NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the J. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
LUNAR TRAJECTORY STUDIES

A. Petty
I. Jurkevich
M. Farize
T. Coffin

General Electric Company
Missile and Space Vehicle Department
Space Sciences Laboratory

Final Report

Contract No. AF 19(604)-5863

JUNE 1961

ELECTRONICS RESEARCH DIRECTORATE
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
Bedford, Mass.
Requests for additional copies by agencies of the Department of Defense, their contractors, and other Government agencies should be directed to the:

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

Department of Defense contractors must be established for ASTIA services or have their 'need-to-know' certified by the cognizant military agency of their project or contract.

All other persons and organizations should apply to the:

U.S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D. C.
LUNAR TRAJECTORY STUDIES

A. Petty
I. Jurke维奇
M. Fabryze
T. Coffin

General Electric Company
Missile and Space Vehicle Department
Space Sciences Laboratory

Contract No. AF 19(604)-5863

JUNE 1961
ABSTRACT

This report presents a description of several related IBM-7090 Fortran computer programs designed to provide a fast, accurate, and systematic procedure for determining initial conditions to the differential equations of motion from tracking data, lunar and interplanetary trajectories in n-body space, and satellite ephemeris compilations.

The theory and analytical formulation for each program is given in detail. Instruction in program usage is given with individual check problems provided to facilitate operational proficiency.

To verify the formulations the following examples were used:

1. Initial Condition Determinations - (Data for the asteroid Leuschnerina 1935 used in form of a check problem).

2. Trajectory Computation - Lunik III Data (included in interim report).

3. Ephemeris Computation - (Data for the asteroids Pallas and Vesta used in form of a check problem).

In addition to the above work, this report also contains a study of Lunar Trajectories. The types of trajectories considered are:

1. Error Analysis of Hyperbolic Impact Trajectories.

2. Lifetime of an Artificial Lunar Satellite.

3. Lunar Circumnavigation and Earth Return.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ii</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. INITIAL CONDITION DETERMINATIONS - (GENERAL COMMENTS)</td>
<td>4</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>B. Determination of Initial Conditions from Two Position Vectors</td>
<td>5</td>
</tr>
<tr>
<td>C. Determination of Initial Conditions from Three Angular Positions</td>
<td>7</td>
</tr>
<tr>
<td>D. Determination of Initial Conditions from Six Radar Range Measurements</td>
<td>11</td>
</tr>
<tr>
<td>III. INITIAL CONDITION DETERMINATIONS (COMPUTER ROUTINES)</td>
<td>14</td>
</tr>
<tr>
<td>A. Determination of Initial Conditions from Three Angular Positions</td>
<td>14</td>
</tr>
<tr>
<td>B. Determination of Initial Conditions from Two Position Vectors</td>
<td>29</td>
</tr>
<tr>
<td>C. Determination of Initial Conditions from Six Radar Range Measurements</td>
<td>37</td>
</tr>
<tr>
<td>IV. AUXILIARY COMPUTATIONS AND CONVERSION SUB-ROUTINES</td>
<td>44</td>
</tr>
<tr>
<td>A. Basic Requirements</td>
<td>45</td>
</tr>
<tr>
<td>B. Computation of Rectangular Geocentric Site Coordinates</td>
<td>47</td>
</tr>
<tr>
<td>C. Reduction of Rectangular Coordinates X, Y, Z of Date to Equinox of 1950.0</td>
<td>50</td>
</tr>
<tr>
<td>D. Reduction of (X, Y, Z) 1950.0 to Those of Date</td>
<td>51</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONT.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Conversion of Azimuth and Elevation to Right Ascension and Declination</td>
<td>53</td>
</tr>
<tr>
<td>F. Reduction of (\alpha) and (\delta) from Equinoxe of Date to Reference Equinox</td>
<td>54</td>
</tr>
<tr>
<td>G. Ephemeris Computation</td>
<td>57</td>
</tr>
<tr>
<td>H. Reduction of Sidereal Time Regulated by a Moving Equinox to Sidereal Time Regulated by a Stationary Equinox</td>
<td>61</td>
</tr>
<tr>
<td>I. Schematics of Typical Computations</td>
<td>64</td>
</tr>
<tr>
<td>V. ERROR ANALYSIS OF HYPERBOLIC LUNAR IMPACT TRAJECTORIES</td>
<td>69</td>
</tr>
<tr>
<td>VI. LIFETIME OF AN ARTIFICIAL LUNAR SATELLITE</td>
<td>86</td>
</tr>
<tr>
<td>VII. LUNAR CIRCUMNAVIGATION AND EARTH RETURN</td>
<td>90</td>
</tr>
<tr>
<td>VIII. EPHEMERIS COMPUTATION - PALLAS AND VESTA</td>
<td>99</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>102</td>
</tr>
</tbody>
</table>

APPENDICES

A MODIFICATION OF LUNAR TRAJECTORY COMPUTER PROGRAM TO N-BODY COMPUTER PROGRAM A-1

A. Computer Input .. A-3
B. N-Body Trajectory Program (Operational Directory) A-3
C. Computer Output ... A-7
D. Operating Notes for N-Body Trajectory Program A-8
E. Description of Binary Table Tapes A-9
F. Description of Modified DBC FORTRAN Input Routine A-11
G. Julian Date and Calendar Date vs. Table Day A-17
H. Listing of N-Body Program A-33
TABLE OF CONTENTS (CONT.)

APPENDICES (Cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. OPERATIONAL DIRECTORIES, LISTINGS, CHECK PROBLEMS FOR SECTIONS II, III AND IV</td>
<td>B-1</td>
</tr>
<tr>
<td>A. Two Position Vector Program</td>
<td>B-1</td>
</tr>
<tr>
<td>B. Three Angular Positions Program</td>
<td>B-10</td>
</tr>
<tr>
<td>C. Conversion of Coordinates from Equinox to Equinox</td>
<td>B-19</td>
</tr>
<tr>
<td>D. Conversion of Right Ascension and Declination from Equinox to Equinox</td>
<td>B-24</td>
</tr>
<tr>
<td>E. Computation of Rectangular Geocentric Site Coordinates and Conversion of Azimuth and Elevation to Right Ascension and Declination</td>
<td>B-29</td>
</tr>
<tr>
<td>F. Ephemeris Computation Program</td>
<td>B-35</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

This report, which represents the final report on contract AF 19(604)-5863, is intended to cover only that work performed between July 1960 and June 1961. All work prior to this period has been given in an interim report.* All remarks made in the interim report concerning restrictions and assumptions pertaining to uncertainties in the physical constants employed and the resulting effects on the accuracy of the computations are applicable to this report.

A computer program designed to compute the trajectories of a body in the combined gravitational field of the Earth, Sun, and Moon, using true ephemerides of the positions of these bodies, has been operational for some time. It is described in the interim report.* This program has been extended to include the major planets and is known as the "n-body interplanetary trajectory program" (n = 9). The formulation of the equations of motion and the numerical integration techniques used are discussed in detail in the interim report. The main features and operational procedures are, however, included in Appendix A of this report.

Such a program is of great value in the computation of theoretical trajectories and orbits in which assumed sets of initial conditions are employed. However, employment of tracking data obtained from various radar and/or optical equipments located at a specific geographical location on the earth will require a great deal of additional hand computation before a "suitable set of initial conditions may be derived." This additional computation may assume several forms of which orbit determination, coordinate transformations,

equinox to equinox reductions, and compilation of ephemeris tracking data are prominent.

These hand computations are tedious and time consuming. If a sizable number are required the impracticality of manual computation becomes increasingly evident. To circumvent this problem, computer subroutines have been developed. These routines, used in conjunction with the "n-body interplanetary trajectory program", provide a high degree of flexibility in solving diverse orbital and trajectory problems.

An objective of this report is to present each program's analytical development and to illustrate its use in augmenting the inherent capability of the "n-body interplanetary trajectory program." Machine listings, together with programming instructions, are given for those with more than cursory interest. (See Appendix B)

Verification of the accuracy of these computer programs and routines was established by recomputing the orbits and trajectories of well known astronomical objects (asteroids). In no case were theoretical orbits or trajectories employed to test the programs.

In particular, extensive use has been made of the data for the asteroid Leuschnerina 1935 in developing the initial condition determination programs, both for the two position vector case and for the three angular position case. Also a recomputation of the orbits of the asteroids Pallas and Vesta were used to verify the ephemeris prediction accuracy of the "n-body interplanetary trajectory program." Residuals obtained by comparing computed values against tabular values as given by the American Ephemeris and Nautical Almanac is indicative of the accuracy achievable.
The computer program development mentioned above represents one of the two major aspects of this contract. The other is the employment of these programs in the study of several classes of Lunar Trajectories. The first of these, a circumlunar flight which passes at a distance of 7,000 km from the Moon (Lunik III) was described in detail in the interim report. Here, tracking data released through the Russian news agency TASS was employed to obtain a set of initial conditions to the differential equations of motion. A second circumlunar flight initiating from the Atlantic Missile Range (AMR) was also studied in some detail and the results are included in this report. Such constraints as range safety limits, launch time, and booster limitations were considered as well as the usual two-point boundary value constraints. The effect of some of these constraints is indicated.

A major effort was given to the determination of initial condition error sensitivities for "Hyperbolic Lunar Impact Trajectories." Nominal impact trajectories were established on three separate dates and error tubes obtained. No attempt was made to artificially constrain the nominal trajectory to a normal impact. In all cases the center of the apparent lunar disc was taken as the nominal trajectories impact location.

The final study involving the life time of a lunar satellite over extended period of time (25 days) indicates the perturbative effects of the earth and sun on the orbital elements. The instantaneous perturbations of the elements as a function of time are presented for the first ten (10) days of the orbit. An interesting development arising from this study is the fact that for identical initial conditions the life time of the satellite in an Earth, Moon, Sun field exceeds 25 days (we did not ascertain the limit) while in an Earth-Moon field, the vehicle impacts the Moon after some 9 days.

This report contains the results of all of the above mentioned studies with the exception of the Lunik III trajectory. Also, a few additional special cases are included in Section VIII of this report to illustrate certain statements in the text.
II. INITIAL CONDITION DETERMINATIONS (GENERAL CONSIDERATIONS)

GENERAL COMMENTS

In the development of the following computer programs two branches of Astronomy have been used. These are spherical Astronomy and Celestial Mechanics. The former is concerned with the details of establishing precise and practical coordinate systems from which observational or tracking data can be readily employed in the theoretical equations developed in the latter. An attempt has been made in this report to follow the standard developments found in the Astronomical texts. Familiarity with these standard conventions is assumed. However, for each routine or program, all parameters are defined in terms of the units used and the direction in which they are measured. Appropriate references are given to the Astronomical literature throughout the discussions.

A. INTRODUCTION

Once a set of initial conditions becomes known, the differential equations of motion on the n-body problem may be numerically integrated. Such a set comprises the vehicle's position and velocity vector at an instant of time relative to a particular coordinate system. It may be determined at the end of thrust or at subsequent times.

This section's objective is to indicate methods for determining this set of initial conditions from observational or tracking data. Concern here is with single tracking stations whose tracking equipment cannot instantaneously measure or provide vehicle position and velocity vector. Tracking situations considered are:

(a) Vehicle position vector is measured or known at two instances of time.
(b) Vehicle angular position is measured or known at three instances of time. (no distance information available)

(c) Distance to the vehicle is measured or known at six instances of time. (no angular information is available)

It is to be noted that in all these tracking situations, six pieces of information are obtained. This is a necessary and sufficient condition to establish the required initial conditions.

Situation (a) corresponds to a radar recording the vehicle's range and angular coordinates. Situation (b) corresponds to an optical or infrared telescope recording of only the angular positions of the vehicle. Situation (c) corresponds to a radar recording of only the range to the vehicle.

In all cases it has been assumed that the time of each measurement is accurately known as well as the geographical position of the tracking station on the Earth's surface.

B. DETERMINATION OF THE INITIAL CONDITIONS FROM TWO POSITION VECTORS

Following Laplace, the position vector at any time \(t \) may be expressed in terms of the position and velocity vector at some time \(t_0 \) by

\[
\mathbf{r}(t) = f \mathbf{r}_o + g \mathbf{r}_o'
\]

where

\[
\mathbf{r}_o = \mathbf{r}(t_0), \quad \mathbf{r}_o' = \mathbf{r}'(t_0)
\]

and

\[
f = 1 - \frac{1}{2} \mu \tau^2 + \frac{1}{2} \mu \sigma \tau^3 + \frac{\mu}{24} (3 \omega - 2 \mu - 15 \sigma) \tau^4 - \frac{\mu \sigma}{8} (3 \omega - 2 \mu - 7 \sigma) \tau^5 + \ldots
\]

\[
g = \tau - \frac{1}{6} \mu \tau^3 + \frac{1}{4} \mu \sigma \tau^4 + \frac{\mu}{120} (9 \omega - 8 \mu - 45 \sigma) \tau^5 + \ldots
\]
\[\mu = \frac{MG}{|\mathbf{r}_0|^3}, \quad \sigma = \frac{\dot{\mathbf{r}}_0 \cdot \mathbf{r}_0}{|\mathbf{r}_0|^2}, \quad \omega = \frac{|\mathbf{r}_0|^2}{|\mathbf{r}_0|^2}, \quad \tau = (t - t_0) \]

and where \(G \) is the gravitational constant and \(M \) is the mass of the Earth.

Note that \(f \) and \(g \) are scalar functions of the position and velocity at time \(t_0 \) and the time interval between measurements \(\tau \). If the conditions at \(t_0 \) are known, the entire trajectory is specified by equation (1).

The three scalar equations associated with (1) are:

\[
\begin{align*}
X &= f X_o + g X_o \\
Y &= f Y_o + g Y_o \\
Z &= f Z_o + g Z_o
\end{align*}
\tag{2}
\]

Now if observations are made at time \(t \) and \(t_o \), so that \(X, Y, Z, \) and \(X_o, Y_o, Z_o \) can be computed, the velocity components \(\dot{X}_o, \dot{Y}_o, \dot{Z}_o \) may be expressed in terms of the scalar function \(f \) and \(g \) as

\[
\begin{align*}
\dot{X}_o &= \frac{1}{g} (X - f X_o) \\
\dot{Y}_o &= \frac{1}{g} (Y - f Y_o) \\
\dot{Z}_o &= \frac{1}{g} (Z - f Z_o)
\end{align*}
\tag{3}
\]

Since \(f \) and \(g \) are themselves functions of the velocity \(\mathbf{r}_o \), the velocity components are given only implicitly by (3). To determine the velocity components, \(f \) and \(g \) are initially approximated by the first and second terms in the series which defines them. Specifically, \(f \) and \(g \) are initially approximated by \(1 - \frac{1}{2} \mu \tau^2 \) and \(\tau - \frac{1}{6} \mu \tau^3 \) respectively.
Equation (3) is then solved, giving first approximations to X_o, Y_o, Z_o. These values are used to recompute the f and g series, which in turn are used in (3) to recompute better approximations to X_o, Y_o, Z_o. This procedure is repeated until successive iterations result in velocity components that differ by less than some prescribed tolerance.

C. DETERMINATION OF THE INITIAL CONDITIONS FROM THREE ANGULAR POSITIONS

(Distance Information Not Available)

Again following Laplace, but employing the entire development, computation of the initial conditions from angular observations alone is possible. Generally, the Laplacian method consist of writing two equations in two unknowns. One, the geometrical equation, can be expressed as

$$r^2 = p^2 + R^2 - 2(p \cdot R)$$

(4)

and the other, the dynamical equation, as

$$p \left[\mathbf{P} \times \mathbf{P} \cdot \mathbf{P} \right] = \left[\mathbf{P} \times \mathbf{P} \cdot \mathbf{R} \right] + \left[\mathbf{P} \times \mathbf{P} \cdot \mathbf{R} \right] / r^3$$

(5)

in which p is the radius vector between the observing station and vehicle, and r, the geocentric distance of the object at time t. These are the unknown quantities. The quantity \mathbf{R} is the geocentric radius vector of the observing station and is assumed to be known. The quantity \mathbf{P} is a unit vector directed along the line from the observing station to the vehicle. Its components are the direction cosines of the observations and together with the components of \mathbf{P}_o and \mathbf{P}_o, enable evaluation of the triple scalar products in the dynamical equations.

For computational facility various schemes have been advocated. The methods differ only in the quantities taken as the independent variables. Thus, the straight or original Laplacian method directly uses the magnitudes of p and r.

-7-
Leuschner's modification uses $\rho \cos \delta$ and $\left| \vec{r} \right|$ as the variables, and Stumpff employs $\left| \vec{r} \right|$ and one of the components of \vec{r} as the principal variables. The quantity $\rho \cos \delta$ is known as the curtaute distance, and δ represents the declination.

We have chosen to program Stumpff's method. This method derives its principal advantage from the use of the ratios of the direction cosines and the reduction of all the determinants from the third to second order. In the original Laplacian formulation, all the formulas were expressed in terms of third order determinants which correspond to the triple scalar product. The following formulation of Stumpff's Method has been employed. (See Herget- "Computation of Orbits")

Let

$$
U = \frac{y + Y}{x + X} = \tan \alpha, \quad V = \frac{z + Z}{x + X} = \sec \alpha \tan \delta, \quad P = Y - UX,
$$

$$
Q = Z - VX
$$

where the small x, y, z are components of the vehicle and the large X, Y, Z are the components of the tracking site both referred to the same geocentric equatorial coordinate system. The latter are known quantities since we assume the geographic coordinates of the tracking station on the Earth's surface are known. The quantities α (the right ascension) and δ (the declination) are the measured observables. Three sets $\alpha_1, \delta_1, \alpha_2, \delta_2, \alpha_3, \delta_3$ of these observables are recorded and are the fundamental six pieces of information required for the trajectory determination.

Cross multiplying the equations for U and V, introducing P and Q, and differentiating twice, obtains

$$
y = Ux - P, \quad z = Vx - Q
$$

$$
\dot{y} = \ddot{U}x - \ddot{P}, \quad \dot{z} = \ddot{V}x - \ddot{Q}
$$

$$
\ddot{y} = \dddot{U}x + 2\dddot{U}x + \dddot{P}, \quad \ddot{z} = \dddot{V}x - 2 \dddot{V}x + \dddot{Q}
$$

(7)
Substituting the dynamical conditions for each component of \(\frac{\ddot{r}}{r^3} \) into the two bottom equations of (7) obtains

\[
\frac{1}{2} \dddot{U_x} + \dddot{V_x} = \frac{1}{2} \dddot{P} + \frac{P}{2r^3}
\]

\[
\frac{1}{2} \dddot{V_x} + \dddot{V_x} = \frac{1}{2} \dddot{Q} + \frac{Q}{2r^3}
\]

Let

\[D = \frac{1}{2} \dddot{U}V - \frac{1}{2} \dddot{V}U \]

obtaining

\[
D_x = \frac{1}{2}(\dddot{P}V - \dddot{Q}U) + (\dddot{P}V - \dddot{Q}U) / 2r^3
\]

\[
D_x = \frac{1}{4}(\dddot{Q}U - \dddot{P}V) + (\dddot{U}Q - \dddot{V}P)/4r^3
\]

\[
r^2 = x^2 + y^2 + z^2 = (1 + U^2 + V^2)x^2 - 2(UP + VQ)x + (P^2 + Q^2)
\]

In equation (9) the only unknowns are \(x, \dot{x}, \) and \(r \) which can be obtained by a simple iteration between the equations. The approximate numerical values of the coefficients at time \(t_0 \), the time of the middle observation, may be obtained from the observations by writing a Taylor's series for the first and third observations as

\[
W_1 = W_0 + \dot{W}_0 T_1 + \frac{1}{2} \ddot{W}_0 T_1^2 + \ldots
\]

\[
W_3 = W_0 + \dot{W}_0 T_3 + \frac{1}{2} \ddot{W}_0 T_3^2 + \ldots
\]

which may be written in the form
\[(W_1 - W_o) T_1 = \dot{W}_o + \frac{1}{2} \ddot{W}_o T_1 = (W, 1)\]

\[(W_3 - W_o) T_3 = \dot{W}_o + \frac{1}{2} \ddot{W}_o T_3 = (W, 3)\]

and then

\[W_o (T_3 - T_1) = T_3 (W, 1) - T_1 (W, 3)\]

\[\frac{1}{2} W_o (T_3 - T_1) = (W, 3) - (W, 1)\]

where \(W\) denotes \(U\), \(V\), \(P\) or \(Q\) and \(T_1 = (t_1 - t_o), T_3 = (t_3 - t_o)\). Thus, all coefficients can be determined from the observations, and equations in (9) solved. With the solutions from (9), (7) may be employed to obtain the other components of the vehicle's position and velocity vectors at time \(t_o\). Initial conditions are thus obtained.

The value of \(D\) is the controlling factor of the entire solution. This corresponds to the coefficient of \(\rho\) in the left-hand member of (5). If extremely small, it indicates the time interval between measurements is too small to make the solution very determinate. Also, it is easy to see that difficulties will arise in employing this method when observations exist in the neighborhood of \(6^h\) or \(18^h\) right ascension, due to the large, or even meaningless, values obtained for the derivatives of \(U\). Methods for circumventing this problem are currently being considered e.g., rotating the coordinate system by a fixed amount, though this will probably only shift the problem to the \(V\)'s for observations near the celestial pole.

Employing more than three observations will aid in alleviating this problem. This, however, is an entirely different computation involving differential correction procedures and will not be discussed here.
D. DETERMINATION OF INITIAL CONDITIONS FROM SIX RADAR RANGE MEASUREMENTS

(Angular Information not available)

Initially, it appears that the initial conditions could be obtained from six radar measurements employing a line of reasoning similar to that used for two range vectors.

The observing site, the vehicle, and the dynamical center are connected by

$$\rho = r - R$$

as shown in the following sketch

From the law of cosines

$$r_n^2 = R_n^2 + \rho_n^2 + 2 R_n \cdot \rho_n$$ \hspace{1cm} (12)

Recall now that in Laplace's method

$$r_n = f_n r_o + g_n r_o$$ \hspace{1cm} (13)

From (13) it follows directly that

$$r_n^2 = f_n^2 r_o^2 + 2f_n g_n r_o \cdot r_o + g_n^2 r_o^2 = (f_n^2 + 2f_n g_n \sigma + g_n^2 \omega) r_o^2$$ \hspace{1cm} (14)

where σ and ω are defined as for the case of two range vectors. The same holds for the f_n and g_n series.
It is further convenient to express \(2 \mathbf{\hat{r}}_n \cdot \mathbf{\hat{R}}_n \) as

\[
2 \left(\mathbf{\hat{r}}_n - \mathbf{\hat{R}}_n \right) \cdot (\mathbf{\hat{R}}_n) = 2 \mathbf{\hat{r}}_n \cdot \mathbf{\hat{R}}_n - 2 \mathbf{\hat{R}}_n^2 \tag{15}
\]

Employing now (4) and (5), in (2) obtains

\[
C_n = \rho_n^2 - R_n^2 = (f_n^2 + 2 f_n g_n \sigma + g_n^2 \omega_n) r_n^2 - 2 f_n X_n x_n - 2 f_n Y_n y_n - 2 f_n Z_n z_n
\]
\[- 2 g_n X_n \dot{x}_n - 2 g_n Y_n \dot{y}_n - 2 g_n Z_n \dot{z}_n \tag{16}
\]

In the above, \(X_n, Y_n, Z_n \) are the rectangular components of the vector \(\mathbf{\hat{R}}_n \) at the corresponding time \(\tau_n \) at which the range \(\rho_n \) is measured.

Using obvious definitions, it is convenient to write equations (16) as follows:

\[
a_{n1} r_n^2 + a_{n2} x_n + a_{n3} y_n + a_{n4} z_n + a_{n5} \dot{x}_n + a_{n6} \dot{y}_n + a_{n7} \dot{z}_n = C_n
\]

\[n = 1, 2, 3, \ldots 6\]

A few remarks are pertinent with respect to this set. The unknown quantities are \(x_o, y_o, z_o, \dot{x}_o, \dot{y}_o, \dot{z}_o \) and \(r_o \) although the latter is given by \(r_o^2 = x_o^2 + y_o^2 + z_o^2 \). The coefficients \(a_{ni} \) are not really known, although, an approximation to these is available by taking first terms in the \(f \) and \(g \) series.

It is apparent that if \(r_o \) is included among the unknowns seven measurements instead of six are needed. On the other hand, a better approximation of \(f_n \) and \(g_n \) can be obtained by taking two terms in these series. This is, however, equivalent to estimating \(r_o \). If this is the adopted procedure, only six measurements are required.
The computational scheme is then:

The input data are the six values of measured range; an estimate of $r_0; X_0, Y_0, Z_0$; sidereal time; six values of time at which the measurements are taken; and the rotation rate of the Earth.

From the above the coefficients a_n are estimated and set (17) is solved. This results in quantities

$$r_0 = (x_0^2 + y_0^2 + z_0^2)^{1/2}$$

$$v_0 = (x_0^2 + y_0^2 + z_0^2)^{1/2}$$

From these, better estimate of μ, σ and ω are obtained entering the f_n and g_n series. Using these, the whole procedure is repeated until the desired precision is obtained.
III. INITIAL CONDITION DETERMINATIONS (COMPUTER ROUTINES)

Section II presented the motivation behind the need for tracking subroutines. Summarizing, the purpose of tracking subroutines is to yield initial conditions required to initiate numerical integration of the differential equations of the n-body problem.

