^{1/3}
\]

for quasi-longitudinal

(35)

(36)

where \(f \) is in Mc and \(N = 10^{14} (1.55 \rho^{-6}) \). Hobbs [Ref. 12] used the quasi-transverse case associated with sunspots and found that the turning points for the extraordinary wave are further from the center of the sun than those for the ordinary wave. It is possible for the extraordinary wave to be reflected first and thus to suffer less absorption. If operating at a high frequency, say above 200 Mc, the returned signal is entirely from the extraordinary wave. The ordinary wave is almost totally absorbed before it reaches zero refractive-index level. In addition to the splitting effect, the general magnetic fields will also cause a differential in refraction and group velocity. These effects will depend on the strength of the field, the angular relationship between the wave normal and the direction of the field, and the electron density.

IV. CONCLUSION

The method of calculation in Section II indicates roughly the magnitude of the S/N which should be obtained with a solar radar system in a field-free case. For more accurate calculations of the S/N, it is advisable to use a computer. After more accurate experimental measurements have been made at several frequencies, it should be possible to improve very markedly our knowledge of such poorly known characteristics.
as scale of roughness and motion in the corona, and the effects of local
or general solar magnetic fields. The above computations help show the
radar characteristics required for such measurements and the expected
performance of several new solar radar systems.

A complementary approach to active radio studies of the sun is
based on transmission through, instead of reflection from, the corona.
Such studies are now being conducted, by utilizing the occultation of
the Crab Nebula, but controlled radiations from space probes or radar
reflections from planets near superior conjunction should provide even
more information about the structure of the corona to tens of solar
radii into the interplanetary medium [Ref. 13].

ACKNOWLEDGMENT

The author wishes to express his sincere appreciation to Professor
V. R. Eshleman for his constant encouragement, guidance, and supervision.
The author is also grateful to Mr. S. F. Smerd for his generosity in
providing his as-yet-unpublished results.

This work was supported by the Electronics Research Directorate
of the Air Force Cambridge Research Center, Bedford, Massachusetts,
under contract AF 19 (604) 7436.
REFERENCES

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Address</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Missile Test Center</td>
<td>AFMTC Tech. Library - MU-135</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td>1 Florida</td>
<td></td>
<td>Diamond Ordnance Fuze Labs.</td>
</tr>
<tr>
<td></td>
<td>Patrick Air Force Base</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Attn: ORDTL-012</td>
</tr>
<tr>
<td>Air University Library</td>
<td></td>
<td>Army Rocket and Guided</td>
</tr>
<tr>
<td>1 Florida</td>
<td></td>
<td>Missile Agency</td>
</tr>
<tr>
<td>Maxwell Air Force Base</td>
<td></td>
<td>Redstone Arsenal, Ala.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Attn: ORDXR-OTL, Tech. Lib.</td>
</tr>
<tr>
<td>(ASAPHL)</td>
<td></td>
<td>1520 H. Street, N.W.</td>
</tr>
<tr>
<td>1 Ohio</td>
<td></td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>Wright-Patterson AFB</td>
<td></td>
<td>1 Attn: Library</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Director</td>
</tr>
<tr>
<td>Rome Air Development Center</td>
<td></td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>(RCOII-2)</td>
<td></td>
<td>National Aeronautics and Space</td>
</tr>
<tr>
<td>1 New York</td>
<td></td>
<td>Administration</td>
</tr>
<tr>
<td>Griffiss Air Force Base</td>
<td></td>
<td>1 Langley Field, Virginia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air Force Cambridge Res. Labs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Office of Aerospace Research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CRREL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 Bedford, Massachusetts</td>
</tr>
<tr>
<td>Air Force Missile Dev't Ctr.</td>
<td></td>
<td>L.G. Hanscom Field</td>
</tr>
<tr>
<td>(MDGRT)</td>
<td></td>
<td>2 Washington 25, D.C.</td>
</tr>
<tr>
<td>1 New Mexico</td>
<td></td>
<td>Director, Avionics Div. (AV)</td>
</tr>
<tr>
<td>Holloman Air Force Base</td>
<td></td>
<td>Bureau of Aeronautics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dept. of the Navy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Washington 25, D.C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Director (Code 2027)</td>
</tr>
<tr>
<td>Research (SRY)</td>
<td></td>
<td>2 Washington 25, D.C.</td>
</tr>
<tr>
<td>1 Washington 25, D.C.</td>
<td></td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U.S. Air Force Project RAND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIA: AF Liaison Office</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Rand Corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1700 Main Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Santa Monica, Calif.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boston Sub Office</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patent Prosecution Branch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(HQ. AMC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Murphy General Hospital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bldg. 133, 424 Trapelo Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Waltham 54, Mass.</td>
</tr>
</tbody>
</table>
Asst. Sec. of Defense for Research and Dev't
Information Office Lib. Br.
Pentagon Bldg.
2 Washington 25, D. C.