Basic ideas and computational formulas involved in the three chosen routines were outlined in Section II. In the present section, detailed step-by-step procedures, as programmed for the computer are given. In all three cases, however, discussion is more extensive than that prepared for computer use, reflecting the programs evolution. The entire development will be included since many procedures, though not employed in final computational programs, can be of interest to the user willing to effect personal modifications.

It should be noted that one of the three tracking schemes considered in this report proves unsuitable for numerical computations. Reasons for failure of the routine employing six ranges, measured from a single tracking station, will be discussed later.

The first tracking scheme to be described employs the vehicle's three measured angular positions.

A. DETERMINATION OF THE INITIAL CONDITIONS FROM THREE ANGULAR POSITIONS

This tracking method's purpose is to compute the components of the vehicle's position and velocity at some time \(t \) from measurements of its right ascension and declination at three instants of time. It is assumed that if the measured quantities are azimuth and elevation, they are transformed
into the corresponding right ascension and declination by methods outlined in Section IV. It is further assumed that these methods are employed to prepare all measured data and auxiliary quantities for computations.

It must be emphasized that all tracking methods described in this report yield preliminary values of initial conditions. The significance is that a minimum of data is used to effect the computation. Consequently, no provisions are made to accept redundant data to obtain a better estimate of the desired quantities. Standard differential correction procedures can be used, eg. maximum likelihood estimation, or the conventional least squares method once the initial preliminary trajectory is obtained. Their inclusion in this report is omitted as they were not considered a part of the study.

Initial estimates are based on a two body problem where the vehicle moves in the immediate neighborhood of some dominant mass. The latter will, in most cases, be the Earth.

It can be seen from Figure 1 that an astronomer usually considers the distances Observer → Vehicle and Observer → Center of Force positive. For purposes of this report it was found more convenient to measure distance Center of Force → Observer as positive. Distance \mathbf{r} is in both cases measured positively from the center of the force.

The new definition of the sign of \mathbf{R} will result in expressions slightly different from those in the previous section. For this reason, the development of Stumpff's method is repeated. The choice of this particular method was discussed in Section II.

1. **Determination of the Initial Conditions from Three Angular Positions**

From Figure 1b, it can be seen that the observer's position,
Figure 1. Relation Between the Observer, Vehicle and Center of Force
the vehicle's geocentric position, and position of the center of force are related by

\[\mathbf{r} = \mathbf{\rho} + \mathbf{R} \]

\[\therefore \mathbf{\rho} = \mathbf{r} - \mathbf{R} \quad (1) \]

In appropriate rectangular components this is:

\[\xi = \rho \cos \delta \cos \alpha = x - X \]

\[\eta = \rho \cos \delta \sin \alpha = y - Y \quad (2) \]

\[\zeta = \rho \sin \delta = z - Z \]

Employing the latter expressions define

\[U \equiv \tan \alpha = \frac{y - Y}{x - X} \]

\[V \equiv \sec \alpha \tan \delta = \frac{z - Z}{x - X} \quad (3) \]

These equations yield in an obvious manner

\[Ux - UX = y - Y \]

\[Vx - VX = z - Z \quad (4) \]

or

\[Y - UX = y - Ux \equiv \mathbf{P} \]

\[Z - VX = z - Vx \equiv \mathbf{Q} \quad (5) \]
The last equations can be rewritten as

\[y = P + Ux \]
\[z = Q + Vx \] \hspace{1cm} (6)

In the above, it must be noted, \(\alpha \) and \(\delta \) are measured in the coordinate system fixed at the observer's site. The components of \(\bar{R} \) can always be found as soon as the location of the tracking station and the time of measurement are known. Both \(\alpha \), \(\delta \) and \(X, Y, Z \) must be referred to the same coordinate system. It is recommended that some standard coordinate system be adopted, e.g., that referenced to the mean equinox of 1950.0.

Differentiating equations (6) obtains

\[\dot{y} = \dot{U} x + U \dot{x} + \dot{P} \]
\[\dot{z} = \dot{V} x + V \dot{x} + \dot{Q} \] \hspace{1cm} (7)

\[\ddot{y} = \ddot{U} x + 2 \ddot{U} x + U \dddot{x} + \dddot{P} \]
\[\ddot{z} = \ddot{V} x + 2 \ddot{V} x + V \dddot{x} + \dddot{Q} \]

Note the equations of motion of the vehicle in the gravitational field of the dominant mass are given by

\[\dddot{x} = - \frac{\dot{x}}{r^3}, \quad \dddot{y} = - \frac{\dot{y}}{r^3}, \quad \dddot{z} = - \frac{\dot{z}}{r^3} \] \hspace{1cm} (8)

In these equations, units are chosen in such a way that the constant \(k \) appearing normally in (8) is equal to unity.

Employing equations (8) in (7) it follows that

\[\frac{1}{2} \dddot{U} x + \dddot{U} x = - \frac{1}{2} \dddot{P} - \frac{P}{2 r^3} \] \hspace{1cm} (9)

\[\frac{1}{2} \dddot{V} x + \dddot{V} x = - \frac{1}{2} \dddot{Q} - \frac{Q}{2 r^3} \]
Solution of system (9) for x and \dot{x} yields

$$
x = \frac{-\frac{1}{2} \ddot{P} - \frac{P}{2r^3}}{-\frac{1}{2} \ddot{Q} - \frac{Q}{2r^3}} \dot{U} = -\frac{\frac{1}{2} \ddot{P} \dot{U} - \frac{1}{2} \ddot{Q} \dot{U}}{-\frac{1}{2} \ddot{Q} \dot{U} - \frac{1}{2} \ddot{P} \dot{U}} - \left(\frac{P \ddot{V} - Q \dot{U}}{2r^3} \right)
$$

(10)

Define the following quantities

$$
D \equiv \frac{1}{2} \ddot{U} \dot{V} - \frac{1}{2} \ddot{V} \dot{U}
$$

$$
A \equiv -\left(\frac{1}{2} \ddot{P} \dot{V} - \frac{1}{2} \ddot{Q} \dot{U} \right)
$$

$$
B \equiv -\left(P \ddot{V} - Q \dot{U} \right)
$$

(11)

By virtue of equation (11), x can be rewritten as

$$
x = \frac{A}{D} + \frac{B}{2D} \cdot \frac{1}{r^3}
$$

Similarly

$$
D \dot{x} = \begin{bmatrix}
\frac{1}{2} \ddot{U} & -\frac{1}{2} \ddot{P} & \frac{P}{2r^3} \\
\frac{1}{2} \ddot{V} & -\frac{1}{2} \ddot{Q} & \frac{Q}{2r^3}
\end{bmatrix}
$$

(12)

$$
D \dot{x} = -\left(\frac{1}{2} \ddot{U}, \frac{1}{2} \ddot{Q} - \frac{1}{2} \ddot{P}, \frac{1}{2} \ddot{V} \right) - \left(\frac{1}{2} Q \ddot{U} - \frac{1}{2} P \ddot{V} \right)
$$

-19-
Defining quantities

\[G \equiv - \left(\frac{1}{4} \dddot{U} \dddot{Q} - \frac{1}{4} \dddot{P} \dddot{V} \right) \]

\[H \equiv - \left(\frac{1}{2} \dddot{Q} \dddot{U} - \frac{1}{2} \dddot{P} \dddot{V} \right) \]

\[\ddot{x} \text{ can be written as} \]

\[\ddot{x} = \frac{G}{D} + \frac{H}{2D} \cdot \frac{1}{r^3} \]

Finally \(r \) can be expressed in terms of \(x \) using equations (4).

Thus

\[r^2 = x^2 + y^2 + z^2 = x^2 + (P + Ux)^2 + (Q + Vx)^2 \]

\[r^2 = \left(1 + U^2 + V^2 \right) x^2 + 2 (PU + QV) x + \left(P^2 + Q^2 \right) \quad (13) \]

Defining

\[C = 1 + U^2 + V^2 \]

\[E = 2 (PU + QV) \]

\[F = P^2 + Q^2 \]

\(r \) can be expressed as

\[r^2 = Cx^2 + Ex + F \]
Equations (10), (12), and (13) represent a system of simultaneous equations in \(x \), \(\dot{x} \), and \(r \). Now, \(x \) and \(r \) are solved by (10) and (12), employing any convenient numerical procedure. Once \(r \) is available, \(\dot{x} \) follows from (12). Other components of the position and velocity follow from equations (6) and (7).

The development of Stumpff's method will be concluded by giving, without proof, two infinite series frequently occurring in orbit determinations of the type considered in this report.

These are the \(f \) and \(g \) series of the Laplacian method of orbit computation. The simple idea behind these series is as follows. Suppose that position \(\mathbf{r}_o \) and velocity \(\mathbf{v}_o \) of the vehicle are known at some time \(t_o \). The motion of the vehicle in the neighborhood of this point can then be expressed as

\[
\mathbf{r} = \mathbf{r}_o + \tau \mathbf{v}_o + \frac{\tau^2}{2!} \mathbf{a}_o + \ldots
\]

and

\[
\mathbf{v} = -\frac{\mathbf{r}}{r^3}
\]

Successive differentiation of the last equation permits elimination of higher order derivatives in (14). It can be shown that as a result of this procedure equation (14) assumes the following form

\[
\mathbf{r} = f \mathbf{r}_o + g \mathbf{v}_o
\]
where

\[
\begin{align*}
 f &= 1 - \frac{1}{2} \mu \tau + \frac{1}{2} \mu \sigma \tau^3 + \frac{\mu}{24} \left(3 \omega - 2 \mu - 15 \sigma^2 \right) \tau^4 \\
 &\quad - \left(\frac{3 \omega - 2 \mu - 7 \sigma^2}{8} \right) \tau^5 + \frac{\mu}{720} \left[\left(630 \omega - 420 \mu - 945 \sigma^2 \right) \tau^2 \right] \tau^6 + \ldots \quad (16)
\end{align*}
\]

\[
\begin{align*}
 g &= \tau - \frac{1}{6} \mu \tau^3 + \frac{\mu \sigma}{4} \tau^4 + \frac{\mu}{120} \left(9 \omega - 8 \mu - 45 \sigma^2 \right) \tau^5 \\
 &\quad - \frac{\mu \sigma}{24} \left(6 \omega - 5 \mu - 14 \sigma^2 \right) \tau^6 + \ldots \quad (17)
\end{align*}
\]

\[
\begin{align*}
 \mu &= \frac{\overset{\circ}{r}_o \cdot \overset{\circ}{r}_o}{r_o^5} = \frac{1}{\sigma} = \frac{\overset{\circ}{r}_o \cdot \overset{\circ}{r}_o}{r_o^3} \quad \omega = \frac{\overset{\circ}{r}_o \cdot \overset{\circ}{r}_o}{r_o^2}
\end{align*}
\]

Terms higher than \(\tau^6 \) become too complicated for practical purposes. Note that \(\tau = t - t_o \) is expressed in the appropriate units of time.

Use of \(f \) and \(g \) series is subject to the usual limitations of convergence. If any doubt exists concerning the latter, it is better to use the closed form of the series in question. The appropriate expressions can be found in Reference (1) pp. 48 or 75.

It is unlikely that in problems considered in this report the need for closed forms will ever appear.
The procedure written for the computer is based on the above development and it is summarized in a step by step form below:

Measured Data and Site Coordinates

<table>
<thead>
<tr>
<th>Time and Date</th>
<th>Right Ascension</th>
<th>Declination</th>
<th>Rectangular Components of Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>(a_1)</td>
<td>(\delta_1)</td>
<td>(X_1) (Y_1) (Z_1)</td>
</tr>
<tr>
<td>(t_0)</td>
<td>(a_o)</td>
<td>(\delta_o)</td>
<td>(X_o) (Y_o) (Z_o)</td>
</tr>
<tr>
<td>(t_3)</td>
<td>(a_3)</td>
<td>(\delta_3)</td>
<td>(X_3) (Y_3) (Z_3)</td>
</tr>
</tbody>
</table>

In the above, units of distance and time should be taken in accordance with the rules outlined in Section IV. The procedures of this chapter also determine the site coordinates.

2. **Computer Program**

 The computation then proceeds as follows:

 I. Compute

 \[
 \begin{align*}
 \tan a_i & \equiv U_i \\
 \sec a_i & \\
 \tan \delta_i & \equiv V_i \\
 \end{align*}
 \]

 \[
 \begin{align*}
 P_i &= Y_i - U_i X_i \\
 Q_i &= Z_i - V_i X_i \\
 \end{align*}
 \]

 \[
 \begin{align*}
 \sec a_i \tan \delta_i & \equiv V_i \\
 \end{align*}
 \]

 \[
 i = 1, 0, 3
 \]
II. Compute

\[\tau_1 = k \left(t_1 - t_o \right) \]

\[\tau_3 = k \left(t_3 - t_o \right) \]

\[\tau_3 - \tau_1 \]

The value of \(k \) is the reciprocal of the time unit employed for the particular problem.

In any modification of the Laplacian method of preliminary orbit determination, it is desirable that intervals \(t_1 - t_o \) and \(t_3 - t_o \) be nearly equal. It can be shown that, under these conditions, errors in numerical derivatives and accelerations of \(U, P, V, Q \) are of the second order.

III. Compute the following quantities

\[(U, 1) = \frac{U_1 - U_o}{\tau_1} \quad (U, 3) = \frac{U_3 - U_o}{\tau_3} \]

\[(V, 1) = \frac{V_1 - V_o}{\tau_1} \quad (V, 3) = \frac{V_3 - V_o}{\tau_3} \]

\[(P, 1) = \frac{P_1 - P_o}{\tau_1} \quad (P, 3) = \frac{P_3 - P_o}{\tau_3} \]

\[(Q, 1) = \frac{Q_1 - Q_o}{\tau_1} \quad (Q, 3) = \frac{Q_3 - Q_o}{\tau_3} \]
IV. Compute

\[
\mathbf{U}_o = \frac{\tau_3 (U, 1) - \tau_1 (U, 3)}{\tau_3 - \tau_1}, \quad \mathbf{P}_o = \frac{\tau_3 (P, 1) - \tau_1 (P, 3)}{\tau_3 - \tau_1},
\]

\[
\mathbf{V}_o = \frac{\tau_3 (V, 1) - \tau_1 (V, 3)}{\tau_3 - \tau_1}, \quad \mathbf{Q}_o = \frac{\tau_3 (Q, 1) - \tau_1 (Q, 3)}{\tau_3 - \tau_1}.
\]

V. Compute quantities

\[
\mathbf{U}_o = \frac{1}{2} \frac{(U, 3) - (U, 1)}{\tau_3 - \tau_1}, \quad \mathbf{P}_o = \frac{1}{2} \frac{(P, 3) - (P, 1)}{\tau_3 - \tau_1},
\]

\[
\mathbf{V}_o = \frac{1}{2} \frac{(V, 3) - (V, 1)}{\tau_3 - \tau_1}, \quad \mathbf{Q}_o = \frac{1}{2} \frac{(Q, 3) - (Q, 1)}{\tau_3 - \tau_1}.
\]

VI. Compute the quantities

(a) \(D = \frac{1}{2} \mathbf{U}_o \mathbf{V}_o - \frac{1}{2} \mathbf{V}_o \mathbf{U}_o \)
(b) \(A = - \left(\frac{1}{2} \mathbf{P}_o \mathbf{V}_o - \frac{1}{2} \mathbf{Q}_o \mathbf{U}_o \right) \)
(c) \(B = - \left(\mathbf{Q}_o \mathbf{V}_o - \mathbf{Q}_o \mathbf{U}_o \right) \)
(d) \(C = 1 + \mathbf{U}_o + \mathbf{V}_o^2 \)
(e) \(E = 2 \left(\mathbf{P}_o \mathbf{U}_o + \mathbf{Q}_o \mathbf{V}_o \right) \)
(f) \(F = \mathbf{P}_o^2 + \mathbf{Q}_o^2 \)
(g) \(G = - \left(\frac{1}{2} \mathbf{Q}_o \mathbf{U}_o - \frac{1}{2} \mathbf{P}_o \mathbf{V}_o \right) \)
(h) \(H = - \left(\frac{1}{2} \mathbf{Q}_o \mathbf{U}_o - \frac{1}{2} \mathbf{P}_o \mathbf{V}_o \right) \)
VII. Form the following equations

(a) \[x = \frac{A}{D} + \frac{B}{2D} \cdot \frac{1}{r^3} \]

(b) \[r^2 = C x^2 + E x + F \]

(c) \[\dot{x} = \frac{G}{D} + \frac{H}{2D} \cdot \frac{1}{r^3} \]

VIII. Solve (a) and (b) of step VII simultaneously for \(x \) and \(r \). Designate desired solutions by \(x_0 \) and \(r_0 \).

For the case of vehicles moving in the Earth's vicinity
\(r_0 > 1 \) in units of the Earth equatorial radius. Generally, equations (a) and (b) may result in three values of \(r \). One is the desired one, the second represents the position of the center of force, and the third is entirely spurious.

IX. Using the value of \(r_0 \) obtained in step VIII compute \(\dot{x}_0 \) from equation VII. (c)

\[\dot{x}_0 = \frac{G}{D} + \frac{H}{2D} \cdot \frac{1}{r_0^3} \]

X. Compute

\[y_0 = P_o + U_o x_o \]

\[\dot{y}_0 = \dot{U}_o x_o + U_o \dot{x}_o + \dot{P}_o \]

-26-
\[z_0 = Q_o + V_o \times_o \]

\[\dot{z}_0 = V_o \times_o + V_o \dot{x}_o + Q_o \]

If the intervals of time between measurements are equal, the computed values of
\[x_o, y_o, z_o \]
\[\dot{x}_o, \dot{y}_o, \dot{z}_o \]
refer to the time of middle measurement.

These values, expressed in suitable units, are then employed as the initial conditions in the n-body Trajectory Program. If redundant data are available, preliminary values are used to initiate a differential correction program.

The following computation has not been programmed. It is included so that, if desired, it can be employed as a check on the quality of computation.

For times \(t_1 \) and \(t_3 \) compute values of \(f \) and \(g \). In employing these values

\[x_1 = f_1 x_o + g_1 \dot{x}_o \]

\[y_1 = f_1 y_o + g_1 \dot{y}_o \]

\[z_1 = f_1 z_o + g_1 \dot{z}_o \]
and

\[x_3 = f_3 x_0 + g_3 \dot{x}_0 \]

\[y_3 = f_3 y_0 + g_3 \dot{y}_0 \]

\[z_3 = f_3 z_0 + g_3 \dot{z}_0 \]

Since positions of the observer at times \(t_1 \) and \(t_3 \) are known, it is possible to compute

\[x_1 - X_1 \]

\[y_1 - Y_1 \]

\[z_1 - Z_1 \]

\[x_3 - \dot{X}_3 \]

\[y_3 - \dot{Y}_3 \]

\[z_3 - \dot{Z}_3 \]

Using these compute \(a_1, \delta_1 \) and \(a_3, \delta_3 \) from

\[\tan a_1 = \frac{y_1 - Y_1}{x_1 - X_1} \quad \frac{1}{\sec a_1 \tan \delta_1} = \frac{z_1 - Z_1}{x_1 - X_1} \]

and similar expressions at \(t = t_3 \).
The computed values of \(a_1, \delta_1, a_3, \delta_3 \) should be in reasonable agreement with the observed ones. Failure to achieve agreement may be due to:

(a) Error in computation

(b) Too long or too short a time interval

(c) Original observations too inaccurate

e etc.

This concludes the discussion of the first tracking method.

B. DETERMINATION OF INITIAL CONDITIONS FROM TWO POSITION VECTORS

This section describes a procedure for determining velocity components of vehicle movement in the Earth's gravitational field from measurements of the distance and two associated angles at two different times.

In analysis, the technique offers a fast and accurate computer solution to establishing the complete initial conditions at some time \(t \).

Laplace's method shows that position \(\vec{r} \), at any time \(t \), of an object traveling in a Keplerian orbit, can be expressed as a function of the position \(\vec{r}_0 \) and velocity \(\dot{\vec{r}}_0 \) at some time \(t_0 \), according to

\[
\vec{r} = f \vec{r}_0 + g \dot{\vec{r}}_0
\]

(A)

where \(f \) and \(g \) are scalar functions of the position and velocity at time \(t_0 \) and the time interval \(t - t_0 \). Since \(\vec{r} \) and \(\vec{r}_0 \) are specified if two range and two
angular coordinates are observed at time t and t_0, the velocity \mathbf{r}_0 may be
determined from (A), if f and g are known. Fortunately, for time intervals
between observations of practical interest, functions f and g are represented
by rapidly converging infinite series whose first dominant terms are functions
of position \mathbf{r}_0 and the time interval $t-t_0$, but not of the velocity \mathbf{r}_0. Thus,
good first approximations of f and g are known, though the initial velocity is
unknown.

The method described in this section is based on the above facts. The
initial velocity \mathbf{r}_0 is evaluated from Equation (A) after f and g have been
approximated. This first approximation in velocity is used to recompute f
and g, giving a better estimate of velocity. The procedure is repeated until
desired precision is obtained. It is apparent the computation is iterative
in which good initial estimates of the initial velocity components are not
required. In fact, because of the very nature of the f and g series, the first
approximations are quite satisfactory.

1. Determination of Equatorial Position Coordinates From Range,
Azimuth and Elevation

Figure 2 shows the position of the observed object in the coordinate
system fixed at the radar site. Let \mathbf{e}_A, \mathbf{e}_ζ, \mathbf{e}_E be the unit vectors along the
respective axes, A-azimuth and E-elevation. Then the vector \mathbf{p} from the
observing station to the object is given by

$$\mathbf{p} = \rho \left[\cos E \cos A \mathbf{e}_\zeta + \cos E \sin A \mathbf{e}_\eta + \sin E \mathbf{e}_E \right] \quad (18)$$

Figure 3 shows that the position vector of the observing station is
given by

$$\mathbf{R} = R \left[\cos \varphi' \cos \theta \mathbf{i}_x + \cos \varphi' \sin \theta \mathbf{i}_y + \sin \varphi' \mathbf{i}_z \right] \quad (19)$$

-30-
where $\hat{i}_x, \hat{i}_y, \hat{i}_z$ are the unit vectors in the inertial geocentric cartesian coordinate system and ϕ' and Θ are the geocentric latitude and local sideral time (expressed in angular measure) of the site, respectively. The latter quantities are computed according to the rules given in the chapter on conversion routines.

Rotation of the x, y, z coordinate system through an angle Θ about the z axis, and through an angle ϕ' about the y' axis, results in the following expression.

$$
\begin{pmatrix}
\hat{\xi} \\
\hat{\eta} \\
\hat{\zeta}
\end{pmatrix}
= \begin{pmatrix}
\cos \phi' & 0 & \sin \phi' \\
0 & 1 & 0 \\
-\sin \phi' & 0 & \cos \phi'
\end{pmatrix}
\begin{pmatrix}
\cos \Theta & \sin \Theta & 0 \\
-\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\hat{i}_x \\
\hat{i}_y \\
\hat{i}_z
\end{pmatrix}
$$

Let

$$
\cos \phi' \cos \Theta = L
$$

$$
\cos \phi' \sin \Theta = M
$$

$$
\sin \phi' = N
$$

then the unit vectors are related by:

$$
\begin{align*}
\hat{\xi} &= \hat{i}_x + M \hat{i}_y + N \hat{i}_z \\
\hat{\eta} &= -\frac{M}{\sqrt{L^2 + M^2}} \hat{i}_x + \frac{L}{\sqrt{L^2 + M^2}} \hat{i}_y
\end{align*}
$$

(20)
Using (20) in (18):

\[\vec{\rho} = \rho \left(\left(L \sin E - \frac{M}{\sqrt{L^2 + M^2}} \right) \cos E \sin A - \frac{NL}{\sqrt{L^2 + M^2}} \cos E \cos A \right) \hat{i}_x \]

\[+ \left(M \sin E + \frac{L}{\sqrt{L^2 + M^2}} \right) \cos E \sin A - \frac{NM}{\sqrt{L^2 + M^2}} \cos E \cos A \hat{i}_y \]

\[+ \left(N \sin E + \frac{\sqrt{L^2 + M^2}}{\cos E \cos A} \right) \hat{i}_z \]

From Figure 1b.

\[\vec{r} = \vec{\rho} + \vec{R} = x \hat{i}_x + y \hat{i}_y + z \hat{i}_z \]

Thus, previous expressions yield

\[x = RL + \rho \left(L \sin E - \frac{M}{\sqrt{L^2 + M^2}} \cos E \sin A - \frac{NL}{\sqrt{L^2 + M^2}} \cos E \cos A \right) \]

\[y = RM + \rho \left(M \sin E + \frac{L}{\sqrt{L^2 + M^2}} \cos E \sin A - \frac{NM}{\sqrt{L^2 + M^2}} \cos E \cos A \right) \]

\[z = RN + \rho \left(N \sin E + \frac{\sqrt{L^2 + M^2}}{\cos E \cos A} \right) \]

To obtain the geocentric rectangular coordinates of the object referred to the equinox of date, range, azimuth, elevation, geocentric site latitude and sidereal time are needed.
If the computation is to proceed with respect to some other equinox, \(x, y, z \) must be transformed according to the rules given elsewhere in this report.

This need, however, will be ignored for the present.

2. Determination of the Initial Conditions from Range, Azimuth and Elevation Measurements

Since motions in the Earth's immediate vicinity, over relatively short spans of time, are being considered, it is permissible to consider the object's path as a Keplerian Orbit. The latter is completely specified by six independent quantities, e.g., six orbital elements, six angular sightings of the position, three position and three velocity components at any time, etc.

In this problem, the tracking instrument supplies the range and angular data. Thus, two such observations at different times are sufficient to specify the orbit. However, since the n-body Trajectory Program requires position and velocity components as inputs, the above measurements must be made to yield velocity components at some time \(t \) as well.

From the previous section, two observations yield \(x, y, z \) at two different times.

Following Laplace, the position vector \(\vec{r} \) at time \(t \) is expressed as:

\[
\vec{r}(t) = f \vec{r}_o + g \frac{\vec{r}}{t}
\]

(21)

Development of this result was discussed in Scientific Report No. 1, and is found in references (1) and (2).
In expression (21): \(\vec{r}_0 = \vec{r} \left(t_0 \right) \), \(\dot{\vec{r}}_0 = \frac{\dot{\vec{r}}}{\vec{r}} \left(t_0 \right) \)

\[
f = 1 - \frac{1}{2} \mu \tau^2 + \frac{1}{2} \mu \sigma^3 \tau^3 + \frac{\mu (3 \omega - 2 \mu - 15 \sigma^2)}{24} \tau^4 - \frac{\mu \sigma (3 \omega - 2 \mu - 7 \sigma^2)}{8} \tau^5
\]
\[
+ \frac{\mu}{720} \left[(630 \omega - 420 \mu - 945 \sigma^2) \sigma^2 - (22 \mu^2 - 66 \mu \omega + 45 \omega^2) \right] \tau^6 + \ldots
\]

(22)

\[
g = \tau - \frac{1}{6} \mu \tau^3 + \frac{\mu \sigma}{4} \tau^4 + \frac{\mu (9 \omega - 8 \mu - 45 \sigma^2)}{120} \tau^5 - \frac{\mu \sigma (6 \omega - 5 \mu - 14 \sigma)}{24} \tau^6 + \ldots
\]

(23)

where

\[
\mu = \frac{1}{r_o^3} \quad ; \quad \sigma = \frac{\dot{\vec{r}}_o \cdot \vec{r}_o}{r_o^2} \quad ; \quad \omega = \frac{\ddot{\vec{r}}_o \cdot \vec{r}_o}{r_o^2}
\]

and

\[
\tau = k \left(t - t_o \right)
\]

Depending on the object, it is convenient to express distances in astronomical units and time in 58.13244 days, or distance in Earth radii and time in units of 806.9275 seconds.

The procedure used was outlined in Section II and repetition is unnecessary.
3. Computer Program

A step-by-step outline of the computer solution is given below. Note that, in the final computer program, azimuth and elevation are not directly used but are first transformed to right ascension and declination referred to a suitable equinox.

I. Input data:

\[\rho_o, X_o, Y_o, Z_o, A_o, E_o, t_o \]

\[\rho_1, X_1, Y_1, Z_1, A_1, E_1, t_1 \]

\[\alpha_o, \delta_o, \alpha_1, \delta_1 \] are obtained from \(A_o, E_o, A_1, E_1 \)

II. Compute

\[x_o = X_o + \rho_o \cos \delta_o \cos \alpha_o \]

\[x_1 = X_1 + \rho_1 \cos \delta_1 \cos \alpha_1 \]

\[y_o = Y_o + \rho_o \cos \delta_o \sin \alpha_o \]

\[y_1 = Y_1 + \rho_1 \cos \delta_1 \sin \alpha_1 \]

\[z_o = Z_o + \rho_o \sin \delta_o \]

\[z_1 = Z_1 + \rho_1 \sin \delta_1 \]

III. Compute

\[r_o = \sqrt{x_o^2 + y_o^2 + z_o^2}^{1/2} \]

\[\mu = \frac{1}{r_o^3} \]
IV. Compute

\[f = 1 - \frac{1}{2} \mu \tau^2 \]

\[g = \tau - \frac{1}{6} \mu \tau^3 \]

V. Compute

\[x_0' = \frac{1}{g} (x - fx_0) \]

\[y_0' = \frac{1}{g} (y - fy_0) \]

\[z_0' = \frac{1}{g} (z - fz_0) \]

VI. Compute

\[\ddot{\mathbf{r}}_0 \cdot \mathbf{r}_0 = \dot{x}_0^2 + \dot{y}_0^2 + \dot{z}_0^2 \]

\[\ddot{\mathbf{r}}_0 \cdot \mathbf{r}_0 = x_0 \ddot{x}_0 + y_0 \ddot{y}_0 + z_0 \ddot{z}_0 \]

\[\sigma = \frac{\ddot{\mathbf{r}}_0 \cdot \mathbf{r}_0}{r_0^2} \quad ; \quad \omega = \frac{\ddot{\mathbf{r}}_0 \cdot \mathbf{r}_0}{r_0^2} \]

VII. Compute \(f \) and \(g \) using complete equations (22) and (23).

VIII. Return to Step V. and compute new \(\dot{x}_0, \dot{y}_0, \dot{z}_0 \). Repeat the entire procedure.
IX. Compare velocity components computed at each step with the corresponding velocity components obtained in the previous step.

When differences reach a value of less than $\epsilon = 4 \times 10^{-8}$ in appropriate units, the iteration procedure is terminated.

4. Evaluation of the Method

The evaluation of the computational method is summarized in Figure 4 and 5.

A time interval between observations of about one minute, it appears, results in the minimum error. When smaller intervals are used, round off errors become significant. For larger time intervals the f and g series become inaccurate. Figure 4 indicates that for a time interval between observations of five minutes the percentage velocity error for the lunar trajectory is 0.05 per cent corresponding to 12 mph error. Increasing the time interval to ten minutes, yields a velocity error of 0.5 per cent, or 120 mph. These results indicate the initial velocity may be precisely established, using a reasonable number of terms in the f and g series. Because of its large eccentricity, the lunar trajectory is a relatively worse case.

Figure 5 shows that, for a five minute interval, seven iterations are required to reach the solution for the lunar orbit. If the interval is increased to ten minutes, the velocity is established after eleven iterations.

Precision achievable by this technique is more than sufficient to establish preliminary initial conditions.

C. DETERMINATION OF THE INITIAL CONDITIONS FROM SIX RADAR RANGE MEASUREMENTS

This study's third tracking scheme attempted to utilize only range
measurements. Underlying ideas, and the derivation of appropriate expressions, can be found in Section II. For present purposes it is sufficient to recall that the method involves a solution of six equations, linear in unknowns \(x_0, y_0, z_0, \dot{x}_0, \dot{y}_0, \dot{z}_0 \) in which, at least initially, the coefficients are only approximations to the true ones. Furthermore, if the time intervals between observations are equal, the coefficients' numerical values are not far from unity. If the intervals are made deliberately unequal, some coefficients will be considerably larger or smaller than unity, but in a manner that they are basically multiples of each other.

The latter observations have the following unfortunate consequence.

There are many methods available for solving simultaneous linear equations. However, all methods, with one exception, involve many successive subtractions of quantities of nearly the same order of magnitude. This leads to the loss of significant figures which often makes the results meaningless.

Though the equations of the problem fell in the above category, an attempt was made to solve them by (a) inverting the matrix and (b) by successive elimination of the unknowns where division by the leading coefficient was employed. This was done for equally and unequally spaced time intervals.

In either case, a point in the solution was reached where the original seven significant figures were reduced to one or two. Use of double precision in the computer arithmetic was to no avail. Generally, after the first try the values of \(x_0, y_0, z_0, \dot{x}_0, \dot{y}_0, \dot{z}_0 \) were larger by one or two orders of magnitude than those desired. No iteration was carried out because the structure of the equations indicated futility of further computation.

The one exceptional method hinted at above was the solution of simultaneous equations by the iteration method described in Reference (1).
This method is free from the loss of significant figures due to the subtractions of nearly equal quantities. Unfortunately the iterative process converges only when each equation contains, compared to others, a large coefficient, and this coefficient must be associated with different unknowns in each equation. This implies that the dominant coefficients are arranged along the principal diagonal of the coefficient matrix. Generally, such an arrangement cannot be expected in the physical problem considered. A theorem given in Reference (3) states that, for the method to be applicable in each equation of the system, the absolute value of the largest coefficient must be greater than the sum of the absolute values of all the remaining coefficients in that equation.

Simulated problems constructed for testing the over-all method do not satisfy the above condition. Finally, it was found that the result of the first iteration is quite sensitive to the initial estimate of \(r_o \). It appears that the problem is poorly conditioned. This difficulty cannot be attributed to unfavorable geometrical arrangement of the orbit and the observer, because in all other methods the selected example gave excellent agreement with the known values of \(x_o, y_o, z_o, \dot{x}_o, \dot{y}_o, \dot{z}_o \). The basic problem is apparently contained in the fact that the coefficients of the starting system of equations are not really known, and the approximations used for these are insufficient.

The conclusion drawn is that the determination of the vehicle's position and velocity components, from range measurements at a single station, is not practical as formulated in the previous section.

Before abandoning this investigation an attempt was made to reformulate the problem. In the previous scheme, the solution starts with a guess of \(r_o \). The difficulty of finding a reasonably close initial value of geocentric distance is obvious. However, instead of starting with \(r_o \), the angle between some reference (vertical), and the direction of the antenna to the body at some time \(t \), could be estimated.
The geometry is then:

\[r^2 = R^2 + \rho^2 - 2 \rho R \cos(\pi - \phi) \]

\[r^2 = R^2 + \rho^2 + 2 \rho R \cos \phi \]

It is felt that \(\phi \) can be estimated better than \(r \). If this is allowed, it also follows that the right ascension and declination \(\alpha, \delta \) can be estimated. This in turn leads to values of topocentric coordinates \(\xi, \eta, \zeta \) and then to geocentric position components \(x, y, z \). The above follows from the well known relations

\[\xi = \rho \cos \delta \cos \alpha = x - X \] \hspace{1cm} (24)

\[\eta = \rho \cos \delta \sin \alpha = y - Y \] \hspace{1cm} (25)

\[\zeta = \rho \sin \delta = z - Z \] \hspace{1cm} (26)

Furthermore:

\[r = \sqrt{x^2 + y^2 + z^2} \] \hspace{1cm} (27)
Finally since ϕ is supposed known and thereby r, angle β can be computed from

$$r R \cos \beta = x X + y Y + z Z \quad (28)$$

Note in the above equations that the unknown quantities are α, δ, x, y, and z.

These equations can now be used to obtain initial estimates of these parameters.

Thus, from (27):

$$x = \left(r^2 - y^2 - z^2 \right)^{1/2}$$

and using in (1), (2), (3) and (5):

$$\rho \cos \delta \cos \alpha = \sqrt{r^2 - y^2 - z^2} - x \quad (24')$$

$$\rho \cos \delta \sin \alpha = y - Y \quad (25')$$

$$\rho \sin \delta = z - Z \quad (26')$$

$$r R \cos \beta = \sqrt{r^2 - y^2 - z^2} X + y Y + z Z \quad (28')$$

Employing (25') and (26') in (24') and (28') one obtains

$$\rho \cos \alpha \cos \delta = \sqrt{r^2 - 1(\rho \cos \delta \sin \alpha + Y)^2 - (\rho \sin \delta + Z)^2} \quad (24''')$$

$$r R \cos \beta = X \sqrt{r^2 - (\rho \cos \delta \sin \alpha + Y)^2 - (\rho \sin \delta + Z)^2} \quad (28'')$$

$$+ (\rho \cos \delta \sin \alpha + Y) Y + (\rho \sin \delta + Z) Z \quad (28'')$$
Consider equation (24''). Following a lengthy algebraic reduction, this equation can be written as:

\[A_1 \cos^2 \delta + B_1 \cos \delta + C_1 = 0 \]

where

\[A_1 = \left[X \cos \alpha + Y \sin \alpha \right]^2 + Z^2 \]
\[B_1 = 2 \left[X \cos \alpha + Y \sin \alpha \right] \left[\frac{R^2 + \rho^2 - r^2}{2 \rho} \right] \]
\[C_1 = \left[\frac{R^2 + \rho^2 - r^2}{2 \rho} \right] - Z^2 \]

Similarly, equation (28'') can be reduced to

\[A \sin^2 \alpha + B \sin \alpha + C = 0 \]

where

\[A = \rho^2 \left(X^2 + Y^2 \right) \cos^2 \delta \]
\[B = 2 \rho Y \cos \delta \left[(X^2 + Y^2) - r R \cos \beta + Z \left(\rho \sin \delta + Z \right) \right] \]
\[C = \rho \sin \delta + z \left[\left(\rho \sin \delta + Z \right) \left(X^2 + Y^2 \right) - 2 r R Z \cos \beta + 2 Y^2 Z \right] + r^2 R \cos^2 \beta + Y^2 \left(X^2 + Y^2 \right) - 2 r R Y^2 \cos \beta - X^2 \rho^2 \]

Note that \(A_1, B_1, C_1 \) do not depend on \(\delta \), and \(A, B, C \) do not depend on \(\alpha \).

Equations (24'') and (28'') are decoupled as far as \(\alpha \) and \(\delta \) are concerned. The two angular coordinates can be computed by successive approximations as follows. Assume, for instance, a value of \(\alpha \) in (24'') and compute \(\delta \). Using this
\(\delta \) in equation \((28')\) compute \(a \). In principle, the assumed and computed values of \(a \) must be identical. Since the first try will not result in an identity, the value of \(a \) assumed in \((24')\) must be modified until a assumed \(-a\) computed is reduced to a small quantity consistent with the desired precision.

The fact that equations \((24')\) and \((28')\) yield a multiplicity of roots will be ignored, and the proper values of \(a \) and \(\delta \) will be assumed to have been found. This being the case, equations \((24), (25), \) and \((26)\) yield the corresponding values of \(\xi, \eta, \) or \(x, y, z \). Equations \((24), (25), (26), \) and \((28)\) can also serve as a partial control because the trigonometric functions involved must numerically be less than unity. If this is not the case, the value of \(r \) could be modified and the whole computation repeated. Assuming that reasonable values of \(x_0, y_0, z_0 \) have been obtained, the procedure would be as follows. Using \(x_0, y_0, z_0 \) obtained above in equation \((17), Section II, \) namely,

\[
\begin{align*}
\alpha_1 x_0 + \alpha_2 y_0 + \alpha_3 z_0 + \alpha_4 x_o + \alpha_5 y_o + \alpha_6 z_o + \alpha_7 x_o + \alpha_8 y_o + \alpha_9 z_o &= C_n \\
n &= 1, 2, 3 \ldots 6
\end{align*}
\]

a set of simultaneous equations in \(x_0, y_0, z_0 \) as unknowns is obtained. Thus, using two additional measurements of \(x_0, y_0, z_0 \) can be computed. This procedure may result in better values of the velocity components since subtractive processes have been considerably reduced. Should this step result in reasonable values of \(x_0, y_0, z_0 \), equation \((29)\) could be used in its entirety, and \(x_0, y_0, z_0 \) could be considered as unknowns wherever they occur explicitly. The \(f \) and \(g \) series would be computed using \(x_0, y_0, z_0, \dot{x}_0, \dot{y}_0, \dot{z}_0 \) obtained in the previous step.

The iteration, as described in Section II would be attempted only if the above scheme showed a reasonable success.

No computations based on this method have been attempted.
IV. AUXILIARY COMPUTATIONS AND CONVERSION SUB-ROUTINES

In the description of the n-body Trajectory Program, Interim Report #1, July 1960, it has been pointed out that the coordinate system used is referenced to the mean equinox of 1950.0. Thus, all basic information, i.e., planetary positions stored on magnetic tapes, is expressed in this frame of reference. Consequently, the components of the position and velocity vectors, which serve as the input to the trajectory program, must be consistent with the accepted coordinate system.

The initial conditions for the n-body Trajectory Program are usually derived from some tracking subroutine. Previously, it had been tacitly assumed that the observed quantities are given in the proper frame of reference, making the output usable in the trajectory program. In practice this assumption is not warranted. Observations will usually yield quantities referenced to the coordinate system, differing from 1950.0 by at least the precession effect. If these observations (measured with respect to the equinox of date) are used in a particular tracking subroutine, the resulting output will not be usable by the trajectory program. Thus, the output of the tracking computation, and the input to the n-body subroutine, must be matched by an appropriate transformation.

The purpose of this section is to describe such transformations and auxiliary computations provided with the n-body Trajectory Program.

Before discussing various detailed schemes, a number of general comments are necessary.
A. BASIC REQUIREMENTS

(a) Distances

Two systems of units are provided for all distance measurements. These are astronomical units (A.U.) and the equatorial Earth radii. The reason for this choice is that, in general, in all computations of the type considered in this report, it is convenient to keep magnitudes of distances near unity. Thus, for vehicles moving in the close vicinity of the Earth, the above condition obtains if the distances are expressed in terms of the Earth radius as a unit. Conversely the mean Earth-Sun distance is suitable in computations of the motion of probes to Venus, Mars, and other points in the solar system.

Both units have been provided to avoid limiting the program to lunar vehicles.

Thus, prior to computations, range measurements should first be converted to either astronomical units or Earth radii.

(b) Angles

All angular inputs employed by the conversion routines must be expressed in degrees and decimals of a degree. This particularly applies to right ascension \(\alpha \) which is often expressed in time measure. Note the conversion factor is \(15^\circ/\text{hour}, 15'/\text{minute}, \text{and } 15''/\text{second} \).

(c) Dates and Times

The dates and times of observation employed by the transformation subroutines occur in two forms.

(1) The date and time of observation shall be expressed in terms of universal time, in days and decimals of a day of
the same month, for all observations, even if this entails introducing a fictitious number of days in a month.

Example: Suppose that two measurements were made:

1935 Aug. 30.0006 UT and 1935 Sept. 2.9067 UT

They must then be expressed as

1935 Aug. 30.0006 UT and 1935 Aug. 33.9067 UT

(2) The date and time of observation to be also expressed in Julian Days (JD) and decimals of a Julian Day. Note that there are 365.25 days in a Julian year. An extensive table of Julian Day numbers is provided in Appendix A. Also, Julian Day numbers are tabulated in yearly issues of the Nautical Almanac and American Ephemeris.

Example: Days and times considered under (c) (1) expressed in JD are given by

JD 2428044.5006
JD 2428048.4067

(d) Geographic Coordinates of the Observation Site

In computations of the rectangular site coordinates, geographic coordinates of the tracking station are required. These shall be expressed as follows:

Geographic longitude of the site \(\lambda \) in degrees. The sign convention adopted is:
\(\lambda > 0 \) if East of Greenwich Meridian
\(\lambda < 0 \) if West of Greenwich Meridian

Geographic latitude of the site \(\phi \) is taken as positive if North of the equator, and negative if South of the equator.

The altitude of the site above sea level \(h \) is expressed in astronomical units or Earth equatorial radii.

Specific subroutines available in the program are considered below:

B. COMPUTATION OF RECTANGULAR GEOCENTRIC SITE COORDINATES

The geocentric components of the observer's position on the Earth's surface are required by all tracking subroutines. These components can be computed with respect to equinox of date, and then transformed into the coordinate system of 1950.0, or computed directly with respect to equinox of 1950.0. In both cases, the procedure programmed is as follows:

1. Reduction to Geocentric Latitude

For reasons which will not be discussed here (see Reference 4), it is necessary to reduce the observer's geodetic latitude to a geocentric one prior to computing the components of the observer's position vector. The appropriate expression utilized in the program is

\[
\phi' = \phi + \frac{1}{3600} \left[-695.6635 \sin 2\phi + 1.1731 \sin 4\phi - 0.0026 \sin 6\phi \right]
\]

where \(\phi' \) is the geocentric latitude.

2. Magnitude of the Geocentric Radius Vector of the Site

The geocentric radius vector \(R \) is determined from
R = h + a(0.99832047 + 0.001683494 \cos 2 \phi - 0.000003549 \cos 4 \phi + 0.000000008 \cos 6 \phi)

In the above, \(a \) = equatorial radius of the Earth and \(h \) is the altitude of the site above sea level. Note that \(R \) may be expressed either in astronomical units or equatorial Earth radii.

3. Computation of Sidereal Time

Since the Earth rotates about its axis, the components of \(R \) will be functions of time. The time involved is the "star time," generally called the sidereal time - a measure of the angle between the observer's meridian and the vernal equinox.

In the computer program, sidereal time is computed as follows:

(a) First Greenwich Mean Sidereal Time (GMST) at \(0^\text{h} \) Universal Time as measured by the mean equinox of date is given by

\[
\text{GMST} = \frac{1}{3600} \left[23925.836 + 8.640,184.542 \frac{\text{JD} - 2415020.0}{36525} + 0.0929 \left(\frac{\text{JD} - 2415020.0}{36525} \right)^2 \right]
\]

Only that part of the resulting value is taken which is less than 24 hours.

In the above, \(\text{JD} \) is the Julian date at midnight of the beginning of the day at which the GMST is desired, and 2415020.0 corresponds to the noon of January 0, 1900. Note that GMST is given in hours.

(b) The Local Sidereal Time is computed from

\[
\text{LST} = \left\{ \text{GMST} + 24(\text{UT}) + \frac{9.8565}{3600} \left[24(\text{UT}) \right] + \frac{\lambda}{15} \right\} \text{ in degrees}
\]

In the above, \(\text{UT} = \) universal time expressed in decimals of a day.
GMST computed in (a) differs from that tabulated in the Almanac by nutation terms.

4. **Rectangular Components of the Observer**

Once LST has been computed, the observer's position vector can be resolved in the coordinate system with respect to which LST is given.

Thus

\[
X = R \cos \phi' \cos (LST) \\
Y = R \cos \phi' \sin (LST) \\
Z = R \sin \phi'
\]

with respect to the mean equinox of date.

Note: If a close Earth satellite is used, \(X, Y, Z\) determine the observer's position with respect to the center of force. However, for the deep space probes, the center of force will most likely reside in the Sun. In this case, designate by \(X_\odot, Y_\odot, Z_\odot\), the components of the Sun's position vector. These components are tabulated in the Almanacs. Quantities \(X, Y, Z\), computed above are now small corrections for the parallax since observations are made from the surface of the Earth. The Sun's coordinates, with respect to the observation site, are given by

\[
X'' = X_\odot + X \\
Y'' = Y_\odot + Y \\
Z'' = Z_\odot + Z
\]

In astronomical practice, it must be mentioned, the Sun-to-Earth direction is taken positive. However, the Sun's coordinates tabulated in the
Almanacs are measured with respect to the Earth. This convention is not observed in this report. It is always assumed that the inertial origin rests at the center of force and all distances are measured positive from this center. Consequently, if tabulated values of the Sun's coordinates are used in formulas of this report, always reverse the algebraic sign of the tabulated value. If all computations are assumed to be carried out in the coordinate system of 1950.0, X, Y, and Z of date must be converted to the standard reference system.

C. REDUCTION OF RECTANGULAR COORDINATES X, Y, Z OF DATE TO EQUINOX OF 1950.0

Designate the rectangular components of a vector given with respect to equinox of date by X_D, Y_D, Z_D. The conversion of these to the coordinate system, fixed by the equinox of date, is effected by the following transformation:

$$X_{1950} = A X_D$$

In this expression

$$X_{1950} = \begin{pmatrix} X_{1950} \\ Y_{1950} \\ Z_{1950} \end{pmatrix} \quad X_D = \begin{pmatrix} X_D \\ Y_D \\ Z_D \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
where the elements of matrix a_{ij} are given by the following formulas

\[
\begin{align*}
 a_{11} &= 1.00000000 - 0.0029696 (\Delta t)^2 - 0.0000014 (\Delta t)^3 \\
 a_{12} &= -0.02234941 \Delta t - 0.00000676 (\Delta t)^2 + 0.00000221 (\Delta t)^3 \\
 a_{13} &= -0.00971691 \Delta t + 0.00000206 (\Delta t)^2 + 0.00000098 (\Delta t)^3 \\
 a_{21} &= 0.02234941 \Delta t + 0.00000676 (\Delta t)^2 - 0.00000221 (\Delta t)^3 \\
 a_{22} &= 1.00000000 - 0.00000003 (\Delta t)^2 + 0.00000015 (\Delta t)^3 \\
 a_{23} &= -0.00010858 (\Delta t)^2 - 0.00000003 (\Delta t)^3 \\
 a_{31} &= 0.00971691 \Delta t - 0.00000206 (\Delta t)^2 - 0.00000098 (\Delta t)^3 \\
 a_{32} &= -0.00010858 (\Delta t)^2 - 0.00000003 (\Delta t)^3 \\
 a_{33} &= 1.00000000 - 0.00000003 (\Delta t)^2 + 0.00000002 (\Delta t)^3
\end{align*}
\]

In the above expressions

\[
\Delta t = \frac{2433281.5 - JD}{36525}
\]

where JD 2433281.5 corresponds to the beginning of the Besselian year 1950 (namely 1950.0), and JD to the date and time at which X, Y, Z are given. Thus, Δt is in effect a measure of Julian centuries taken from 1950.0.

Numerical constants in a_{ij} were taken from Reference 5.