U.S. Army Signal Radio Prop. Agency
Ft. Monmouth, New Jersey
1 Attn: Mr. Fred. H. Dickson

Dept. of the Army
Evans Signal Lab.
Belmar, New Jersey
1 Attn: Alexander N. Beichek

U.S. Army Signal Engr. Labs.
Ft. Monmouth, New Jersey
1 Attn: Mr. Robert Kulinyi

Office of Science
Office of the Asst. Sec. of Defense, Research and Engr.
1 Washington 25, D. C.

Washington 25, D. C.
1 Attn: Mr. Harry Fine

Central Radio Prop. Lab.
1 Attn: K.A. Norton

85.00
Central Radio Propagation Lab.
1 Attn: R.C. Kirby

Boulder, Colorado
1 Attn: Mr. George R. Sugar

U.S. Advisory Group
U.S. Embassy, The Hague
Dept. of State
Washington 25, D. C.
1 Attn: Mr. Pierre Bartholeme, SADTC

Stanford Research Insti.
Menlo Park, California
1 Attn: Dr. D.R. Scheuch
Assistant Dir., Div. of Engr. Research

Hughes Aircraft Company
Florence Ave. at Teale Street
Culver City, California
1 Attn: Documents Section
Research and Dev't Library

Stanford Research Institute
Menlo Park, California
1 Attn: Dr. Allen M. Peterson

Melpar, Inc.
3000 Arlington Boulevard
Falls Church, Virginia
1 Attn: Mr. C.B. Raybuck
Vice-Pres. and Chief Engineer

Raytheon Company
225 Crescent Street
Waltham, Massachusetts
1 Attn: Dr. D.A. Hedlund
Communications and Data Processing Operation

Bell Telephone Labs.
Murray Hill, New Jersey
1 Attn: Mr. K. Bullington

Collins Radio Company
855-35th Street, N.E.
Cedar Rapids, Iowa
1 Attn: Mr. Irvin H. Gerks

RCA Laboratories
David Sarnoff Research Ctr.
Princeton, New Jersey
1 Attn: Mr. Richard Jenkins

Pickard and Burns, Inc.
240 Highland Ave.
Needham 94, Massachusetts
1 Attn: Dr. Richard H. Woodward

Rand Corporation
1700 Main Street
Santa Monica, California
1 Attn: Edward E. Reinhart
General Electric Company
Defense Elec's. Division
735 State Street
Santa Barbara, California
1 Attn: Mr. Klaus G. Likehold, Manager-Library

Ferranti-Packard Electric
Electronics Division
Industry Street
Toronto 15, Ontario, Canada
1 Attn: Mr. G.W.L. Davis

RCA Laboratories
Riverhead, Long Island
New York
1 Attn: Mr. Robt. Wagner

Air Force Cambridge Research Laboratories
Office of Aerospace Research
L. G. Hanscom Field
Bedford, Mass.
1 Attn: CRRST, Mr. Leon Ames
9 Attn: CRRK, Mr. Wm. Griffin

Office of the Chief of Naval Operations
Department of the Navy
Washington 25, D.C.
1 Attn: OP-583

Bureau of Ships, Code 819
Department of the Navy
Washington 25, D.C.
1 Attn: Mr. R.S. Baldwin

Librarian
U.S. Naval Postgraduate Sch.
Monterey, California
1 Attn: Dr. George

Chief of Naval Research
Electronics Br. (Code 427)
Department of the Navy
Washington 25, D.C.
2 Attn: Dr. Arnold Shostak

Commanding Officer and Dir.
U.S. Navy Elec's. Lab.
San Diego 52, California
1 Attn: D.P. Heritage

Head, Radio Branch

Commanding Officer
U.S. Naval Air De've't Ctr.
Johnsville, Pennsylvania
1 Attn: NADC Library

Chief, Bureau of Ships
Dept. of the Navy
Washington 25, D.C.
2 Attn: 810

Chief, Bureau of Ordnance
Dept. of the Navy
Washington 25, D.C.
1 Attn: Code Rep-a

Commanding Officer and Dir.
U.S. Naval Electronics Lab (Library)
1 San Diego 52, California

University of Florida
Electrical Engr. Dept.
Gainesville, Florida
1 Attn: Dr. George

Applied Physics Laboratory
Johns Hopkins University
8621 Georgia Avenue
2 Silver Spring, Maryland

The University of Michigan
Engineering Res. Institute
Willow Run Laboratories
Willow Run Airport
Ypsilanti, Michigan
1 Attn: Librarian

Cornell University
School of Electrical Engineering
Ithaca, New York
1 Attn: Dr. W. Gordon

Univ. of Texas
Box 8026 University Station
Austin 12, Texas
1 Attn: Prof. A.W. Straiton

Georgia Technology Research Institute
Engineering Experiment Station
722 Cherry Street, N.W.
Atlanta, Georgia
1 Attn: W.B. Wrigley, Head, Comm. Branch
University of Illinois
Department of Physics
Urbana, Illinois
1 Attn: The Librarian

University of Tennessee
Department of Elec. Engineering
Knoxville, Tennessee
1 Attn: Prof. F.V. Schultz

Massachusetts Inst. of Tech.
Lincoln Laboratory
P.O. Box 73
Lexington 73, Massachusetts
1 Attn: Mr. J.H. Chisholm 6-357
1 Attn: Dr. Morton Loewenthal