D. REDUCTION OF (X, Y, Z) 1950.0 TO THOSE OF DATE

If matrix $A_{D \rightarrow 1950}$ is known, this transformation is effected by

\[
X_D = A^{-1} X_{1950.0}
\]

where A^{-1} is A reflected about the principal diagonal. However, it is simpler to recompute the transformation matrix. This is done simply by
inverting the sign in Δt. Thus, the new Δt becomes

$$\Delta t = \frac{JD - 2433281.5}{36525}$$

Using this in the series expressions for a_{ij} and interchanging subscripts 1950.0 and D the desired transformation is obtained.

Note: In the American Ephemeris and Nautical Almanac it is now customary to tabulate solar coordinates with respect to both the mean equinox of the beginning of a given year and the equinox of 1950.0. In older Almanacs, solar coordinates were tabulated only with respect to the mean equinox of the beginning of the year. Under the latter conditions, between equinoxes, JD will correspond to the beginning of the Besselian year of interest.

The solar coordinates at other than tabular points are obtained from published ephemerides by interpolation. There is no reason why the above reduction formulas could not be used for this purpose, provided $X_\odot, Y_\odot, Z_\odot$ are known for some date.

It is well known that the Sun is slightly ahead of the position given by theory from which the solar coordinates are computed. This discrepancy can be largely eliminated if the Sun's coordinates are interpolated for the time

$$t = \text{Desired} + 0^d.000282$$

It should be noted that the above transformations are valid for any vector and, consequently, equally applicable to transformations of the velocity components.
E. CONVERSION OF AZIMUTH AND ELEVATION TO RIGHT ASCENSION AND DECLINATION

Another important transformation is conversion of elevation-azimuth angular coordinates to right ascension and declination coordinates.

Conventional radars are not well adapted to equatorial mountings, and the angular output is of necessity given with respect to the local elevation-azimuth coordinate system.

Designate by

\[\begin{align*}
\alpha & - \text{right ascension} \\
\delta & - \text{declination} \\
E & - \text{elevation} \\
A & - \text{azimuth} \\
HA & - \text{hour angle}
\end{align*} \]

In the northern hemisphere, azimuth will always be measured from the north point clockwise through 360°.

The hour angle is measured West from the observer's meridian through 360°.

The right ascension is measured East from the first point of Aries through 360°. The declination is taken positive North of celestial equator and negative South of the latter.

Since computations of preliminary orbits from angular data are more convenient when the latter are given in the equatorial system, elevation and azimuth are converted by the following expressions.

1. Declination \(\delta \) is computed from

\[\sin \delta = \sin \phi' \sin E + \cos \phi' \cos E \cos A \]
The algebraic sign of \(\sin \delta \) gives the sign of \(\delta \).

2. The right ascension \(\alpha \) is computed as follows:

First, the hour angle of the observed body is computed from

\[
\sin HA = -\frac{\cos E \sin A}{\cos \delta}
\]

\[
\cos HA = \frac{\sin E \cos \phi' - \cos E \sin \phi' \cos A}{\cos \delta}
\]

The above expressions determine both the hour angle and its quadrant.

The right ascension \(\alpha \) of the observed object is determined from

\[
\alpha = \text{LST} - HA
\]

The result can be given in either time or angular measure. In this program \(\alpha \) is always computed in degrees.

The Local Sidereal Time is taken from B, 3(b). Since the elevation and azimuth are measured with respect to the coordinate system as existing at the time of measurement, \(\alpha \) and \(\delta \) from the above expressions are referred to the equinox of date.

Often these quantities must be reduced to the standard equinox of 1950.0.

F. REDUCTION OF \(\alpha \) AND \(\delta \) FROM THE EQUINOX OF DATE TO THE REFERENCE EQUINOX

Let \(\alpha \) and \(\delta \) referred to the equinox of date be designated by \(\alpha_D \) and \(\delta_D \). These are obtained by direct measurement or from computation D.
The reduction can be accomplished in two ways. One of these is described in Reference (4) p. 240. The other method is substantially simpler although it involves an iterative procedure.

Computation is arranged as follows:

Suppose that \(a_D \) and \(\delta_D \) are given with respect to equinox of \(t_1 \) and values at \(t_2 \) are desired where \(t_2 > t_1 \).

1. Certain quantities \(m \) and \(n \) are computed for the middle of the interval involved. These are given by

\[
m = \frac{1}{3600} \left[46.09905 + 0.0002790 \left(\frac{\text{JD} - 2433281.5}{365.25} \right) \right] \text{ degrees}
\]

\[
n = \frac{1}{3600} \left[20.0426 - 0.000085 \left(\frac{\text{JD} - 2433281.5}{365.25} \right) \right] \text{ degrees}
\]

Note that \((\text{JD} 2433281.5)/365.25\) will correspond to \(t = \frac{t_1 + t_2}{2} \)

Using \(a_{t_1} \) and \(\delta_{t_1} \) in expressions for the annual precession in right ascension and declination, results in

\[
\frac{d a}{dt} = m + n \sin a_{t_1} \tan \delta_{t_1}
\]

\[
\frac{d \delta}{dt} = n \cos a_{t_1}
\]

The approximate values of \(a_{t_2} \) and \(\delta_{t_2} \) are then given by

-55-
The means between \(a_{t_2} \), \(\delta_{t_2} \) and \(a_{t_1} \), \(\delta_{t_1} \) are denoted by \(a' \) and \(\delta' \).

2. Employing \(a' \) and \(\delta' \) in

\[
\left(\frac{da}{dt} \right)' = m + n \sin a' \tan \delta'
\]

\[
\left(\frac{d\delta}{dt} \right)' = n \cos a'
\]

a better approximation is obtained for the effects of annual recession. Thus, more nearly correct values of \(a_{t_2} \) and \(\delta_{t_2} \) are given by

\[
a'_{t_2} = a'_{t_1} + (t_2 - t_1) \left(\frac{da}{dt} \right)'
\]

\[
\delta'_{t_2} = \delta'_{t_1} + (t_2 - t_1) \left(\frac{d\delta}{dt} \right)'
\]

This procedure can be repeated as many times as desired.

Generally, even when \((t_2 - t_1) \) is as large as 50 years, two iterations lead to an error of less than one second of time in \(a \), and less than a second of arc in \(\delta \). This is entirely sufficient for preliminary computations.
If the epoch $t_2 < t_1$ the procedure is the same as above.

Note, however, that the approximations are given by

$$a_{t_1} = a_{t_2} - (t_1 - t_2) \frac{da}{dt}$$

$$\delta_{t_1} = \delta_{t_2} - (t_1 - t_2) \frac{d\delta}{dt}$$

Thus, depending on the interval $|t_2 - t_1|$ the reduction can proceed from any equinox to any other one.

G. EPHEMERIS COMPUTATION

The purpose of any tracking and orbit computation program is, not only to determine the orbit, but to predict the future positions of the body. These data, the so-called ephemeris, are needed to enable the observer to re-acquire the body if the tracking is intermittent.

Ephemeris information can best be given as angular data, and possibly range data with respect to a coordinate system fixed at the observer's site. The predicted positions can be given with respect to the equinox of date or the equinox of 1950.0.

The computational procedure is as follows:

1. The n-body program yields values of the vehicle's position x, y, z at a time t with respect to equinox of 1950.0. The units of distance can be astronomical units, Earth equatorial radii, or kilometers. Denote these components by $X_{t_1}^{1950}$, $Y_{t_1}^{1950}$, $Z_{t_1}^{1950}$.
2. At assigned universal times t_i, rectangular coordinates of site X_i, Y_i, Z_i are computed by methods of section B. If the Sun's coordinates X_t, Y_t, Z_t are desired, use the appropriate Almanac.

3. Reduce these to $X_i 1950, Y_i 1950, Z_i 1950$.

4. The topocentric range ρ expressed in appropriate units is computed from

$$
\rho_{t_i} = \left[(x_{t_i 1950} - X_{t_i 1950})^2 + (y_{t_i 1950} - Y_{t_i 1950})^2 + (z_{t_i 1950} - Z_{t_i 1950})^2 \right]^{1/2}
$$

5. The declination δ at t_i is computed from

$$
\sin \delta_{t_i 1950} = \frac{z_{t_i 1950} - Z_{t_i 1950}}{\rho_{t_i 1950}}
$$

The algebraic sign of $z_{t_i 1950} - Z_{t_i 1950}$ determines the sign of δ.

The right ascension α is determined from expressions

$$
\cos \alpha_{t_i 1950} = \frac{x_{t_i 1950} - X_{t_i 1950}}{\rho_{t_i 1950} \cos \delta_{t_i 1950}}
$$

$$
\sin \alpha_{t_i 1950} = \frac{y_{t_i 1950} - Y_{t_i 1950}}{\rho_{t_i 1950} \cos \delta_{t_i 1950}}
$$

6. If desired, $\alpha_{t_i 1950}$ and $\delta_{t_i 1950}$ are reduced to the equinox of $t_i 1950, t_i 1950$ date by method outlined in section F.
Thus, computations indicated in 1 through 6 result in

\[\rho_{t_i}, a_{t_i 1950}, \delta_{t_i 1950} \text{ or } a_{t_i} \text{ and } \delta_{t_i} \]

If the observing instrument is a radar, more appropriate angular quantities are azimuth and elevation. These are obtained as follows.

7. Compute the Local Sidereal Time (LST) as measured by the equinox of date or equinox of 1950.0 using methods of Section B. 3.

8. Using \(a_{t_i 1950} \) or \(a_{t_i} \) from G. 6 the Local Hour Angle (LHA) of the body is computed from

\[(\text{LHA})_{t_i} = (\text{LST})_{t_i} - a_{t_i} \]

It must be observed that LST and \(a \) used in the above must be referred to the same equinox.

9. Elevation at time \(t_i \) is obtained from

\[\sin E_{t_i} = \sin \phi' \sin \delta_{t_i} + \cos \phi' \cos \delta_{t_i} \cos (\text{LHA})_{t_i} \]

where \(\phi' \) has been defined in B. 1. The algebraic sign of \(\sin E_{t_i} \) determines the sign of \(E_{t_i} \).

10. Azimuth is determined uniquely from expressions

\[\sin A_{t_i} = \frac{-\sin (\text{LHA})_{t_i} \cos \delta_{t_i}}{\cos E_{t_i}} \]

-59-
\[
\cos A_{t_i} = \frac{\sin \delta_{t_i} - \sin \phi' \sin E_{t_i}}{\cos \phi' \cos E_{t_i}}
\]

A careful distinction must be made between \(A_{t_i} \), \(E_{t_i}^{1950.0}\) and \(A_{t_i} \), \(E_{t_i}^{1950.0}\). Indirectly, these values differ by effects of precession.

As a result of computations 6 through 10 azimuth and elevation are obtained referred to the horizon plane and zenith of date or that of 1950.0.

All computations discussed above are provided as separate subroutines with the main n-body Trajectory Program. An attempt has been made to make these subroutines as independent as possible. In some cases, however, total separation is not practical. This is particularly true in converting \(\alpha, \delta\) to \(A, E\). This subroutine utilizes the hour angle which in turn requires Local Sidereal Time. However, the computation of LST is tied up with the computation of the observer's coordinates on the Earth's surface. Thus, in cases where LST alone is required, some superfluous information may be produced.

Occasionally, in tracking routines, it is required to find the sidereal time measured by equinox at time \(t_2\) if the sidereal time measured by equinox \(t_1\) is known. This reduction can be accomplished by utilizing methods of B. 3(a), (b), but for a few dates the use of the 7090 subroutines may not be warranted. Under these conditions, a simpler procedure is available and, although it is not a part of this program, it will be described below.
H. REDUCTION OF SIDEREAL TIME REGULATED BY A MOVING EQUINOX TO SIDEREAL TIME REGULATED BY A STATIONARY EQUINOX

The relation between the sidereal time regulated by a stationary equinox and the mean solar time is given by

\[d \Theta_s = 1.002737810 \, dt \]

The constant of proportionality is the ratio between the mean solar day and sidereal day. Its exact value varies depending upon the author. However, for most purposes the value given above is sufficiently accurate.

Integrating the above obtains

\[\Theta_s = \Theta_o + 1.002737810 \, (t - t_o) \quad (30) \]

where \(\Theta_o \) is the constant of integration. The sidereal time \(\Theta_s \) can be obtained from the Almanac or the formula given in Section B.

\[
\text{GMST at } \theta^h \text{ UT} = \frac{1}{3600} \left[23925.836 + 8640184.8542 \, \Delta t + 0.0929 \, (\Delta t)^2 \right]
\]

where \(\Delta t = \frac{\text{JD}-2415020.0}{36525} \)

and \(\text{JD} = t_o \)

The Greenwich MST at any other universal time is then given by equation (1). It must be carefully noted that \(\Theta_s \) computed by (1) is measured by the stationary equinox of \(t_o \).
To correct this time to GMST, regulated by the moving equinox, recall that the general precession of the first point of Aries amounts to $50''.2675/\text{year}$ as of 1950.0. Since the cosine of obliquity of the ecliptic for 1950.0 is $\cos \epsilon_{1950} = .91743695$, it follows that along a stationary equator precession is given by

$$50''.2675\cos \epsilon_{1950} = 46''117/\text{year} = 3''.074/\text{year} = \frac{\text{0.008417}}{\text{day}} = \frac{\text{0.0000009742}}{\text{day}}.$$

In t years the equinox will precess along the equator by an amount

$$\Delta \theta_s = 3''.0744841\ t.$$

Sidereal time measured by the moving equinox is then given by

$$\text{GMST} = \theta_0 + 1.002737810\ (t - t_0) \pm \Delta \theta_s.$$

Positive sign is taken if $t > t_0$, negative one when $t < t_0$. In general then

$$\text{GMST} = \theta_0 + 1.002737810(t - t_0) + 3''.0744841(t - t_0). \quad (31)$$

To make the method clearer a numerical example is given.

Example:

Suppose that GMST at $0^h\ \text{UT}$ on Sept. 3, 1935, is equal to $22^h44^m46^s.38$. Let us compute the sidereal time on Sept. 3, 1950.

From Equation (1) it follows that

$$\text{GMST}_{1950} = 22^h44^m48^s.38 + 1.002737810\ (2433527.5 - 2428048.5)$$

$$= 5494^d.9482431$$

-62-
Its fractional part gives

\[\text{GMST}_{1950} = 22^h 45^m 28^s .20 \]

This is the GMST on Sept. 3, 1950, as measured by the stationary equinox of Sept. 3, 1935. However, to obtain GMST as measured by the equinox of Sept. 3, 1950, a correction for precession must be introduced. This correction is given by

\[\Delta \theta_s = 3^s.0744841 \times 15^y.0006845 = 46^s.12 \]

Since the equinox of 1950 is in advance of equinox of 1935 by the above amount, there results

\[\text{GMST}_{\text{Sept. 3, 1950}} = 22^h 45^m 28^s .20 + 46^s.12 = 22^h 46^m 14^s.3 \]

Converse Problem

Given equinox of Sept. 3, 1950, at which GMST at 0 UT is 22\(^h\) 46\(^m\) 14\(^s\).3, compute GMST on Sept. 3, 1935, as regulated by the stationary equinox of Sept. 3, 1950, and the moving equinox of Sept. 3, 1935.

\[\text{GMST on Sept. 3, 1950 measured by } \tau_{1950} \]

The fractional part of this number gives

\[\text{GMST} = 22^h 45^m 28^s .4 \]

Since the equinox of Sept. 3, 1935, lags the equinox of Sept. 3, 1950 by an amount

\[\Delta \theta_s = 46^s .12 \]
it follows

\[\text{GMST} = 22^h 44^m 48^s .30 \]

as measured by the moving equinox of Sept. 3, 1935. It is also useful to note that \(\Delta \Theta_s \) is the angle between the two equinoxes in question.

Thus, in equation (2) there exists a simple method of evaluating sidereal times as measured by any desired equinox, provided sidereal time is known at some instant of time.

The discussion of auxiliary subroutines will be concluded by giving several block diagrams of possible tracking computations involving situations frequently encountered in practice.

1. SCHEMATICS OF TYPICAL COMPUTATIONS

Problem 1

Consider a tracking station, whose geographic coordinates are \(\phi \) and \(\lambda \) that is capable of measuring angular positions of a close Earth satellite with respect to the geocentric equatorial coordinate system. The absolute minimum of information necessary to estimate the satellite's motion consists of \(a \) and \(\delta \) measured at three different times. Assume \(a \) and \(\delta \) are measured with respect to the equinox of date.

The resulting computational scheme and the flow of information is shown in Figure 6. Its main features are as follows:

The first part of the computation can be carried out in two ways. The measured right ascension and declination, both with respect to equinox of date (\(a_{MD} \), \(\delta_{MD} \)), can be used directly in the three angle tracking routine to obtain a preliminary value of the vehicle position and velocity (\(x_0', y_0', z_0' \), \(x_0, y_0, z_0 \)) at some time \(t_0 \).
The n-body Trajectory Program cannot accept these values as initial conditions since they are referenced to the equinox of date. Thus x_0, y_0 etc., must be converted to the epoch of 1950.0. Under these conditions the proper routing is obtained by placing S_1 at position 2, S_2 at 2.

Another way is to convert measured data to epoch of 1950.0. Under these conditions the output of the three-angle tracking routine is directly usable by the 7090 program. The proper connections are then $S_1(1)$, $S_2(1)$.

The output of the 7090 program is in the form of rectangular components of position and velocity of the vehicle at some future time t referenced to equinox of 1950.0.

Following this, two possibilities exist. One is to compute the predicted angular positions with respect to 1950.0. The second possibility is to compute all predicted positions with respect to the equinox of date. Figure 6 shows both alternatives.

The user can select the flow of computation as desired by rearranging the order of various subroutines.

However, it is strongly recommended that all computations be carried out in a coordinate system referenced to the equinox of 1950.0. Thus, all measured data as well as auxiliary quantities should be expressed in this frame of reference. This accomplishes two things. First, the method is in accord with the commonly accepted astronomical practice of referring data to a standard epoch. Secondly, comparison with computations of other investigators is possible without need for further transformations.

In some instances, of course, adherence to this recommendation may be awkward.
This is particularly true in the case of ephemerides prepared for radar stations in terms of elevation and azimuth.

Problem 2

Consider a situation which is in all respects identical with that of problem 1 with the exception that the measured angular data are expressed in terms of azimuth A and elevation E.

The block diagram of the computation is then arranged as in Figure 7.

From this figure it can be seen that problem 2 requires the addition of a subroutine converting measured azimuth and elevation to right ascension and declination of date.

The essential output of ephemeris computation in this problem consists of azimuth, elevation, and range \(\rho \).

Problem 3

A tracking situation is now considered in which an instrument, such as radar, measures range \(\rho \) and the associated angle which may be given as elevation and azimuth, or right ascension and declination.

Because a complete position vector is measured, it is merely necessary to compute velocity components at some time \(t \) which, in conjunction with the measured position components, can be used as initial conditions for the main program.

If the tracking instrument is equatorially mounted, the computation can be arranged as shown in Figure 8.
As in Problem 1, the first part of the computation can be carried out in the coordinate system of date, or that referenced to equinox 1950.0. In the first case, the measured A and E are first converted to α and δ of date. These are used to compute the components of the measured position vector at two different times from expressions

$$
\xi = \rho \cos \delta \cos \alpha \\
\eta = \rho \cos \delta \sin \alpha \\
\zeta = \rho \sin \delta
$$

These quantities used in

$$
x = \xi + X \\
y = \eta + Y \\
z = \zeta + Z
$$

yield the components of the geocentric position vector of the vehicle. These components are employed in the two-range vector iterative routine to produce the velocity components at one of the measured instants of time. Before using these in the n-body Trajectory Program, conversion to the equinox of 1950.0 must be effected. The computation then follows the same lines as in Problems 1 and 2.

Switches S_1 and S_2 are connected to positions 1 and 2 for the proper flow of information.

If the iteration routine is to produce $x_o, y_o, z_o, x_e, y_e, z_e$ referenced to epoch 1950.0, S_1 is connected to position 2 and S_2 to position 1.

Problem 4

Though similar to Problem 3, this situation's tracking instrument is assumed to be mounted equatorially. The measured data therefore
consists of range ρ and the associated right ascension α and declination δ.

The flow of information is very similar to that found in Figure 6 and shown in Figure 9.

Positions of switches S_1 and S_2 for proper flow of information are either $S_1(1)$ and $S_2(1)$ or $S_1(2)$ and $S_2(2)$, depending upon the referencing of the angular data to the equinox of date or 1950.0.

Diagrams similar to those given in Figures 6, 7, 8, and 9 can be constructed for any tracking subroutine. From these diagrams it is apparent that a substantial number of blocks contained in the conversion subroutines disappear if computations are consistently carried out in coordinates referenced to some standard equinox, e.g., 1950.0.

No block diagram is given for the case of 6 ranges. Operation of this routine in its present formulation was found unreliable.

Appendix B of this report consist of Operational Directories and FORTRAN Listings of programs discussed above, as well sample check problems for each subroutine.
V. ERROR ANALYSIS OF HYPERBOLIC LUNAR IMPACT TRAJECTORIES

A. INTRODUCTION

As a part of demonstrating the capabilities of the Lunar Trajectory Computer Program described earlier in this report a study was performed of tolerances in initial conditions involved in lunar flight impacting the Moon's surface.

For obvious reasons it was found impractical to consider all possible impact trajectories covering the velocity range from elliptical to hyperbolic ones. Likewise, there was no attempt to arrange trajectories by firing locations and dates. As a consequence of these considerations, it was decided to consider only trajectories of classes IS^{a+} or IS^{a-} in the sense of Egorov \[10\]. These classes of trajectories refer to impacts occurring on the ascending branches of trajectories. This in turn implies that the velocity with respect to the Earth is in the hyperbolic range. The actual value of the initial velocity is, in principle, immaterial for purposes of this demonstration. However, in general, higher velocity trajectories impose tighter tolerances on orientations of the initial position and velocity vectors.

The general character of this study can be summarized as follows:

(a) A nominal hyperbolic trajectory is chosen.

(b) It is a three dimensional trajectory. There are no restrictions commonly invoked in assuming that the vehicle moves in the Earth-Moon plane.

(c) The vehicle moves in the field of the Sun, the Earth, and the Moon.

(d) Three dates are considered. These correspond to the following phases of the Moon.
This arrangement of the study may at least qualitatively reveal effects of the changing geometrical configuration of the three main bodies.

E. NOMINAL TRAJECTORIES

Nominal trajectories for each phase of the moon at the above dates have been established empirically. An essential requirement that has been imposed on these trajectories is that the hit must occur at the center of the apparent disc of the Moon. Its angular coordinates as seen from the Earth have been taken from the Nautical Almanac.

The initial conditions for the differential equations of motion were determined experimentally in units of A. U. and A. U. /hour. Upon converting we find the burnout altitude \(h \approx 388.5 \) st. miles and the burnout velocity \(V = 7.177 \) st. miles/sec. We have succeeded in holding these values constant for the three dates indicated. Thus, the only difference in initial conditions between the three sets of runs occurs in the orientation of vectors \(\vec{p} \) and \(\vec{v} \). (See Figure 10).

The following procedure was followed in arriving at a nominal trajectory. As a first step, conditions have been taken which result in an impact for an idealized problem based on either two body approximations or previous computer runs. These initial conditions are used in the Lunar program to obtain a trajectory. This trajectory in most cases strikes the Moon, but not at the desired place. Following this the initial velocity is changed by a small increment, and the computation is repeated. After three runs are obtained, an estimate is made of the differential correction required to effect the desired impact. This correction is usually not sufficient; consequently,
the procedure described above is repeated several times until the strike occurs at the desired place. It was found that in all three phases of the moon the center of the apparent disc of the Moon could be hit in about 9 tries. The resulting error between the computed and observed angular coordinates is in the neighborhood of 1 second of arc.

C. SENSITIVITY OF THE IMPACT POINT TO ERRORS IN INITIAL CONDITIONS

In the description of the Lunar Trajectory Program it was indicated that the program accepts the components of the position and velocity vector $(x_o', y_o', z_o'; \dot{x}_o', \dot{y}_o', \dot{z}_o')$ at some time t_o as the basic input. There are several disadvantages in using these inputs in the error analysis considered here. First of all, most measuring instruments work in a spherical coordinate system which is more natural. Thus, the above components are connected with the spherical coordinates by the usual transformation,

\begin{align*}
 x &= \rho \cos \theta \cos \phi \\
 y &= \rho \sin \theta \cos \phi \\
 z &= \rho \sin \phi
\end{align*}

\begin{align*}
 \dot{x} &= v \cos \alpha \cos \beta \\
 \dot{y} &= v \cos \alpha \sin \beta \\
 \dot{z} &= v \sin \alpha
\end{align*}

(32)

Thus the original inputs are replaced by $\theta, \phi, \alpha, \beta, \rho, v$ at time t_o. In the equations above, ρ is the magnitude of the initial position vector, θ is the right ascension, and ϕ is the declination. Similarly, v is the magnitude of the initial velocity vector, and α and β are the two corresponding angular coordinates. The coordinate system employed here is an equatorial one in the astronomical sense. The above relations underscore another difficulty. So far as the computation of the trajectory is concerned $x, y, z; \dot{x}, \dot{y}, \dot{z}$ are certainly independent quantities. However, as soon as the measuring instrument enters the scene we find that these quantities are related. Thus it is, for instance, impossible to change ρ without changing x, y, z simultaneously. A similar situation exists with regard to the angular coordinates.
In view of the above it has been decided to employ spherical coordinates in our study of impact point errors. From the practical point of view this implies that any uncertainty in one of the spherical components must be converted to uncertainty in the rectangular components before it can be used in the computer program.

It has been found that in dealing with high speed trajectories (e.g. hyperbolic), 8-place accuracy in input is sufficient to furnish accurate, perturbed trajectories. However, in elliptical trajectories, where the magnitude of the velocity is decreased, it has become apparent that the lunar program demands accuracy of input to 10 or more places in order to furnish output of sufficient numerical accuracy. This would be especially true when mid-course guidance parameters are to be generated.

Response of the impact point to errors in one of the independent variables is evaluated by holding other variables fixed and varying the remaining one over a range of values. The maximum allowable error is that which results in a "skimming" impact on the Moon. The amount of miss due to an error in the corresponding variable can be conveniently measured in terms of the distance S on the surface of the Moon between the nominal and the perturbed impact points. This distance is in effect computed from six measured quantities $\rho, \theta, \phi, v, a,$ and $\beta,$ which are assumed to be mutually independent. Thus,

$$S = S(\rho, \theta, \phi, v, a, \beta).$$ \hspace{1cm} (33)

Since the deviation from the nominal impact point is measured, S is equivalent to an incremental miss, which to the first order of approximation can be expressed as

$$S = \Delta M = \left(\frac{\partial S}{\partial \rho}\right) \Delta \rho + \left(\frac{\partial S}{\partial \theta}\right) \Delta \theta + \left(\frac{\partial S}{\partial \phi}\right) \Delta \phi + \left(\frac{\partial S}{\partial v}\right) \Delta v + \left(\frac{\partial S}{\partial a}\right) \Delta a + \left(\frac{\partial S}{\partial \beta}\right) \Delta \beta,$$ \hspace{1cm} (34)

where $\Delta \rho, \Delta \theta,$ etc. represent errors in the corresponding quantities.
It is then evident that a successive independent variation of one of the variables will result in relations \(S = S(p), \) \(S = S(\theta), \) etc., each of which can yield partial derivatives in equation (34). These derivatives will be termed "error or sensitivity" coefficients. It is obvious that relation (34) assumes that for small deviations the miss can be written as a linear combination of errors. Just where a particular error ceases to be small cannot be evaluated until \(S \) is obtained.

Prior to evaluation of \(S \) the range of errors in a particular variable should be decided on in order to result in a skimming impact. There must be a sufficient number of points within this range in order to obtain \(S \). One approach is to repeat the same procedure as used in establishing the nominal trajectory. The final approach adopted in this work will be described later in the report.

For the present, however, the description of the computation as employed here will be continued.

The early approach was to hold all variables but one constant at values corresponding to those of the nominal trajectory and to vary the remaining one by small increments. Values of \(x, y, z, \dot{x}, \dot{y}, \dot{z} \) corresponding to these increments were computed from equation (32) by employing an LGP-30 Computer subroutine. The resulting quantities are then fed to the Lunar Trajectory Program. The output of this computation are the following quantities:

\[
\begin{align*}
x, y, z \text{ and } r & \quad \text{of the vehicle from the Earth} \\
\dot{x}, \dot{y}, \dot{z}, \text{ and } v & \quad \text{of the vehicle with respect to the Earth} \\
x, y, z, \text{ and } r & \quad \text{of the vehicle from the Moon} \\
x, y, z, \text{ and } r & \quad \text{of the vehicle from the Sun} \\
t & \quad \text{Corresponding time}
\end{align*}
\]
The units employed are astronomical units, astronomical units per hour, and hours. The nominal radius of the Moon (assumed spherical) was taken as \(R_M = 1.1625090 \times 10^{-5} \) AU. The initial values of \(\theta, \phi, a, \beta \) are obtained from equation (32).

As indicated earlier the run is terminated by prescribing either a maximum running time or a minimum distance from the Moon's center. In neither case, however, are the coordinates of the impact point obtained directly. These points must be obtained by interpolation from the computed points that give the position of the vehicle from the Moon as a function of time. The first step is to obtain the time of impact. For purposes of this investigation, use is made of Everett's interpolation formula in the form

\[
f + f_0 + p \delta_{1/2} + E_2 \delta_0^2 + F_2 \delta_1^2.
\]

(35)

Various quantities in this relation are obtained according to the following scheme:

<table>
<thead>
<tr>
<th>(t)</th>
<th>(f)</th>
<th>(\delta_{n/2})</th>
<th>(\delta_n)</th>
<th>(\delta_{n/2}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>(f_1)</td>
<td>(\delta_{1/2} = f_1 - f_0)</td>
<td>(\delta_1 = \delta_{3/2} - \delta_{1/2})</td>
<td>(\delta_{1/2}^2 = \delta_1 - \delta_0^2)</td>
</tr>
<tr>
<td>(t_2)</td>
<td>(f_2)</td>
<td>(\delta_{3/2} = f_2 - f_1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the above \(t \) is the independent variable (time) and \(f \) can stand for \(r, x, y, z \) or any other dependent variable. Constants \(E_2 \) and \(F_2 \) are given by

\[
E_2 = \frac{p(p - 1)(p - 2)}{6}, \quad F_2 = \frac{p(p - 1)(p + 1)}{6}
\]

where \(p \) is the interpolation fraction such that \(0 < p < 1 \).
In determining the selenocentric coordinates of the impact point equation (4) was employed in the form

\[R_{M}^2 = \sum_{i=x, y, z} (X_{i0} + p\delta_{i1/2} + E_{2}(p)\delta_{i0} + F_{2}(p)\delta_{i1})^2 \] (36)

A subroutine was written for the LGP-30 computer to obtain \(p \) from equation (36) by successive approximations using Newton's Method.

The above computation simultaneously yields values of \(x, y, z \) of the impact point.

At the time this study was begun, and largely by coincidence, several runs were terminated with only one point recorded after impact occurred. As (35) indicates, Everett's interpolation formula required two values of the argument on either side of the derived value of the function. To compensate for the lack of a sufficient number of tabular points, two additional subprograms were written for the LGP-30. A Newtonian formula was employed based on five points and differences on a horizontal line. Also a six point Lagrangian interpolation formula was tested. Both methods, however, were inadequate because of their failure to provide the necessary degree of precision. An accurate value, arrived at by using Everett's scheme could only be approached to four places with Lagrange and Newton methods.

Using this comparison as the basis, machine operators have been advised to terminate a run on a more comfortable maximum time, or on impact plus three or more points.

The value of miss distance follows then directly from

\[\cos \theta = \frac{\vec{R}_M \cdot \vec{R}_M}{R_{M}^2} = \frac{X_N X_I + Y_N Y_I + z_N z_I}{R_{M}^2} \] (37)
and N, I denote nominal and impact respectively. Finally

$$S = R_M \theta$$

(3°)

It must be realized that S, as computed here and used in subsequent work, contains no direction information.

S can now be plotted versus the variable in question, as, for instance, in Figure 11. Note that the discontinuity at the origin is the consequence of definition of S and the manner in which it is measured. The slope of such a relation represents \(\frac{\partial S}{\partial \sigma_i}\) where \(\sigma_i\) is any of the independent variables.

The plot of \(\frac{\partial S}{\partial \sigma_i}\) can be obtained by numerical differentiation of the S(\(\sigma_i\)) relation. Caution must be exercised in putting too much trust in this result because in any process where numerical differentiation is involved there is a significant loss of accuracy. This is particularly true with regard to the first attempts where the number of points defining S was insufficient as, for instance, in Figure 12. In other cases where the distribution of points is more favorable \(\frac{\partial S}{\partial \sigma_i}\) is considerably smoother, as shown in Figure 13. In either case, however, the linear trend of S or \(\frac{\partial S}{\partial \sigma_i}\) extends only over a limited part of the lunar surface. Thereafter relation (3) ceases to be a good approximation.

The procedure just described was found somewhat wasteful of computing time. It was also found that it resulted in too many complete misses.

It was noticed, however, that the plot of the distance of closest approach \(r_p\) to the Moon's center versus error \(\Delta \sigma_i\) resulted in a curve which could be represented remarkably well by a hyperbola of the form

$$\frac{(y - y_0)^2}{b^2} - \frac{(x - x_0)^2}{a^2} = 1.$$
An example of this is shown in Figure 14.

This situation was found to hold for all runs made in this investigation. It must be stated emphatically that there is no analytical justification for this and the use of this fact is predicated strictly on convenience.

The choice of hyperbola is not essential. It is conceivable that other curves could serve the same purpose. If it is agreed to use the above fact, the intersection of \(r_p (\Delta \sigma_1) \) with \(R_M \) gives the maximum possible errors allowed, beyond which the Moon is missed entirely.

In addition, the bounding errors will indicate how \(\Delta \sigma_1 \) should be distributed to obtain \(S(\sigma_1) \) with maximum efficiency. Uniform spacing is very important especially in the determination of the partial derivatives.

An item from the preceding discussion deserving some elaboration is the determination of the fictitious distance of closest approach \(r_p \). As in the case of the impact point, \(r_p \) cannot be obtained directly from the computer runs. To obtain this quantity the numerical minimum of \(r \) can be found by using various interpolation formulae. This procedure is not very accurate because the trajectory near the perilune is rather flat for the high velocity employed here. Secondly, the procedure is rather tedious.

It is possible to obtain \(r_p \) in a somewhat different manner by using computed tabular points. First it should be noted that regardless of velocity the trajectory which does not result in a capture is a hyperbola as far as the observer on the Moon is concerned.

The following equation can then be written:

\[
 r_p = a(e - 1),
\]

(39)

where \(a \) is the real axis of the hyperbola and \(e \) its eccentricity.
Now at any three tabular points in the neighborhood of \(r_p \),

\[
\begin{align*}
 r_1 &= \frac{p}{1 + e \cos \theta_1} \\
 r_2 &= \frac{p}{1 + e \cos (\theta_1 - \Delta \theta_1)} \\
 r_3 &= \frac{p}{1 + e \cos (\theta_1 - \Delta \theta)}
\end{align*}
\]

where \(p = a(e^2 - 1) \) and \(\theta \) is the true anomaly. Also,

\[
\begin{align*}
 \theta_1 - \theta_2 &= \Delta \theta_1 \\
 \theta_2 - \theta_3 &= \Delta \theta_2 \\
 \Delta \theta &= \Delta \theta_1 + \Delta \theta_2
\end{align*}
\]

The increments of the true anomaly are obtained from

\[
\begin{align*}
 \cos \Delta \theta_1 &= \frac{\vec{r}_1 \cdot \vec{r}_2}{r_1 r_2} \quad \text{and} \quad \cos \Delta \theta = \frac{\vec{r}_1 \cdot \vec{r}_3}{r_1 r_3}
\end{align*}
\]

Thus in equation (40), \(p, e, \) and \(\theta \), are unknown. The simultaneous solution of (40) yields

\[
p = r_1 \frac{\sin \Delta \theta_1}{\sin \Delta \theta - \cos \Delta \theta_1 + \frac{\sin \Delta \theta_1}{\sin \Delta \theta} \left(\frac{\cos \Delta \theta - \frac{r_1}{r_3}}{\cos \Delta \theta_1} \right)}
\]
The quantity \(\theta_1 \) is obtained from

\[
\frac{p - r_2}{p - r_1} \left(\frac{r_1}{r_2} \right) = \cos \Delta \theta_1 + \tan \theta_1 \sin \Delta \theta_1.
\]

(42)

The eccentricity follows from

\[
e \cos \theta_1 = \frac{p}{r_1} - 1.
\]

(43)

Finally, \(a \) is obtained from

\[
a = \frac{p}{e^2 - 1}
\]

(44)

All quantities necessary to obtain \(r_p \) from equation (39) are now available.

This computation was performed on the LGP-30 computer.

In the above a description was given of all the supplementary computations required to obtain the desired information from the main computer runs. These subroutines could very profitably be included in the main program in order to prevent the interruption of computation.

D. DISCUSSION OF RESULTS

As an example a discussion shall be given of the results obtained for the trajectory of Nov. 7, 1959.

The general character of incremental miss \(S \) as a function of \(\Delta \rho, \Delta \theta, \Delta \phi, \Delta v, \Delta a, \Delta \beta, \) or \(\rho, \theta, \phi, v, a, \beta \) is shown in Figures 11, 15, 16, 17, 18, 19.
It is evident from these curves that for small errors (impacts not too close to the limb) S is a reasonably linear function of incremental errors. As the impact point moves closer toward the Moon's limb the curves break away from a linear variation. Values of errors for which the linear trend ceases to be a good approximation depend on a particular variable. This situation is shown much more clearly in plots of error coefficients. Two examples are given in Figures 12 and 13. The deviation from linearity can be either gradual or rather sharply defined.

Since this value of the error coefficient is only of significance in those cases where the curves of miss versus error are linear, the cases which fail to meet this qualification are not presented graphically.

A feature which is common to all plots of S is their asymmetry with respect to the nominal impact point. This is to be expected because the Moon is a moving target. It should be sufficiently clear that the larger the arrival angle the greater the asymmetry in S with respect to the desired impact point. It may be noted that in this investigation no attempt was made to achieve a normal impact. (Arrival angle is defined as the angle between the velocity vector and the local vertical.)

From the plots of S as they stand the total permissible spread of errors cannot be readily determined. By this we mean the maximum deviation in each variable from the nominal value that results in a skimming hit at each limit. This is accomplished best from the plot of the "distance of closest approach" as a function of a particular error. This also alleviates the problem of computing too many runs which fail to impact the moon. A typical example of such plot is shown in Figure 14. The range of errors for other variables has been estimated from similar plots given in Figures 20, 21, 22, 23. Similar estimates were made for the November 15 and November 23 trajectories.
The range of errors for the November 7 trajectory is as follows:

\[-14.5 < \Delta \rho < 21.2\]
\[-0.21 < \Delta \theta < 0.64\]
\[-0.15 < \Delta \phi < 0.87\]
\[-79.0 < \Delta V < 101.0\]
\[-0.202 < \Delta a < 0.075\]

Values available for the November 15 case are

\[-0.18 < \Delta \rho < 22.0\]
\[0.43 < \Delta \theta < 0.06\]
\[0.65 < \Delta \phi < 0.08\]
\[-10.0 < \Delta V < 82.0\]
\[-0.03 < \Delta a < 0.32\]
\[-0.025 < \Delta \beta < 0.264\]

For the November trajectory, the available values are

\[-1.9 < \rho < 55\]
\[-0.067 < \theta < 1.56\]
\[-0.153 < \phi < 0.274\]
\[-9.9 < V < 124\]
\[-0.28 < a < 0.41\]
\[-0.35 < \beta < 0.002\]

Here \(\Delta \rho\) is given in statute miles

\(\Delta V\) in feet per second and

\(\Delta a, \Delta \beta, \Delta \phi, \Delta \phi\) in degrees
The initial conditions used in the three cases are given in the following list.

<table>
<thead>
<tr>
<th></th>
<th>November 7</th>
<th>November 15</th>
<th>November 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>$-3.3000000 \times 10^{-5}$</td>
<td>$-3.3000000 \times 10^{-5}$</td>
<td>3.3000000×10^{-5}</td>
</tr>
<tr>
<td>y_0</td>
<td>$-3.3000000 \times 10^{-5}$</td>
<td>3.3000000×10^{-5}</td>
<td>3.3000000×10^{-5}</td>
</tr>
<tr>
<td>z_0</td>
<td>4.0500000×10^{-6}</td>
<td>4.0500000×10^{-6}</td>
<td>4.0500000×10^{-6}</td>
</tr>
<tr>
<td>r_0</td>
<td>4.6844449×10^{-5}</td>
<td>4.6844449×10^{-5}</td>
<td>4.6844449×10^{-5}</td>
</tr>
<tr>
<td>x_0</td>
<td>7.9198766×10^{-5}</td>
<td>5.8280834×10^{-5}</td>
<td>$-1.2900149 \times 10^{-4}$</td>
</tr>
<tr>
<td>y_0</td>
<td>$-2.6305573 \times 10^{-4}$</td>
<td>2.6288784×10^{-4}</td>
<td>2.4008342×10^{-4}</td>
</tr>
<tr>
<td>z_0</td>
<td>$-4.3421102 \times 10^{-5}$</td>
<td>6.9638123×10^{-5}</td>
<td>5.5450141×10^{-5}</td>
</tr>
<tr>
<td>V</td>
<td>2.7812974×10^{-4}</td>
<td>2.7812971×10^{-4}</td>
<td>2.7812971×10^{-4}</td>
</tr>
<tr>
<td>θ</td>
<td>225°</td>
<td>135°</td>
<td>45°</td>
</tr>
<tr>
<td>ϕ</td>
<td>$4^\circ 57' 35''$</td>
<td>$4^\circ 57' 35''$</td>
<td>$4^\circ 57' 35''$</td>
</tr>
<tr>
<td>α</td>
<td>$-8^\circ 982$</td>
<td>$14^\circ 5$</td>
<td>$11^\circ 5$</td>
</tr>
<tr>
<td>β</td>
<td>$286^\circ 76$</td>
<td>$77^\circ 5$</td>
<td>$118^\circ 25$</td>
</tr>
</tbody>
</table>

Comparison of these three cases indicates that the geometrical arrangement of the three main bodies has a significant effect not only on the error range itself, but also on the error asymmetry. For instance, the tolerance in $\Delta \theta$ and $\Delta \phi$ in the November 15 case is very tight in the positive direction. Also the range in velocity became significantly smaller.

In none of the cases, however, do the tolerances become so small as to make the hit impractical for conditions specified above.

It is of interest to consider the effect of errors on the flight time of the vehicle. A few representative plots are shown in Figures 25, 26, 27, 28 and 29. It is evident from these that the variation in flight time is nearly linear with the magnitude of $\mathbf{\rho}$ and $\mathbf{\nu}$. The variation with angles, however, is sharply non-linear. It may also be noted that so far as the November 7 trajectory is concerned, errors $\Delta \theta$, $\Delta \phi$, and $\Delta \alpha \Delta \beta$ affect the flight time in

-82-
opposite directions. Thus negative $\Delta \theta, \Delta \phi$ tend to increase the time of flight while negative $\Delta \alpha, \Delta \beta$ tend to decrease it. As was to be expected V has the most serious effect on the flight time.

The entire previous discussion was concerned with errors in only one of the initial quantities. When errors in $\rho, \theta, \phi, v, \alpha, \beta$ are present simultaneously, the increment in miss is found by (34) provided that precision measures $\Delta \sigma_i$ are known. This expression will, however, result in an estimate that is generally too high. If the errors $\Delta \sigma_i$ are entirely independent, it is more reasonable to compute the miss from

$$\begin{align*}
\Delta M &= \left[\frac{\partial S}{\partial \rho} \Delta \rho \right]^2 + \left[\frac{\partial S}{\partial \theta} \Delta \theta \right]^2 + \left[\frac{\partial S}{\partial \phi} \Delta \phi \right]^2 + \left[\frac{\partial S}{\partial v} \Delta V \right]^2 + \left[\frac{\partial S}{\partial \alpha} \Delta \alpha \right]^2 + \left[\frac{\partial S}{\partial \beta} \Delta \beta \right]^2 \right]^{1/2}
\end{align*}$$

Conversely, if the miss is not to exceed some predetermined value, equation (45) can be used to specify the value of $\Delta \sigma_i$. In the converse problem a question arises whether the effects of various parameters are equal or not. This question can be settled by examining the plots of S. In general, however, the precision with which the parameters must be measured can be estimated from

$$\begin{align*}
\frac{1}{6} \frac{\partial M}{\partial \rho} &= n_1 \frac{\partial S}{\partial \rho} \Delta \rho = n_2 \frac{\partial S}{\partial \theta} \Delta \theta = n_3 \frac{\partial S}{\partial \phi} \Delta \phi = n_4 \frac{\partial S}{\partial v} \Delta V = n_5 \frac{\partial S}{\partial \alpha} \Delta \alpha = n_6 \frac{\partial S}{\partial \beta} \Delta \beta,
\end{align*}$$

where n_i are measures of the strength of the effect. Thus, as indicated above, $\Delta \phi$ affects S n_1 times as much as $\Delta \rho$, etc. The quantity ΔM^{-1} is the relative tolerance on ΔM.

Perhaps, if further study was to be carried out, another approach to the "total miss" portion of the error analysis could be tried. By varying the six spherical parameters separately, within the impact region, an error tube would be generated which would encompass the total allowable error. For
these trajectories, statistically speaking, the first moment, or mean error trajectory, could be computed. Using the mean as a measure of location, the second moment can be taken about it to obtain the variance, the square root of this quantity being the standard deviation. The standard deviation is merely a number, in the same units as the particular parameter in question, which measures the relative extent of the data concentrated about the mean and becomes larger as the data becomes more dispersed. With a large sample, an interval of two standard deviations will include about 95% of the trajectories. With this knowledge, the confidence limits on the allowable error can be computed.

However, it can be said without reservation that when the first moment of the error cone is computed it would not agree with the computed standard trajectory unless the arrival angle of the trajectory were normal. Immediately a problem becomes evident. By looking at Figure 30, a plot of longitude and latitude of the impact points, the allowable error is seen to be almost no better than the nominal trajectory itself for changes in the velocity angle $\Delta \alpha$. The implications of this become clear when it is realized that if a mean trajectory were to be computed from the data taken about a non-normally arriving nominal, the allowable error at the extremes would be fictitious. Under the same conditions, the tolerances probably would become so small that arrival at a predetermined point on the moon's surface would be impossible.

In light of the above discussion, certain desirable procedures can be ascertained which would be of value in predicting the likelihood of impact and the accuracy of impact about a desired point of the Moon based on the perturbations on the initial input.

Computing the impact points in terms of their latitude and longitude on the apparent disc gives not only an indication of the value of an error tube and the resulting measures of standard deviation, but also provides directional
information as well as a measure of the miss distance. This information would lead to optimization of computer runs on a factual rather than guesswork basis. It is also concluded that the accuracy of prediction within prescribed confidence limits is a direct function of the impact angle. In the November 7 trajectory, this angle was computed at 50°, for November 15, 66°, and for November 23, 65°. These angles are calculated by finding the direction cosines of a straight line approximation to the tangent line to the hyperbola at the point of impact. The direction cosines of the normal to the tangent plane are then computed. The products of the direction cosines are summed and this gives the cosine of the angle of impact.

This portion of the report shall be concluded with a brief discussion concerning the disturbing effects of the Sun on a vehicle moving in the Earth-Moon space.

For two of the three dates used in this study the computation of the standard trajectory was repeated with the Sun taken out of the program.

For a crude estimate it is sufficient to compare the distance of the vehicle from the Moon for equal flight times.

For the November 7 case, the distances differ by 5.3 miles after 20.250 hours (just before impact) while for the November 23 case, the difference is 4.8 miles at 20.969 hours, which is also just prior to impact. Thus the Sun's perturbation on the distance of the vehicle from the Moon is not a very significant one for the trajectories in question.
VI. LIFETIME OF AN ARTIFICIAL LUNAR SATELLITE

The principal objective of this phase of the Lunar Trajectory Study was to examine in a cursory way the lifetime of an artificial satellite placed in orbit around the moon. No attempt at an all inclusive analysis of this problem was intended or made.

Using the "n body computer program" in a restricted four body analysis, e.g., Earth, Moon, Sun and Vehicle; a near lunar orbit was run and some interesting results were obtained.

Fixing the altitude of the injection point at 135.827 st. miles above the moons surface a range of instantaneous injection velocities were introduced. The first orbit of each of the resulting orbits is shown in Figures 54 and 55. The range between escape and impact has been covered. Taking the case $V = 3.0 \times 10^{-5}$ A. U. /Hour the run was extended for 25 days. The projections of this orbit for the first revolution are given in Figures 56, 57, and 58. The osculating orbital elements for this revolution are

$$i = 34^\circ.36$$
$$\omega = 90^\circ.02$$
$$\Omega = 4^\circ.88$$
$$a = 1.458 \times 10^{-5} \text{ A. U.}$$
$$e = .1933$$
$$T = 14.\ h\ 157$$
$$P = 2.\ h\ 5$$

and a plot of the apolune, perilune distances as a function of orbital lifetime are given in Figures 59A and 59B. As may be seen in Figures 59A and 59B several interesting features appear. First we see that the lifetime of the orbit is a strong function of the number of major bodies carried in the computations.
In the Earth, Moon, Sun field the orbit exceeds 25 days (the limit has not been determined). But for the Earth, Moon field with the Solar effect removed, the lifetime is reduced to 220 hours, impact with the Moon terminating the run. A similar situation exists when the Earth's influence is removed with the lifetime reduced to only a few hours.

Secondly there exists a definite pattern showing both the effects of long and short period perturbations. The variation in the osculating orbital elements was derived from the rectangular components of the vehicles position and velocity at six hour intervals for the first 10 days of the orbit. This was done for both the Earth, Moon, Sun and Earth, Moon geometries with the results indicated in Figures 60, 61 and 62. These figures clearly show the rotation of the line of apsides as well as the long period effects in i and Ω. Also to be noted is the definite divergence between the two cases. The length of time of these runs precludes any obvious identification of secular terms except in T. Care should, however, be exercised here as a long period term can over a short interval of time look like a secular term. To show the true periodic variation in a, e, and ω requires that these elements be recomputed for time intervals of the order of one hour instead of the six hour interval employed in these figures.

If a lunar satellite is to be employed to determine the geometrical figure and internal density gradient of the Moon by perturbation analysis of the satellite's orbits, several factors are obvious. From Figure 59B we can see that the difference in perilunes during the mid portion of the orbit is 1.207×10^{-8} A.U. or some 1.12 statute miles. Similarly, for the apolunes we have a difference not exceeding 1.961×10^{-8} A.U. or 1.82 miles. Since this is as close an orbit as one cares to discuss, first perilune is 1.697×10^{-7} A.U. or 15.76 statute miles above the lunar surface, the perturbations shown are about the maximum that can be expected. Hence any tracking equipment must be able to resolve these perturbations with a high degree of accuracy. If this can be
done then an appropriate set of orbital elements can be computed for a known
interval of time. Then a variation of parameters scheme can be introduced.
As an example consider the planetary equations due to Lagrange in which we have

\[
\begin{align*}
\frac{d}{dt} \Omega &= \frac{1}{na^2 (1-e^2)^{1/2} \sin i} \frac{\partial R}{\partial \Omega} - \frac{\tan \frac{i}{2}}{na^2 (1-e^2)^{1/2} \sin i} \frac{\partial R}{\partial \Omega} - \frac{\tan \frac{i}{2}}{na^2 (1-e^2)^{1/2} \sin i} \left[\frac{\partial \mathcal{P}}{\partial \pi} - \frac{\partial \mathcal{R}}{\partial e} \right] \\
\frac{d}{dt} i &= \frac{1}{na^2 (1-e^2)^{1/2} \sin i} \frac{\partial R}{\partial i} - \frac{\tan \frac{i}{2}}{na^2 (1-e^2)^{1/2} \sin i} \frac{\partial R}{\partial i} + \frac{\tan \frac{i}{2}}{na^2 (1-e^2)^{1/2} \sin i} \frac{\partial R}{\partial i} \left[\frac{\partial \mathcal{P}}{\partial \pi} - \frac{\partial \mathcal{R}}{\partial e} \right] \\
\frac{d}{dt} \pi &= \frac{\tan \frac{i}{2}}{na^2 (1-e^2)^{1/2} \sin i} \frac{\partial R}{\partial i} + \frac{(1-e^2)^{1/2}}{na^2} \frac{\partial R}{\partial i} \\
\frac{d}{dt} a &= \frac{2}{na} \frac{\partial R}{\partial e} \\
\frac{d}{dt} e &= -(1-e^2)^{1/2} \left[\frac{1-(1-e^2)^{1/2}}{na^2 e} \frac{\partial R}{\partial e} - \frac{(1-e^2)^{1/2}}{na^2 e} \frac{\partial R}{\partial \pi} \right] \\
\frac{d}{dt} \varepsilon &= \frac{\tan \frac{i}{2}}{na^2 (1-e^2)^{1/2} \sin i} \frac{\partial R}{\partial i} + (1-e^2)^{1/2} \left[\frac{1-(1-e^2)^{1/2}}{na^2 e} \frac{\partial R}{\partial e} - 2 \frac{\partial R}{\partial e} \right]
\end{align*}
\]

where \(\sigma = -nt \), \(\pi = \omega + \Omega \) and \(\varepsilon = \pi + \sigma \) and the other elements have the
conventional meaning. The perturbing forces are contained in the disturbing
function \(R \).
If the left hand side of the above functions are known from the tracking data it is possible to compare these with values obtained from computations based on an assumed theoretical model. Comparisons can be made and in theory at least an improved theoretical model obtained. While it may be possible to arrive at a better figure for the moon in this way the likelihood of determining the density gradient is somewhat more uncertain since the force field is not a uniquely determined function of the density gradient.
VII. LUNAR CIRCUMNAVIGATION AND EARTH RETURN

In addition to the Lunik III trajectory* another Lunar Circumnavigation and Earth Return trajectory was analyzed from an entirely different point of view. In the Lunik III case we are primarily interested in the ability to reproduce the trajectory of the vehicle in Earth-Moon space from crude tracking data. In the case under present consideration we are concerned with the generation of such a trajectory subject to a number of additional constraints. These constraints are manifest in two ways, those associated with the ascent and those associated with the extraterrestrial portions of the flight. In the former such practical problems as booster capabilities, range safety limits, and the launch on time problem are eminent. These must be matched to the geometrical constraints imposed by the extraterrestrial portions of the flight.

An attempt has been made in this section to indicate the effects of these constraints on a Lunar Circumnavigation and Earth Return trajectory with particular emphasis on matching the ascent to the geometrical constraints. Consider the following as an initial set of constraints;

A. ASCENT TRAJECTORY

1. Launch Site: Cape Canaveral
2. Range Safety Limits: $85^\circ - 125^\circ$ in azimuth
3. Firing Azimuth Limits (Azimuth of the velocity vector at injection or burnout point) identical with range safety limits.
4. Flight path angle at injection limited to $0^\circ \leq \theta \leq 3^\circ$ (a booster characteristic)

B. CONDITIONS AT THE MOON

1. Distance of closest approach to Moon's surface $2000 \leq r_M \leq 3000$ miles

*Described in Scientific Report #1
2. Vehicle to pass in front of moon on outbound leg and slightly below Moon's orbital plane. (Necessary to achieve Earth return in Northern Hemisphere)

3. Transit Time = 3.25 for outbound leg (enabling vehicle to be in vicinity of Moon for longest possible time)

C. EARTH RETURN

1. Vehicle to return to the Earth in the Northern hemisphere and in a suitable recovery area.

2. Vehicle to return to the Earth in direction of the Earth's rotation (direct motion)

3. Vehicle to return at an altitude of from 200 ≤ h ≤ 300 miles above the Earth's surface.

In arbitrarily specifying a set of constraints such as that listed above it is possible to overdefine the problem. A solution may not exist for a particular firing date. An indication of this exists in this case but an exhaustive study to definitely ascertain whether such a situation is the case or not has not been made.

To match the ascent and geometrical constraints it is first necessary to determine the orientation of the velocity vector at the time of injection. Thus, we must specify the time (t), the firing azimuth (A_Z) and the flight path angle (θ) at the injection point. Since we have already placed a constraint on θ our free parameters become t and A_Z. Initially then we wish to select values of t and A_Z such that the orbital plane of our vehicle intersects the orbital plane of the moon some 3.25 after injection.

To obtain preliminary values for A_Z and t a method based on a two body approximation was tried. It was realized at the outset that the final values
for A_z and t could only be obtained from the n-body program by trial and error since a solution to the two point boundary value problem in n-body space does not exist in explicit form. However, it was hoped that the preliminary values would be sufficiently close to the final values for A_z and t to greatly reduce the convergence time. It is appropriate to mention at this point that we have selected a direct ascent trajectory, fully realizing that for extreme declinations of the Moon one may be forced to employ a coasting orbit.

The results of such an approximation give A_z as a function of t, launching site latitude (ϕ) and the coordinates of the Moon. For any specific case ϕ and the coordinates of the Moon enter as fixed parameters. For this problem we have taken the time as September 25, 1960, and the Moon's coordinates at the vehicle's time of arrival (3.25 later) as

$$
a = 18^h 37^m 27.8^s
$$

$$
\delta = -18^o 19' 51.5"
$$

where ζ is the right ascension and δ is the declination of the Moon.

The injection point was taken as 1500 miles downrange at an azimuth value of 110^o and altitude of 750000 ft over a spherical Earth.

A convenient relation between the firing azimuth and the launching time, can be obtained as follows:

Let (i_x, i_y, i_z) be unit vectors defining a geocentric equatorial coordinate system and (ξ, η) be a horizon-altitude system connected with the injection point. Then a unit vector \vec{l} along the firing azimuth is given by

$$
\vec{l} = \zeta \cos A_z + \eta \sin A_z.
$$
Rotation into the \((i_x', i_y', i_z')\) System gives

\[
\vec{f} = -(\cos A_z \sin \phi \cos a_L + \sin A_z \sin a_L)i_x \\
+ (\sin A_z \cos a_L - \cos A_z \sin \phi \sin a_L)i_y \\
+ (\cos \phi \cos A_z)i_z
\]

Unit vector normal to the plane of the orbit is given by \(\vec{W} = \vec{r} \times \vec{f}\)
where \(\vec{r}\) is the unit vector defining the launching site.

From a dot product of \(\vec{W}\) and a unit vector defining the Moon's direction at the encounter we obtain

\[
\tan A_z = \frac{\sin (a_L - a_\zeta)}{\sin \phi \left[\cos (a_L - a_\zeta) - \tan \delta_\zeta \cot \phi \right]}
\]

where

- \(a_L\) = Launching site right ascension
- \(a_\zeta\) = right ascension of the Moon
- \(\delta_\zeta\) = declination of the Moon
- \(\phi\) = launch site latitude

Since the n-body program employed in this search requires initial velocity components to be expressed in the geocentric equatorial system it was convenient to employ the following expressions:

\[
\dot{x} = V_T \left[\sin \theta \cos \phi \cos a_L - \cos \theta (\cos A_z \sin \phi \cos a_L + \sin A_z \sin a_L) \right]
\]

\[
\dot{y} = V_T \left[\sin \theta \cos \phi \sin a_L + \cos \theta (\sin A_z \cos a_L - \cos A_z \sin \phi \sin a_L) \right]
\]

\[
\dot{z} = V_T \left[\sin \theta \sin \phi + \cos \theta \cos \phi \cos A_z \right]
\]
where θ is the flight path angle, V_T is the total injection velocity, and ϕ is the latitude of the injection place.

Choosing now the launching site, injection point, lunar coordinates, and the trip time as specified earlier, we can plot the firing azimuth as a function of time on September 25, 1960. This plot is shown in Figure 63. (Only Eastward firings have been considered.) Note that the range in firing azimuth is quite restricted. There are two reasons for this. First of all firing on steep branches is impractical because any launching delays will require excessive re-adjustment of azimuth. Secondly most of the diagram lies outside the range safety limits of 85° to 125°.

From this point the procedure was rather straightforward. Three variables remained open to us. These were launching right ascension a_L, total velocity V_T, and the flight path angle θ. Trip time can hardly be considered a bonafide parameter.

The total velocity was fixed at a value which was found reasonable from previous studies. Then for values of $\theta = 1^\circ, 2^\circ, 3^\circ$ launching time was varied over the upper allowable part of the $A_z - t_L$ diagram. This is the region where the firing azimuth varies relatively slowly with launching time.

The resulting initial conditions $x_o, y_o, z_o, \dot{x}_o, \dot{y}_o, \dot{z}_o$ were employed in the n-body program. The bodies used were the Sun, Earth, Moon, and the vehicle. Note carefully that the Earth's oblateness was retained in the n-body program. Also, the initial conditions as used are based on a two body, approximation (no oblateness considered).

The very first runs indicated two problem areas. The first of these is that for the small range in θ one cannot use an arbitrary combination of A_z, t_L. In fact it appears that A_z, t_L diagram must include a grid of
constant θ lines to be really useful. The situation as it exists shows that we are firing almost at right angles to the initial radius vector. The line of apsides of the resulting orbit turns almost 90° away from the intended point of encounter. One can compensate for this effect by a large flight path angle. Yet in our case this variable is restricted to a narrow range. Thus the only way to correct this problem is to employ smaller values of a_L. In our case this forced us to employ a value for $A_z = 85^\circ$ which is practically the limit of the allowable range.

The second problem is the fact that first runs placed the vehicle far below the moon. Part of the rotation of the line of apsides described above, and the great dip of the trajectory below the Moon's orbital plane can be attributed to the effect of Earth oblateness.

To make the z component of the vehicle in the Moon's vicinity acceptable at all, it was found necessary to aim at a declination much different from that of the actual Moon. In our case the final value was in the neighborhood of -8° degrees as compared to -18° for the actual position of the target.

This experience indicates that the two body estimates of the launching conditions have an extremely limited value and should be modified. Since the declination of the target point must be watched so closely, this quantity became in our case an additional variable.

Our approach indicated finally that a reasonable circumnavigating trajectory results for the following conditions:

\[
\begin{align*}
\alpha_T &= 279^\circ 22' 12'' \\
\delta T &= -7^\circ 40'' \\
V_T &= 2.6200445 \times 10^{-4} \text{ AU/hr} \\
\theta &= 2^\circ \\
\delta L &= 19^\circ 13' 22''
\end{align*}
\]
Transit time to the Moon approximately 75 to 85 hours
and the total trip time between 7.5 to 8 days.

A limited error analysis of this trajectory was made over the following
range of input parameters:

\[123.4^\circ < \alpha_L < 124.0^\circ \]
\[-8^\circ 19' 52'' < \delta_T < -7^\circ 19' 52'' \]
\[2.6200226 \times 10^{-4} < V_T < 2.6200666 \times 10^{-4} \]
\[1^\circ < \theta < 3^\circ \]

One of these trajectories is shown in Figures 64, 65 and 66.

The resulting variation of distances of closest approach to the Moon and
on return to the Earth are shown in Figures 67, 68, 69 and 70.

It can be seen that \(r_M \) and \(r_E \) as functions of \(\delta_T \) reach a minimum in
the vicinity of \(-7^\circ 40'\). However, these minimum values do not satisfy the
original specification. Although the closest approach to the Moon is
satisfactory and meets requirements, the value of \(r_E \) is entirely too large.
At any rate \(\delta_T \) can no longer be used to improve either distance.

The variation of these two distances with \(\theta \) exhibits a similar trend.
Thus \(r_E \) reaches a certain minimum which is contrary to specifications from
the start. Not much improvement can be hoped for using this variable.

The next variable, the velocity \(V_T \), causes changes in \(r_E \) and \(r_M \) in
opposite directions. The point of intersection does not satisfy specifications.
A limited hope of improving these two distances lies in the fact that slopes
of the two functions are quite different. Thus at the cost of a slight degrada-
tion of one distance, one may obtain a very substantial improvement in the
other. No attempt was made to investigate this possibility.

Sensitivity of \(r_E \) and \(r_M \) to changes in the right ascension of the launching
point \(\alpha_L \) are shown in Figure 70. Its nature is exactly the same as that
of the previous plot.

It appears then that for this trajectory we have reached near optimum
conditions. Despite this fact the distance of closest approach on return to
the Earth is entirely unsatisfactory. It must be noted that the above discussion
ignored the question of transfer of angular momentum during scattering of the
vehicle by the Moon. As pointed out by Egorov and Sedov in their papers, this
is a parameter which is quite important in determining characteristics of the
return leg of the trajectory. In fact specification B.2 is a direct consequence
of this consideration.

Results of this study can be summarized as follows:

1. Initial conditions established on the basis of a two body problem
were found highly unsatisfactory when used in a more realistic model
of the Earth-Moon System. One of the causes appears to be the
Earth oblateness and the restricted range available for flight path
angles \(\theta \).

2. A "figure 8" trajectory was found which satisfies nearly all engineering
restrictions at launch.

The distance of closest approach at the Moon is satisfactory.

The distance of closest approach to the Earth is unsatisfactory, being
in the neighborhood of 10000 miles and occasionally even higher than
this value. The return, however, does occur in the northern hemi-
sphere in direct motion. The problem of proper recovery site was
not studied for obvious reasons.

The trip time achieved is satisfactory.

3. The limited error analysis indicates that the above trajectory is nearly optimum as far as the distances of closest approach are concerned. Thus, little hope exists for any further improvement.

4. It must be remarked that the above was a direct ascent trajectory. It is conceivable that employment of a coasting arc before final injection will result in better circumnavigation as well as recovery distances. Without question, the coasting arc will largely eliminate constraints associated with the launch on time problem and facilitate solution of the geometrical problem.

With regard to trajectories of this type Figure 71 shows the differences between considering a two body plus oblateness, three body, a four body, and a four body plus oblateness effect on close approaches to the Moon. Since the latter three cannot be handled analytically the only hope of getting a reasonable approximation for \(A_2 \) as a function of \(t \) rests in modifying the two body method as outlined by an oblateness term. No attempt was made to do this on this contract.
VIII. EPHEMERIS COMPUTATION - PALLAS AND VESTA

One of the tasks which the n-body interplanetary trajectory computer program is capable of performing is the compilation of ephemerides. To test this facet of the program, it was decided to reproduce part of the orbit for two of the better observed asteroids the coordinates of which are tabulated in the American Ephemeris and Nautical Almanac. Observational inaccuracies in the ephemerides of artificial earth satellites together with atmospheric drag effects precluded their use. Furthermore, they would only serve as a check on the near earth accuracy of the program, the perturbative forces of the planets being of little or no consequence.

The ephemerides for Pallas and Vesta, as given in the almanac, are tabulated for each day and represent smoothed values for which the integrations were adjusted along the entire orbit. A discussion of the methods employed, intervals selected, etc. can be found in Vol. XI, Part IV of the Astronomical Papers. The smoothing technique employed greatly improves the accuracy of the ephemeris. Individual errors in the order of 5 seconds of arc between the computed and observed values of right ascension and declination is indicative of the accuracy of the observational data for which the ephemerides are compiled. Hence, only six decimal places are printed out in the Almanac. One unit in the last decimal place corresponding to 1×10^{-6} A. U. throughout.

Our purpose here is to select a small segment of observed data and to predict the future positions of the body. This represents the case most useful to artificial satellite ephemeris compilations in which the future position of the body is of interest. This will be compared with runs obtained by selecting data over a larger segment of the orbit indicating the improvement to be expected. The latter will indicate the need for a time history (past history of the satellite's position) of some extent if future position type ephemerides are to be accurately obtained.
For our computations we have used Pallas and Vesta in the combined force field of the Sun, Venus, Earth, Mars, Jupiter and Saturn. Selected data on these two asteroids is given in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Radius (Km)</th>
<th>Volume (cm3)</th>
<th>Mass (grams)</th>
<th>Sidereal Period (days)</th>
<th>a (A. U.)</th>
<th>e</th>
<th>i (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pallas</td>
<td>240</td>
<td>6x1022</td>
<td>20x1022</td>
<td>1684</td>
<td>2.767</td>
<td>.253</td>
<td>34.8</td>
</tr>
<tr>
<td>Vesta</td>
<td>190</td>
<td>30x1021</td>
<td>10x1022</td>
<td>1325</td>
<td>2.361</td>
<td>.088</td>
<td>7.1</td>
</tr>
</tbody>
</table>

It should be noted that they represent both extremes with regard to orbital eccentricity and inclination that is found among the brighter asteroids.

Selecting ten tabular geocentric positions from the almanac, a numerical differentiation scheme was employed to obtain the velocity vector at one of the tabular values and hence a complete set of initial conditions for the n-body trajectory program was obtained. The data represented a period of time of ten days. A run was made using these conditions. Then a linear differential correction scheme for each component of the velocity vector was applied to improve the original estimates of the velocity components. This was accomplished by employing the tabular position data at three day intervals but now extended over a period of sixty days. A set of normal equations were obtained the solution of which yielded the desired corrections. This entire procedure was again repeated at three day intervals but with the period extended to one hundred and fifty days for Vesta, and with six day intervals over one hundred and fifty days for Pallas.

The results of these computations are shown in Figure 72 for Pallas and 73 for Vesta. As may be seen, the ephemerides computed from the short time history soon indicate large errors. While the residuals are small over
the fitted portion of each orbit they soon build up to substantial errors further along in time. We can conclude that in compiling ephemerides of this type a long time history for the object under study is a prime requisite. This would allow the entire orbit to be fitted at one time a procedure used in astronomy. This does not necessarily mean that a great number of data points are required but rather that they be obtained at selected intervals over the entire orbit. Intervals in the order of 20 to 40 days are common in astronomical practice. In the case of Pallas and Vesta, whose periods are 4.6 and 3.6 years respectively, the 20 day interval necessitates the use of some 84 and 66 points respectively.

An additional effect that can be noticed in Figures 72 and 73 is a slight oscillation in the residuals. A satisfactory explanation of their cause has not as yet been determined. Generally speaking, the amplitudes of the oscillations are slightly less for Pallas than for Vesta.
References:

 The reader interested in detailed aspects of practical astronomy can find a wealth of material in the following references:
Figure 2. Topocentric Coordinate System
Figure 3. Geocentric and Topocentric Coordinate System
Figure 4. Percentage Error in Velocity as a Function of the Time Interval Between Positions

-105-
Figure 5. Number of Iterations Required to Reach a Solution as a Function of the Time Interval.
Figure 6. Schematic No. 1
Figure 7. Schematic No. 2
Figure 6. Schematic No. 1
Figure 8. Schematic No. 3
$\rho = \overline{OO'}$

O - CENTER OF THE EARTH

T.S. - TRACKING SITE

T.S. - $O' = h =$ BURNOUT ALTITUDE

Figure 10. Coordinate System Used in Error Analysis
Figure 12. Error Coefficient as a Function of Error in Initial Position
Figure 13. Error Coefficient as a Function of Error in Initial Velocity
Figure 14. Distance of Closest Approach as a Function of Initial Position $|\rho|$
Figure 15. Miss Distance as a Function of Error in Position Angle θ
Figure 16. Miss Distance as a Function of Error in Position Angle ψ.
Figure 17. Miss Distance as a Function of Error in Initial Velocity
Figure 18. Miss Distance as a Function of Error in Velocity Angle α.
Figure 19. Miss Distance as a Function of Error in Velocity Angle β
Figure 20. Distance of Closest Approach as a Function of Position Angle ϕ
Figure 22. Distance of Closest Approach as a Function of Initial Velocity V
Figure 23. Distance of Closest Approach as Function of Velocity Angle $\Delta \alpha$
Figure 24. Distance of Closest Approach as a Function of Error in Velocity Angle β
Figure 26. Error in Position Angle ψ
Figure 27. Flight Time as a Function of Error in Initial Velocity
Figure 29. Flight Time as a Function of Error in Velocity Angle β
Figure 30. Latitude and Longitude of Error Trajectories Taken About the Nominal at the Surface of Moon
Figure 31. Miss Distance as a Function of Error in Burnout Altitude
Figure 32. Miss Distance as a Function of Error in θ.

-133-
Figure 33. Miss Distance as a Function of Error in ψ
Figure 36. Miss Distance as a Function of Error in Velocity Angle β
Figure 38. Distance of Closest Approach as a Function of Position Angle θ
Figure 40. Distance of Closest Approach as a Function of Error in Initial Velocity
Figure 41. Distance of Closest Approach as a Function of Velocity Angle $\Delta \alpha$.

- $R_p \times 10^{-6}$ AU
- R_M
- -0.5 to 0.5
- 0.05 to 0.5
- 0.10 to 0.25
- 0.15 to 0.3
- 0.25 to 0.35

NOV. 15
Figure 42. Distance of Closest Approach as a Function of Velocity Angle β
Figure 43. Miss Distance as a Function of Error in Burnout Altitude
Figure 44. Miss Distance as a Function of Error in θ
Figure 45. Miss Distance as a Function of Error in ψ
Figure 46. Miss Distance as a Function of Error in Initial Velocity
Figure 47. Miss Distance as a Function of Error in Velocity Angle β.
Figure 48. Distance of Closest Approach as a Function of Burnout Altitude
Figure 49. Distance of Closest Approach as a Function of Position Angle $\Delta \theta$.
Figure 50. Distance of Closest Approach as a Function of Position Angle ψ
Figure 51. Distance of Closest Approach as a Function of Error in Initial Velocity.
Figure 52. Distance of Closest Approach as a Function of Velocity Angle α
Figure 53. Distance of Closest Approach as a Function of Velocity Angle β
Figure 54.
(X,Y) PROJECTION OF LUNAR ORBIT

TO EARTH

Y x 10^{-5} AU

1.0

0.5

LUNAR DISC

X x 10^{-5} AU

0.5

1.0

Figure 56.
Figure 57.
Figure 58.

YZ PROJECTION OF LUNAR ORBIT

$Z \times 10^{-9}$ A.U.

$Y \times 10^{-9}$ A.U.

LUNAR DISC.
Figure 63.
\[
\begin{align*}
\alpha_L &= 124^\circ \\
\delta_L &= 19^\circ 13' 22'' \\
\alpha_T &= 279^\circ 22' 11'' 9 \\
\delta_T &= -8^\circ 19' 51'' 5 \\
\theta &= 2^\circ \\
\dot{V}_T &= 2.6200446 \times 10^{-4}\text{A.U./HR.} \\
\text{STARTING TIME} &= 6443.910
\end{align*}
\]

\[
\begin{align*}
X &= -2.3322323 \times 10^{-5}\text{A.U.} \\
y &= 3.4576766 \times 10^{-5}\text{A.U.} \\
Z &= 1.4642524 \times 10^{-5}\text{A.U.} \\
\dot{X} &= -20537647 \times 10^{-4}\text{A.U./HR.} \\
\dot{y} &= -1.5163549 \times 10^{-4}\text{A.U./HR.} \\
\dot{Z} &= 5.8935615 \times 10^{-5}\text{A.U./HR.} \\
\text{TRIP TIME} &= 7.5\text{ DAYS}
\end{align*}
\]

Figure 64.
Figure 65.
Figure 66.

\begin{align*}
\alpha_L &= 124^\circ \\
\delta_L &= 19^\circ 13' 22" \\
\alpha_{e_T} &= 279^\circ 22' 11'' 9 \\
\delta_{e_T} &= -8^\circ 19' 51'' 5 \\
\theta &= 2^\circ \\
V_r &= 2.6200446 \times 10^{-4} \text{ A.U./HR.} \\
\text{STARTING TIME} &= 6443.910 \\
x &= 2.3322323 \times 10^{-8} \text{ A.U.} \\
y &= 3.4576766 \times 10^{-9} \text{ A.U.} \\
z &= 1.4542524 \times 10^{-9} \text{ A.U.} \\
x &= -2.0537647 \times 10^{-9} \text{ A.U.} \\
y' &= 1.5163549 \times 10^{-9} \text{ A.U./HR.} \\
z' &= 5.8936615 \times 10^{-9} \text{ A.U./HR.} \\
\text{TRIP TIME} &= 7.5 \text{ DAYS}
\end{align*}
Figure 67. Distance of Closest Approach to the Moon and Earth as a Function
$a_{x_T} = 279° 22' 12''$

$\delta_{x_T} = -8° 19' 52''$

$\delta_L = 19° 13' 22''$

$\alpha_L = 124° .0000$

$\theta = 2°$

Figure 69.

-171-
$V = 2.620045 \times 10^{-4}\text{A.U./HR.}$

$\theta = 2^\circ$

$\delta_{\alpha_T} = -8^\circ 19' 51''$

$\alpha_{\alpha_T} = 279^\circ 22' 12''$

$\delta_L = 19^\circ 13' 22''$

Figure 70.
Figure 72. Pallas Ephemeris Residuals
Figure 73. Vesta Ephemeris Residuals
APPENDIX A

MODIFICATION OF THE LUNAR TRAJECTORY PROGRAM TO N-BODY COMPUTER PROGRAM

This report pointed out earlier that the original Lunar Trajectory Program had been extended to cover all major bodies of the Solar System \((n = 9)\). The resulting equations of motion differ in no way from those given in the Scientific Report No. 1. Thus, the equation of motion of body \(m_1\) with respect to the body \(m_2\) is given by

\[
\ddot{r}_{ik} = -k^2 \left(m_k + m_1 \right) \frac{\overrightarrow{r}_{ik}}{r_{ik}^3} + k^2 \sum_{j=1}^{N} \left[\frac{\overrightarrow{r}_{jk} - \overrightarrow{r}_{ik}}{r_{ij}^3} - \frac{\overrightarrow{r}_{jk}}{r_{jk}^3} \right]_j \quad \text{for } j \neq i, j \neq k
\]

The oblateness correction remains the same as in that Report. The change to include a greater number of bodies does not affect either the method of solution or the integration method employed. The heart of the extended program - the planetary tables - was described in the Scientific Report No. 1.

The physical data appropriate for the added bodies are given in Table I of this Appendix. It is to be noted that much of the data is included simply for interest and is not used in computations.

The present Appendix also includes the operational procedure for the "n-body interplanetary trajectory program" as written for the IBM 7090 computer. The information contained in this procedure is that required by an engineer and a machine operator to set up problems on the computer.
<table>
<thead>
<tr>
<th>Body</th>
<th>Code</th>
<th>Code Digit</th>
<th>Mass (Solar mass units)</th>
<th>Mass (Earth mass units)</th>
<th>Equatorial radius (Earth radii)</th>
<th>Obliquity (degree)</th>
<th>Obliquity constant (degree)</th>
<th>Mean rotational angular velocity (radians/hr)</th>
<th>Mean planetary distance (Earth radii)</th>
<th>Mean daily motion (degree)</th>
<th>Inclination of orbit to ecliptic (degree)</th>
<th>Declination of North pole of planet (degree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>0</td>
<td>331,452</td>
<td>2.9991227373 x 10^27</td>
<td>3.98646 x 10^10</td>
<td>0.034</td>
<td>1.6732 x 10^-3</td>
<td>7.62516</td>
<td>1.0</td>
<td>3.484.107</td>
<td>0</td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td>Sun</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>48.55</td>
<td>0.0</td>
<td>0.0</td>
<td>0.01944</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Moon</td>
<td>2</td>
<td>27,158,036-4</td>
<td>3.8821513 x 10^-7</td>
<td>3.8821513 x 10^-7</td>
<td>1.162</td>
<td>0.0</td>
<td>0.0</td>
<td>0.095212</td>
<td>1.0</td>
<td>1.00571</td>
<td>47.44, 490</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>3</td>
<td>6,000,000</td>
<td>3.3333333333 x 10^-6</td>
<td>3.8888888888 x 10^-6</td>
<td>1.62</td>
<td>0.0</td>
<td>0.0</td>
<td>0.095212</td>
<td>1.0</td>
<td>1.00571</td>
<td>47.44, 490</td>
<td></td>
</tr>
<tr>
<td>Venus</td>
<td>4</td>
<td>408,000</td>
<td>3.3333333333 x 10^-6</td>
<td>3.3333333333 x 10^-6</td>
<td>1.416</td>
<td>0.0</td>
<td>0.0</td>
<td>0.095212</td>
<td>1.0</td>
<td>1.00571</td>
<td>47.44, 490</td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td>5</td>
<td>1,093,500</td>
<td>3.3333333333 x 10^-6</td>
<td>3.3333333333 x 10^-6</td>
<td>0.57</td>
<td>0.0</td>
<td>0.0</td>
<td>0.095212</td>
<td>1.0</td>
<td>1.00571</td>
<td>47.44, 490</td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td>6</td>
<td>1,047,355</td>
<td>3.3333333333 x 10^-6</td>
<td>3.3333333333 x 10^-6</td>
<td>0.57</td>
<td>0.0</td>
<td>0.0</td>
<td>5.02043</td>
<td>1.0</td>
<td>1.00571</td>
<td>47.44, 490</td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td>7</td>
<td>5,001.6</td>
<td>3.3333333333 x 10^-6</td>
<td>3.3333333333 x 10^-6</td>
<td>0.46</td>
<td>0.0</td>
<td>0.0</td>
<td>0.095212</td>
<td>1.0</td>
<td>1.00571</td>
<td>47.44, 490</td>
<td></td>
</tr>
<tr>
<td>Uranus</td>
<td>8</td>
<td>22,869</td>
<td>3.3333333333 x 10^-6</td>
<td>3.3333333333 x 10^-6</td>
<td>1.60</td>
<td>0.0</td>
<td>0.0</td>
<td>0.095212</td>
<td>1.0</td>
<td>1.00571</td>
<td>47.44, 490</td>
<td></td>
</tr>
<tr>
<td>Neptune</td>
<td>9</td>
<td>15,316</td>
<td>3.3333333333 x 10^-6</td>
<td>3.3333333333 x 10^-6</td>
<td>1.60</td>
<td>0.0</td>
<td>0.0</td>
<td>0.095212</td>
<td>1.0</td>
<td>1.00571</td>
<td>47.44, 490</td>
<td></td>
</tr>
</tbody>
</table>

For some bodies: this data is for the atmosphere of the body.

Tri-axial ellipsoid.
In addition, a description is given of the binary table tapes used to obtain planetary positions and a flow diagram showing the general sequence of computations and logic of the program. Finally a complete listing of the n-body trajectory program is provided.

A. COMPUTER INPUT

This section lists the computer input required for the n-body program. This covers the computation of the trajectory from an initial velocity and position.

All decimal input is read on line by a modified DBC Fortran subroutine which accepts variable length fields. A copy of the write-up for this subroutine is incorporated in Section F of this Appendix. Note that the number of fields per card is arbitrary except that the first field of each Read statement must start a new card. Also note that the first field of each Read statement must be preceded by the character identifying the type of conversion. There are eight Read statements in the program and the quantities starting these statements will be designated as such.

B. N-BODY TRAJECTORY PROGRAM (Operational Directory)

Following is the list of the input quantities and then the input for a sample problem. All fields are floating point numbers except for starred fields which are integers. The units used are:

- Mass - Solar mass units.
- Time - hours (Table time is time in hours from the beginning of the input table tape. It is directly related to calendar time.)
- Distance - Astronomical units.
- Velocity - Astronomical units/hour.
Read Statement 1

Field 1 = \(k^2 \) (gravitational constant)
Field 2 = \(M_e \) (Mass of Earth)
Field 3 = \(R_e \) (Radius of Earth)
Field 4 = \(M_v \) (Mass of Vehicle)
Field 5 = \(J' \) (Constant used for oblateness = \(J \cdot M_e \cdot R_e \))

Read Statement 2

Field 1 = \(D_{emax} \) (Maximum distance of vehicle from Earth)
Field 2 = \(D_{tmax} \) (Maximum distance of vehicle from Target)
Field 3 = \(D_{smax} \) (Maximum distance of vehicle from Sun)
Field 4 = \(T_{end} \) (Maximum trip time of run)
Field 5 = \(T_{start} \) (Starting trip time of run)

Read Statement 3

*Field 1 = 1 if initial scheme is Encke
0 if initial scheme is Cowell
*Field 2 = 0 if \(\Delta T \) is determined by \(\epsilon \) test
1 if 3 fixed \(\Delta T \)'s are used
*Field 3 = 1 if switching computing scheme
0 if computing scheme is fixed
*Field 4 = \(M \) print output every \(M \) intervals
*Field 5 = 1 switch origins
0 do not switch origins

Read Statement 4 (used only if Field 2 of Read Statement 3 is a 0.)

Field 1 = \(\Delta T_1 \) (Initial \(\Delta T \))
Field 2 = ΔT_{max} (Maximum ΔT)

Field 3 = ϵ value to test minimum accuracy of integration

Read Statement 5 (used only if Field 2 of Read Statement 3 is a 1.)

Field 1 = ΔT_1 (ΔT to be used when the vehicle is within 3 radii of origin).

Field 2 = ΔT_2 (ΔT to be used when the vehicle is within 100 radii of origin).

Field 3 = ΔT_3 (ΔT to be used when the vehicle is further than 100 radii from origin).

Read Statement 6

*Field 1 = N (The number of bodies to be used other than the earth which is always included).

*Field 2 = Code (Code digit indicating the body used as the initial origin. The code is listed below).

*Field 3 = Code (Code digit of the target body).

Read Statement 7 (This statement is read once for each body to be used, except the earth. The number is obtained from Field 1 of Read Statement 6).

*Field 1 = Code (Code digit of a body to be used).

Field 2 = M_m (Mass of this body)

Field 3 = R_m (Radius of this body)

Read Statement 8

Field 1 = X (X distance of vehicle from origin)

Field 2 = Y (Y distance of vehicle from origin)

Field 3 = Z (Z distance of vehicle from origin)

Field 4 = X (X velocity WRT origin)

Field 5 = Y (Y velocity WRT origin)

Field 6 = Z (Z velocity WRT origin)
Code Digits of Bodies

0 = Earth
1 = Sun
2 = Moon
3 = Mercury
4 = Venus
5 = Mars
6 = Jupiter
7 = Saturn
8 = Uranus
9 = Neptune

SAMPLE TRAJECTORY

Description:

Cowell method only.

Earth is origin and remains as origin.

Other bodies included are -

Sun

Moon (target)

Initial Time is 6:00 A.M., January 5, 1960

Maximum Flight time is 30 days (720 hrs.)

Starting time of table tape is 0.00, January 1, 1960.

\[X = 4.82537 \times 10^{-5} \]
\[Y = -4.18 \times 10^{-5} \]
\[Z = 4.22 \times 10^{-6} \]
\[X = -1.44092 \times 10^{-4} \]
\[Y = 1.967513 \times 10^{-4} \]
\[Z = 9.23 \times 10^{-6} \]
The ΔT is to be determined by the program using an ϵ of 4.0×10^{-10} and an initial ΔT of 1 hr. and a maximum ΔT of 8 hrs.

Input Cards:

1. F5. 1373647E-7, 2.99911226E-6, 4.263E-5, 0, -8.846148E-18*
2. F.5, .5, 1, 822, 102*
3. X0, 0, 0, 1, 0*
4. F1, 8, 4E-10*
5. X2, 0, 2*
6. X1, F1.0, 4.646E-3*
7. X2, F3.68215133E-8, 1.1637E-5*
8. F4. 82537E-5, -4.18E-5, 4.22E-6*
9. -1.44092E-4, -1.967513E-4, -9.23E-6*

C. COMPUTER OUTPUT

The following information for the n-body integration program is printed-out after every n integration steps, where n is an input-control parameter.

1. Flight time, hours from start of trajectory
2. Table time, hours from beginning of tape
3. Time increment of integration step, hours
4. Planetary code digit of body at the origin
5. Acceleration components of the vehicle with respect to the origin, A. U. /hr2
6. Velocity components of the vehicle with respect to the origin, A. U. /hr
7. Position coordinates of the vehicle with respect to the origin, A. U.
8. Position coordinates of the vehicle with respect to the Earth, A. U.
9. Position coordinates of the vehicle with respect to the target, A. U.
10. Position coordinates of the vehicle with respect to the Sun, A. U.

D. OPERATING NOTES FOR THE N-BODY TRAJECTORY PROGRAM

1. Tapes Used

All tapes used in normal Fortran System. Tape B-6, Planet Position Tables Tape.

2. Sense Switches

Sense switch I is the only switch tested. In the down position, output will be printed on-line as well as on tape A-3. The sense switch may be repositioned at any time. Printing on line uses the Share No. 2 printer board.

3. Card Deck

Normal Fortran system deck set-up with input cases following. Operation is initiated by the Fortran system.

4. Stops

a. All Fortran stops

b. Stops of form HTR*. These are double precision subroutine stops caused by overflow. Experience has shown these to be due to machine error or input error.

c. HPR 77777 - Error in two-body solution.

* To begin processing another case when machine has stopped, manually transfer to 1718.
E. DESCRIPTION OF BINARY-TABLE TAPES

The binary-table tapes give the "table time" and position coordinates of the Sun, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and the Moon at intervals of 12 hours. The positions are specified in terms of rectangular, geocentric equatorial coordinates referenced to the mean equator and equinox of 1950.0. Table Time is time in hours from the beginning of the tape; i.e., the first time on the tape is zero. Zero time may correspond to any given calendar time; however, it should be chosen to anticipate future requirements for the following reasons:

1. It is desirable to minimize the time used by the computer in searching the tape. This time is minimized if the starting time is near "table time" zero.

2. The writing of tapes should be kept to a minimum due to the relatively long time required to write a tape.

Table Time is directly related, and easily converted, to Calendar Time or Julian Time. Table Time was used because it provides certain advantages which Julian Time and Calendar Time do not provide. Calendar Time is awkward to use because the number of days per month and per year is not constant. While Julian Time does not present this problem, the numbers are of a large magnitude with respect to the units used in the program; i.e., hours. In order to reduce round-off error, it is necessary to measure the time with numbers of a smaller magnitude than those provided by Julian Time.

Zero time for the tape is January 1, 1960.0 Ephemeris Time, and the corresponding Julian day is 2436934.5. A table relating table day to Julian date and Calendar date may be found in Section G of this Appendix. The time of day for each listing is 0h E.T., and therefore the Table Time in hours from the beginning of the tape for any given day may be found by multiplying
the table-day by 24 hours. The table in Section G covers the period from January 1, 1960.0 to December 31, 1964.0.

The binary tape is composed of one tape with the actual arrangement of the binary information as follows:

<table>
<thead>
<tr>
<th>WORD</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>X for body 1</td>
</tr>
<tr>
<td>3</td>
<td>Y for body 1</td>
</tr>
<tr>
<td>4</td>
<td>Z for body 1</td>
</tr>
<tr>
<td>5</td>
<td>X for body 2</td>
</tr>
<tr>
<td>6</td>
<td>Y for body 2</td>
</tr>
<tr>
<td>7</td>
<td>Z for body 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>X for body 9</td>
</tr>
<tr>
<td>27</td>
<td>Y for body 9</td>
</tr>
<tr>
<td>28</td>
<td>Z for body 9</td>
</tr>
<tr>
<td>29</td>
<td>Time</td>
</tr>
<tr>
<td>30</td>
<td>X for body 1</td>
</tr>
<tr>
<td>31</td>
<td>Y for body 1</td>
</tr>
<tr>
<td>32</td>
<td>Z for body 1</td>
</tr>
<tr>
<td>33</td>
<td>X for body 2</td>
</tr>
</tbody>
</table>

etc.

This information is grouped by taking 60 sets of data totaling 1680 words (a set is composed of a time and all the associated positions) and writing one physical tape record, except for the first record which has only 5 sets of data, totaling 140 words.
F. DESCRIPTION OF MODIFIED DBC FORTRAN INPUT ROUTINE

This section describes a Fortran II BCD input-routine capable of accepting variable-length fields.

1. Replace the DBC subprogram and its control card with deck input 00-

2. The lists for "READ" and "READ INPUT TAPE" remain the same. Since format statements are ignored these may be anything which permits legal compilation. (Exception: see Hollerith No. 6 below).

3. a. Fields must be separated by commas.
 b. Blanks are treated as zeros and blank cards are ignored.
 c. The number of fields per card is completely arbitrary and may vary from run to run. The first field of each read statement must start a new card.
 d. The last field of every card must be terminated by an asterisk.
 e. The type of conversion is determined by the first character of a field. Omission of this character results in continuing the previous type conversion. (The first field for each read statement must contain a type conversion entry.)
 f. Signs are optional.

4. Floating Point Conversion
 a. Identifying character F
 b. Powers of 10 may be represented by the exponent preceded by an E.
 c. Decimal points are optional. When not included it is assumed to be following the least significant digit of the number.
 d. Decimal points are illegal for exponents.
Examples:
\[
\begin{align*}
F + 5.8E.1, \\
F58, \\
F.58E2, \\
F58., \\
F58E.E-1,
\end{align*}
\]

Acceptable formats of the same number

5. Integer Conversion
a. Identifying Character X.
b. The converted number modulo 32767 is stored in the decrement.
c. Decimal points should not be punched.

Examples:
\[
\begin{align*}
X150, \\
X15-, \\
X--150,
\end{align*}
\]

Acceptable formats of the same number

6. Hollerith Conversion (Used only to replace format statements)
a. Format statements may be replaced (but not the concluding 7's) by the Hollerith characters if the associated "READ" statement has no list.
b. Identifying Character H
c. The number of BCD words and a comma must immediately follow the H with no blanks.
d. Maximum number of BCD words 99.
e. Column 1 of any continuation card follows column 72 of the previous card.
Examples:

H4, ---(312, 7H1TEST- = E12. 4-)

7. Examples:

a. The following is an example of a read statement, and cards that could be used. (Format 5 is ignored.)

READ 5, N, L, J. {A(I), I = 1, J}, {B(M), M = 1, L}

Deck 1
Card 1 X5, 2, --4, F3.24E-08, -8.2E. 4, 1, F9.2*
Card 2 3.25.6E + 4*

Deck 2
Card 1 X5, X2, X4, F.324E-7, 82---, 1.0*
Card 2 92E-1,320E-02*
Card 3 58. E3*

Deck 3
Card 1 X-------5, ------2*
Card 2
Card 3 F.00324E-05, -.82E + 5, .1E1, 9.2*
Card 4 3.2*
Card 5 5800-*

Error Stops:

<table>
<thead>
<tr>
<th>Stop</th>
<th>Error</th>
<th>Action to be taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPR-1, 1</td>
<td>Card does not end with * or number of BCD words is undefined.</td>
<td>Correct card, ready reader, and start.</td>
</tr>
</tbody>
</table>

A-13
<table>
<thead>
<tr>
<th>Stop</th>
<th>Error</th>
<th>Action to be taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPR-1, 2</td>
<td>No comma between fields.</td>
<td>Start to treat unidentified character as a comma.</td>
</tr>
<tr>
<td>HPR-1, 3</td>
<td>Field undefined.</td>
<td>Start to treat as floating point conversion.</td>
</tr>
</tbody>
</table>
Figure A-1a. Flow Chart of the N-Body Program
Figure A-1b. Flow Chart of the N-Body Program
JULIAN DATE AND CALENDAR DATE VS.

Julian Day
243693*.5
2436935,5
2436936*5
2436937.5
2436938.5
2436939.5
2436940.5
2436941.5
2436942.5
2436943.5
2436944.5
243694!). 5
2436946.5
2436947.5
2436946.5
2436949.5
2436950.5
2436951.5
2436952«5
2436953.$
2436954.5
2436955.5
2436956.5
2436957.5
2436958.5
2436959.5
243-6960.5
2436961»!)
2436f62.!>
2436963«!»
2436964,:!
2436965*!'
2436966.!
2436967*5
2436968.5
2436969.5
2436970.5
2436971.5
2436972*5
2436973,5
2436974.5
2436975*5
2436976*5
2436977,5
2436978.5
2436979*5
2436980.5
2436981*5
2436982.5
2436983.5
2436984.5
2436985.5
2436986.5
2436987.5
2436988*5
2436589 ,,5
2436990.5
243699L5
2436992.5

Calendar Day
h
(O E T.)
JAN

JAN
JAN
JAN
JAN
JAN
JAf.

JAN
J.AN

JAN
FEB

It 1960
2. 1960
3t 1960
4t 1960
5. 1960
6» 1960
7, 1960
e. 1960
9i 1960
10 1960
111 1960
12 1960
13i 1960
141 1960
15. 1960
16. 1960
17« J.960
18. 1960
19 1960
20. .I960
21. 1960
22
1960
23. i960
24 1960
25 i 1960
26 1960
27 • 1960
28 . 1960
29 . 1960
30 » 1960
31 . 1960
1 • 1960
2 • 1960
3 > 1960
4 . 1960
5 » i960
6 • 1960
7 t 1960

e.

9»
10 ,
11 •
12 .
13 »
14 »
15 .
16 .
17 ►
18 .
19 •
20 .
21 .
22 t
23 »
24 •
re n 25 ►
FEB 26 »
FEB 27 i
FEB 28 •

1960
i960
1960
1960
I960
1960
1960
1960
1960
1960
1960
1960
1960
1960
1960
1960
1960
1960
1960
1960
1960

TABLE-DAY

Calendar Day
(Oh E. T.)

Table

Day
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
?9
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
525*

Julian Day
2436993.5
2436994.5
2436995.5
2436996.5
2436997.5
2436998.5
2436999.5
24370Ö0.5
2437001.5
2437002.5
2*37003.5
2437004.5
2437005.5
2437006.5
2437007.5
2437008.5
2437009,5
2437010.5
2437011.5
2437012.5
2437013.5
2437014.5
2437015.5
2437016,5
^437017.5
2437018.5
24370if>.5
2437020.5
2437021.5
2437022.5
^437023.5
:437024,5
.437025.5
437026.5
/437027.5
i»37028.5
-5.37029.5
437030.5
. <*37031.5
,*37032.5
.•♦37033.5
2. 37034,5
2»37035,5
2 37036.5
«: ^,7037.5
2 37038.5
2.«* „7039.5
2 57040.5
2 ;7041.5
2t3)042.5
24' '043.5
2v»V044.5
2- V 045.5
2&;?~046.3
24 H047.5
24 ;048«5
24' 7-549.5
24;?H50.5

54
55|
5#
5#

24 •ftvfl*i

5

1

j

A-17

FEB 29» 1960
MAR
It i960
MAR
2» 1960
MAR
3t lf60
MAR 4t 1960
MAR
5t 1960
MAR 6* 1960
MAR
7t 1960
MAR 8t 1960
MAR 9. 1960
MAR 10t 1960
MAR lit 1960
MAR 12t 1960
MAR 13. 1960
MAR 14» 1960
MAR 15t 1960
MAR 16t 1960
MAR 17t 1960
MAR 18t 1960
MAR 19, 1960
MAR 20t 1960
MAR 21t 1960
MAR 22» 1960
MAR 23» 1960
MAR 24, 1960
MAR 25» 1960
MAR 26t 1960
MAR 27t 1960
MAR 28t 1960
MAR 29t 1960
MAR 30t 1960
MAR 31t 1960
APR
1» I960
APR 2t 1960
APR
3t 1960
APR 4t 1960
APR
5t 1960
APR 6» 1960
APR 7. 1960
APR 8» 1960
APR 9. i960
APR 10» 1960
APR 11» 1960
APR 12» 1960
APR 13» 1960
APR 14t 1960
APR 15t 1960
APR 16» 1960
APR 17t I960
APR 18, 1960
APR 19t 1960
APR 20t 1960
APR 21t 1960
APR 22t 1960
APR 23t 1960
APK 24. 1960
APR 25» 1960
APR 26» 1960
APR 27» 1960

Table
Day
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117


<table>
<thead>
<tr>
<th>Date</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR 28, 1960</td>
<td>118</td>
<td>2437111.5</td>
<td>JUN 26, 1960</td>
<td>177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APR 29, 1960</td>
<td>119</td>
<td>2437112.5</td>
<td>JUN 27, 1960</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APR 30, 1960</td>
<td>120</td>
<td>2437113.5</td>
<td>JUN 28, 1960</td>
<td>179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 1, 1960</td>
<td>121</td>
<td>2437114.5</td>
<td>JUN 29, 1960</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 2, 1960</td>
<td>122</td>
<td>2437115.5</td>
<td>JUN 30, 1960</td>
<td>181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 3, 1960</td>
<td>123</td>
<td>2437116.5</td>
<td>JUL 1, 1960</td>
<td>182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 4, 1960</td>
<td>124</td>
<td>2437117.5</td>
<td>JUL 2, 1960</td>
<td>183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 5, 1960</td>
<td>125</td>
<td>2437118.5</td>
<td>JUL 3, 1960</td>
<td>184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 6, 1960</td>
<td>126</td>
<td>2437119.5</td>
<td>JUL 4, 1960</td>
<td>185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 7, 1960</td>
<td>127</td>
<td>2437120.5</td>
<td>JUL 5, 1960</td>
<td>186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 8, 1960</td>
<td>128</td>
<td>2437121.5</td>
<td>JUL 6, 1960</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 9, 1960</td>
<td>129</td>
<td>2437122.5</td>
<td>JUL 7, 1960</td>
<td>188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 10, 1960</td>
<td>1.0</td>
<td>2437123.5</td>
<td>JUL 8, 1960</td>
<td>189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 11, 1960</td>
<td>131</td>
<td>2437124.5</td>
<td>JUL 9, 1960</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 12, 1960</td>
<td>132</td>
<td>2437125.5</td>
<td>JUL 10, 1960</td>
<td>191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 13, 1960</td>
<td>133</td>
<td>2437126.5</td>
<td>JUL 11, 1960</td>
<td>192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 14, 1960</td>
<td>134</td>
<td>2437127.5</td>
<td>JUL 12, 1960</td>
<td>193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 15, 1960</td>
<td>135</td>
<td>2437128.5</td>
<td>JUL 13, 1960</td>
<td>194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 16, 1960</td>
<td>136</td>
<td>2437129.5</td>
<td>JUL 14, 1960</td>
<td>195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 17, 1960</td>
<td>137</td>
<td>2437130.5</td>
<td>JUL 15, 1960</td>
<td>196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 18, 1960</td>
<td>138</td>
<td>2437131.5</td>
<td>JUL 16, 1960</td>
<td>197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 19, 1960</td>
<td>139</td>
<td>2437132.5</td>
<td>JUL 17, 1960</td>
<td>198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 20, 1960</td>
<td>140</td>
<td>2437133.5</td>
<td>JUL 18, 1960</td>
<td>199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 21, 1960</td>
<td>141</td>
<td>2437134.5</td>
<td>JUL 19, 1960</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 22, 1960</td>
<td>142</td>
<td>2437135.5</td>
<td>JUL 20, 1960</td>
<td>201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 23, 1960</td>
<td>143</td>
<td>2437136.5</td>
<td>JUL 21, 1960</td>
<td>202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 24, 1960</td>
<td>144</td>
<td>2437137.5</td>
<td>JUL 22, 1960</td>
<td>203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 25, 1960</td>
<td>145</td>
<td>2437138.5</td>
<td>JUL 23, 1960</td>
<td>204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 26, 1960</td>
<td>146</td>
<td>2437139.5</td>
<td>JUL 24, 1960</td>
<td>205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 27, 1960</td>
<td>147</td>
<td>2437140.5</td>
<td>JUL 25, 1960</td>
<td>206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 28, 1960</td>
<td>148</td>
<td>2437141.5</td>
<td>JUL 26, 1960</td>
<td>207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 29, 1960</td>
<td>149</td>
<td>2437142.5</td>
<td>JUL 27, 1960</td>
<td>208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 30, 1960</td>
<td>150</td>
<td>2437143.5</td>
<td>JUL 28, 1960</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 31, 1960</td>
<td>151</td>
<td>2437144.5</td>
<td>JUL 29, 1960</td>
<td>210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 1, 1960</td>
<td>152</td>
<td>2437145.5</td>
<td>JUL 30, 1960</td>
<td>211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 2, 1960</td>
<td>153</td>
<td>2437146.5</td>
<td>JUL 31, 1960</td>
<td>212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 3, 1960</td>
<td>154</td>
<td>2437147.5</td>
<td>AUG 1, 1960</td>
<td>213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 4, 1960</td>
<td>155</td>
<td>2437148.5</td>
<td>AUG 2, 1960</td>
<td>214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 5, 1960</td>
<td>156</td>
<td>2437149.5</td>
<td>AUG 3, 1960</td>
<td>215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 6, 1960</td>
<td>157</td>
<td>2437150.5</td>
<td>AUG 4, 1960</td>
<td>216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 7, 1960</td>
<td>158</td>
<td>2437151.5</td>
<td>AUG 5, 1960</td>
<td>217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 8, 1960</td>
<td>159</td>
<td>2437152.5</td>
<td>AUG 6, 1960</td>
<td>218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 9, 1960</td>
<td>160</td>
<td>2437153.5</td>
<td>AUG 7, 1960</td>
<td>219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 10, 1960</td>
<td>161</td>
<td>2437154.5</td>
<td>AUG 8, 1960</td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 11, 1960</td>
<td>162</td>
<td>2437155.5</td>
<td>AUG 9, 1960</td>
<td>221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 12, 1960</td>
<td>163</td>
<td>2437156.5</td>
<td>AUG 10, 1960</td>
<td>222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 13, 1960</td>
<td>164</td>
<td>2437157.5</td>
<td>AUG 11, 1960</td>
<td>223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 14, 1960</td>
<td>165</td>
<td>2437158.5</td>
<td>AUG 12, 1960</td>
<td>224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 15, 1960</td>
<td>166</td>
<td>2437159.5</td>
<td>AUG 13, 1960</td>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 16, 1960</td>
<td>167</td>
<td>2437160.5</td>
<td>AUG 14, 1960</td>
<td>226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 17, 1960</td>
<td>168</td>
<td>2437161.5</td>
<td>AUG 15, 1960</td>
<td>227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 18, 1960</td>
<td>169</td>
<td>2437162.5</td>
<td>AUG 16, 1960</td>
<td>228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 19, 1960</td>
<td>170</td>
<td>2437163.5</td>
<td>AUG 17, 1960</td>
<td>229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 20, 1960</td>
<td>171</td>
<td>2437164.5</td>
<td>AUG 18, 1960</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 21, 1960</td>
<td>172</td>
<td>2437165.5</td>
<td>AUG 19, 1960</td>
<td>231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 22, 1960</td>
<td>173</td>
<td>2437166.5</td>
<td>AUG 20, 1960</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 23, 1960</td>
<td>174</td>
<td>2437167.5</td>
<td>AUG 21, 1960</td>
<td>233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 24, 1960</td>
<td>175</td>
<td>2437168.5</td>
<td>AUG 22, 1960</td>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN 25, 1960</td>
<td>176</td>
<td>2437169.5</td>
<td>AUG 23, 1960</td>
<td>235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AUG 24, 1960</td>
<td>236</td>
<td>2437229.5</td>
<td>OCT 22, 1960</td>
<td>295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 25, 1960</td>
<td>237</td>
<td>2437230.5</td>
<td>OCT 23, 1960</td>
<td>296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 26, 1960</td>
<td>238</td>
<td>2437231.5</td>
<td>OCT 24, 1960</td>
<td>297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 27, 1960</td>
<td>239</td>
<td>2437232.5</td>
<td>OCT 25, 1960</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 28, 1960</td>
<td>240</td>
<td>2437233.5</td>
<td>OCT 26, 1960</td>
<td>299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 29, 1960</td>
<td>241</td>
<td>2437234.5</td>
<td>OCT 27, 1960</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 30, 1960</td>
<td>242</td>
<td>2437235.5</td>
<td>OCT 28, 1960</td>
<td>301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 31, 1960</td>
<td>243</td>
<td>2437236.5</td>
<td>OCT 29, 1960</td>
<td>302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 1, 1960</td>
<td>244</td>
<td>2437237.5</td>
<td>OCT 30, 1960</td>
<td>303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 2, 1960</td>
<td>245</td>
<td>2437238.5</td>
<td>OCT 31, 1960</td>
<td>304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 3, 1960</td>
<td>246</td>
<td>2437239.5</td>
<td>NOV 1, 1960</td>
<td>305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 4, 1960</td>
<td>247</td>
<td>2437240.5</td>
<td>NOV 2, 1960</td>
<td>306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 5, 1960</td>
<td>248</td>
<td>2437241.5</td>
<td>NOV 3, 1960</td>
<td>307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 6, 1960</td>
<td>249</td>
<td>2437242.5</td>
<td>NOV 4, 1960</td>
<td>308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 7, 1960</td>
<td>250</td>
<td>2437243.5</td>
<td>NOV 5, 1960</td>
<td>309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 8, 1960</td>
<td>251</td>
<td>2437244.5</td>
<td>NOV 6, 1960</td>
<td>310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 9, 1960</td>
<td>252</td>
<td>2437245.5</td>
<td>NOV 7, 1960</td>
<td>311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 10, 1960</td>
<td>253</td>
<td>2437246.5</td>
<td>NOV 8, 1960</td>
<td>312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 11, 1960</td>
<td>254</td>
<td>2437247.5</td>
<td>NOV 9, 1960</td>
<td>313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 12, 1960</td>
<td>255</td>
<td>2437248.5</td>
<td>NOV 10, 1960</td>
<td>314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 13, 1960</td>
<td>256</td>
<td>2437249.5</td>
<td>NOV 11, 1960</td>
<td>315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 14, 1960</td>
<td>257</td>
<td>2437250.5</td>
<td>NOV 12, 1960</td>
<td>316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 15, 1960</td>
<td>258</td>
<td>2437251.5</td>
<td>NOV 13, 1960</td>
<td>317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 16, 1960</td>
<td>259</td>
<td>2437252.5</td>
<td>NOV 14, 1960</td>
<td>318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 17, 1960</td>
<td>260</td>
<td>2437253.5</td>
<td>NOV 15, 1960</td>
<td>319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 18, 1960</td>
<td>261</td>
<td>2437254.5</td>
<td>NOV 16, 1960</td>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 19, 1960</td>
<td>262</td>
<td>2437255.5</td>
<td>NOV 17, 1960</td>
<td>321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 20, 1960</td>
<td>263</td>
<td>2437256.5</td>
<td>NOV 18, 1960</td>
<td>322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 21, 1960</td>
<td>264</td>
<td>2437257.5</td>
<td>NOV 19, 1960</td>
<td>323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 22, 1960</td>
<td>265</td>
<td>2437258.5</td>
<td>NOV 20, 1960</td>
<td>324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 23, 1960</td>
<td>266</td>
<td>2437259.5</td>
<td>NOV 21, 1960</td>
<td>325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 24, 1960</td>
<td>267</td>
<td>2437260.5</td>
<td>NOV 22, 1960</td>
<td>326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 25, 1960</td>
<td>268</td>
<td>2437261.5</td>
<td>NOV 23, 1960</td>
<td>327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 26, 1960</td>
<td>269</td>
<td>2437262.5</td>
<td>NOV 24, 1960</td>
<td>328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 27, 1960</td>
<td>270</td>
<td>2437263.5</td>
<td>NOV 25, 1960</td>
<td>329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 28, 1960</td>
<td>271</td>
<td>2437264.5</td>
<td>NOV 26, 1960</td>
<td>330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 29, 1960</td>
<td>272</td>
<td>2437265.5</td>
<td>NOV 27, 1960</td>
<td>331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 30, 1960</td>
<td>273</td>
<td>2437266.5</td>
<td>NOV 28, 1960</td>
<td>332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 1, 1960</td>
<td>274</td>
<td>2437267.5</td>
<td>NOV 29, 1960</td>
<td>333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 2, 1960</td>
<td>275</td>
<td>2437268.5</td>
<td>NOV 30, 1960</td>
<td>334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 3, 1960</td>
<td>276</td>
<td>2437269.5</td>
<td>DEC 1, 1960</td>
<td>335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 4, 1960</td>
<td>277</td>
<td>2437270.5</td>
<td>DEC 2, 1960</td>
<td>336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 5, 1960</td>
<td>278</td>
<td>2437271.5</td>
<td>DEC 3, 1960</td>
<td>337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 6, 1960</td>
<td>279</td>
<td>2437272.5</td>
<td>DEC 4, 1960</td>
<td>338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 7, 1960</td>
<td>280</td>
<td>2437273.5</td>
<td>DEC 5, 1960</td>
<td>339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 8, 1960</td>
<td>281</td>
<td>2437274.5</td>
<td>DEC 6, 1960</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 9, 1960</td>
<td>282</td>
<td>2437275.5</td>
<td>DEC 7, 1960</td>
<td>341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 10, 1960</td>
<td>283</td>
<td>2437276.5</td>
<td>DEC 8, 1960</td>
<td>342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 11, 1960</td>
<td>284</td>
<td>2437277.5</td>
<td>DEC 9, 1960</td>
<td>343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 12, 1960</td>
<td>285</td>
<td>2437278.5</td>
<td>DEC 10, 1960</td>
<td>344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 13, 1960</td>
<td>286</td>
<td>2437279.5</td>
<td>DEC 11, 1960</td>
<td>345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 14, 1960</td>
<td>287</td>
<td>2437280.5</td>
<td>DEC 12, 1960</td>
<td>346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 15, 1960</td>
<td>288</td>
<td>2437281.5</td>
<td>DEC 13, 1960</td>
<td>347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 16, 1960</td>
<td>289</td>
<td>2437282.5</td>
<td>DEC 14, 1960</td>
<td>348</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 17, 1960</td>
<td>290</td>
<td>2437283.5</td>
<td>DEC 15, 1960</td>
<td>349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 18, 1960</td>
<td>291</td>
<td>2437284.5</td>
<td>DEC 16, 1960</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 19, 1960</td>
<td>292</td>
<td>2437285.5</td>
<td>DEC 17, 1960</td>
<td>351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 20, 1960</td>
<td>293</td>
<td>2437286.5</td>
<td>DEC 18, 1960</td>
<td>352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 21, 1960</td>
<td>294</td>
<td>2437287.5</td>
<td>DEC 19, 1960</td>
<td>353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>JAN</td>
<td>FEB</td>
<td>MAR</td>
<td>APR</td>
<td>MAY</td>
<td>JUN</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>26</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>28</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>29</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>31</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

A-20
<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
<th>Date</th>
<th>Value</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR 17, 1961</td>
<td>472</td>
<td>JUN 15, 1961</td>
<td>2437465.5</td>
<td>531</td>
<td></td>
</tr>
<tr>
<td>APR 18, 1961</td>
<td>473</td>
<td>JUN 16, 1961</td>
<td>2437466.5</td>
<td>532</td>
<td></td>
</tr>
<tr>
<td>APR 19, 1961</td>
<td>474</td>
<td>JUN 17, 1961</td>
<td>2437467.5</td>
<td>533</td>
<td></td>
</tr>
<tr>
<td>APR 20, 1961</td>
<td>475</td>
<td>JUN 18, 1961</td>
<td>2437468.5</td>
<td>534</td>
<td></td>
</tr>
<tr>
<td>APR 21, 1961</td>
<td>476</td>
<td>JUN 19, 1961</td>
<td>2437469.5</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>APR 22, 1961</td>
<td>477</td>
<td>JUN 20, 1961</td>
<td>2437470.5</td>
<td>536</td>
<td></td>
</tr>
<tr>
<td>APR 23, 1961</td>
<td>478</td>
<td>JUN 21, 1961</td>
<td>2437471.5</td>
<td>537</td>
<td></td>
</tr>
<tr>
<td>APR 24, 1961</td>
<td>479</td>
<td>JUN 22, 1961</td>
<td>2437472.5</td>
<td>538</td>
<td></td>
</tr>
<tr>
<td>APR 25, 1961</td>
<td>480</td>
<td>JUN 23, 1961</td>
<td>2437473.5</td>
<td>539</td>
<td></td>
</tr>
<tr>
<td>APR 26, 1961</td>
<td>481</td>
<td>JUN 24, 1961</td>
<td>2437474.5</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>APR 27, 1961</td>
<td>482</td>
<td>JUN 25, 1961</td>
<td>2437475.5</td>
<td>541</td>
<td></td>
</tr>
<tr>
<td>APR 28, 1961</td>
<td>483</td>
<td>JUN 26, 1961</td>
<td>2437476.5</td>
<td>542</td>
<td></td>
</tr>
<tr>
<td>APR 29, 1961</td>
<td>484</td>
<td>JUN 27, 1961</td>
<td>2437477.5</td>
<td>543</td>
<td></td>
</tr>
<tr>
<td>APR 30, 1961</td>
<td>485</td>
<td>JUN 28, 1961</td>
<td>2437478.5</td>
<td>544</td>
<td></td>
</tr>
<tr>
<td>MAY 1, 1961</td>
<td>486</td>
<td>JUN 29, 1961</td>
<td>2437479.5</td>
<td>545</td>
<td></td>
</tr>
<tr>
<td>MAY 2, 1961</td>
<td>487</td>
<td>JUN 30, 1961</td>
<td>2437480.5</td>
<td>546</td>
<td></td>
</tr>
<tr>
<td>MAY 3, 1961</td>
<td>488</td>
<td>JUL 1, 1961</td>
<td>2437481.5</td>
<td>547</td>
<td></td>
</tr>
<tr>
<td>MAY 4, 1961</td>
<td>489</td>
<td>JUL 2, 1961</td>
<td>2437482.5</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td>MAY 5, 1961</td>
<td>490</td>
<td>JUL 3, 1961</td>
<td>2437483.5</td>
<td>549</td>
<td></td>
</tr>
<tr>
<td>MAY 6, 1961</td>
<td>491</td>
<td>JUL 4, 1961</td>
<td>2437484.5</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>MAY 7, 1961</td>
<td>492</td>
<td>JUL 5, 1961</td>
<td>2437485.5</td>
<td>551</td>
<td></td>
</tr>
<tr>
<td>MAY 8, 1961</td>
<td>493</td>
<td>JUL 6, 1961</td>
<td>2437486.5</td>
<td>552</td>
<td></td>
</tr>
<tr>
<td>MAY 9, 1961</td>
<td>494</td>
<td>JUL 7, 1961</td>
<td>2437487.5</td>
<td>553</td>
<td></td>
</tr>
<tr>
<td>MAY 10, 1961</td>
<td>495</td>
<td>JUL 8, 1961</td>
<td>2437488.5</td>
<td>554</td>
<td></td>
</tr>
<tr>
<td>MAY 11, 1961</td>
<td>496</td>
<td>JUL 9, 1961</td>
<td>2437489.5</td>
<td>555</td>
<td></td>
</tr>
<tr>
<td>MAY 12, 1961</td>
<td>497</td>
<td>JUL 10, 1961</td>
<td>2437490.5</td>
<td>556</td>
<td></td>
</tr>
<tr>
<td>MAY 13, 1961</td>
<td>498</td>
<td>JUL 11, 1961</td>
<td>2437491.5</td>
<td>557</td>
<td></td>
</tr>
<tr>
<td>MAY 14, 1961</td>
<td>499</td>
<td>JUL 12, 1961</td>
<td>2437492.5</td>
<td>558</td>
<td></td>
</tr>
<tr>
<td>MAY 15, 1961</td>
<td>500</td>
<td>JUL 13, 1961</td>
<td>2437493.5</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td>MAY 16, 1961</td>
<td>501</td>
<td>JUL 14, 1961</td>
<td>2437494.5</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>MAY 17, 1961</td>
<td>502</td>
<td>JUL 15, 1961</td>
<td>2437495.5</td>
<td>561</td>
<td></td>
</tr>
<tr>
<td>MAY 18, 1961</td>
<td>503</td>
<td>JUL 16, 1961</td>
<td>2437496.5</td>
<td>562</td>
<td></td>
</tr>
<tr>
<td>MAY 19, 1961</td>
<td>504</td>
<td>JUL 17, 1961</td>
<td>2437497.5</td>
<td>563</td>
<td></td>
</tr>
<tr>
<td>MAY 20, 1961</td>
<td>505</td>
<td>JUL 18, 1961</td>
<td>2437498.5</td>
<td>564</td>
<td></td>
</tr>
<tr>
<td>MAY 21, 1961</td>
<td>506</td>
<td>JUL 19, 1961</td>
<td>2437499.5</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>MAY 22, 1961</td>
<td>507</td>
<td>JUL 20, 1961</td>
<td>2437500.5</td>
<td>566</td>
<td></td>
</tr>
<tr>
<td>MAY 23, 1961</td>
<td>508</td>
<td>JUL 21, 1961</td>
<td>2437501.5</td>
<td>567</td>
<td></td>
</tr>
<tr>
<td>MAY 24, 1961</td>
<td>509</td>
<td>JUL 22, 1961</td>
<td>2437502.5</td>
<td>568</td>
<td></td>
</tr>
<tr>
<td>MAY 25, 1961</td>
<td>510</td>
<td>JUL 23, 1961</td>
<td>2437503.5</td>
<td>569</td>
<td></td>
</tr>
<tr>
<td>MAY 26, 1961</td>
<td>511</td>
<td>JUL 24, 1961</td>
<td>2437504.5</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>MAY 27, 1961</td>
<td>512</td>
<td>JUL 25, 1961</td>
<td>2437505.5</td>
<td>571</td>
<td></td>
</tr>
<tr>
<td>MAY 28, 1961</td>
<td>513</td>
<td>JUL 26, 1961</td>
<td>2437506.5</td>
<td>572</td>
<td></td>
</tr>
<tr>
<td>MAY 29, 1961</td>
<td>514</td>
<td>JUL 27, 1961</td>
<td>2437507.5</td>
<td>573</td>
<td></td>
</tr>
<tr>
<td>MAY 30, 1961</td>
<td>515</td>
<td>JUL 28, 1961</td>
<td>2437508.5</td>
<td>574</td>
<td></td>
</tr>
<tr>
<td>MAY 31, 1961</td>
<td>516</td>
<td>JUL 29, 1961</td>
<td>2437509.5</td>
<td>575</td>
<td></td>
</tr>
<tr>
<td>JUN 1, 1961</td>
<td>517</td>
<td>JUL 30, 1961</td>
<td>2437510.5</td>
<td>576</td>
<td></td>
</tr>
<tr>
<td>JUN 2, 1961</td>
<td>518</td>
<td>JUL 31, 1961</td>
<td>2437511.5</td>
<td>577</td>
<td></td>
</tr>
<tr>
<td>JUN 3, 1961</td>
<td>519</td>
<td>AUG 1, 1961</td>
<td>2437512.5</td>
<td>578</td>
<td></td>
</tr>
<tr>
<td>JUN 4, 1961</td>
<td>520</td>
<td>AUG 2, 1961</td>
<td>2437513.5</td>
<td>579</td>
<td></td>
</tr>
<tr>
<td>JUN 5, 1961</td>
<td>521</td>
<td>AUG 3, 1961</td>
<td>2437514.5</td>
<td>580</td>
<td></td>
</tr>
<tr>
<td>JUN 6, 1961</td>
<td>522</td>
<td>AUG 4, 1961</td>
<td>2437515.5</td>
<td>581</td>
<td></td>
</tr>
<tr>
<td>JUN 7, 1961</td>
<td>523</td>
<td>AUG 5, 1961</td>
<td>2437516.5</td>
<td>582</td>
<td></td>
</tr>
<tr>
<td>JUN 8, 1961</td>
<td>524</td>
<td>AUG 6, 1961</td>
<td>2437517.5</td>
<td>583</td>
<td></td>
</tr>
<tr>
<td>JUN 9, 1961</td>
<td>525</td>
<td>AUG 7, 1961</td>
<td>2437518.5</td>
<td>584</td>
<td></td>
</tr>
<tr>
<td>JUN 10, 1961</td>
<td>526</td>
<td>AUG 8, 1961</td>
<td>2437519.5</td>
<td>585</td>
<td></td>
</tr>
<tr>
<td>JUN 11, 1961</td>
<td>527</td>
<td>AUG 9, 1961</td>
<td>2437520.5</td>
<td>586</td>
<td></td>
</tr>
<tr>
<td>JUN 12, 1961</td>
<td>528</td>
<td>AUG 10, 1961</td>
<td>2437521.5</td>
<td>587</td>
<td></td>
</tr>
<tr>
<td>JUN 13, 1961</td>
<td>529</td>
<td>AUG 11, 1961</td>
<td>2437522.5</td>
<td>588</td>
<td></td>
</tr>
<tr>
<td>JUN 14, 1961</td>
<td>530</td>
<td>AUG 12, 1961</td>
<td>2437523.5</td>
<td>589</td>
<td></td>
</tr>
</tbody>
</table>

A-21
<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUG 13</td>
<td>2437525.5</td>
<td>OCT 11</td>
<td>649</td>
</tr>
<tr>
<td>AUG 14</td>
<td>2437525.5</td>
<td>OCT 12</td>
<td>650</td>
</tr>
<tr>
<td>AUG 15</td>
<td>2437526.5</td>
<td>OCT 13</td>
<td>651</td>
</tr>
<tr>
<td>AUG 16</td>
<td>2437527.5</td>
<td>OCT 14</td>
<td>652</td>
</tr>
<tr>
<td>AUG 17</td>
<td>2437528.5</td>
<td>OCT 15</td>
<td>653</td>
</tr>
<tr>
<td>AUG 18</td>
<td>2437529.5</td>
<td>OCT 16</td>
<td>654</td>
</tr>
<tr>
<td>AUG 19</td>
<td>2437530.5</td>
<td>OCT 17</td>
<td>655</td>
</tr>
<tr>
<td>AUG 20</td>
<td>2437531.5</td>
<td>OCT 18</td>
<td>656</td>
</tr>
<tr>
<td>AUG 21</td>
<td>2437532.5</td>
<td>OCT 19</td>
<td>657</td>
</tr>
<tr>
<td>AUG 22</td>
<td>2437533.5</td>
<td>OCT 20</td>
<td>658</td>
</tr>
<tr>
<td>AUG 23</td>
<td>2437534.5</td>
<td>OCT 21</td>
<td>659</td>
</tr>
<tr>
<td>AUG 24</td>
<td>2437535.5</td>
<td>OCT 22</td>
<td>660</td>
</tr>
<tr>
<td>AUG 25</td>
<td>2437536.5</td>
<td>OCT 23</td>
<td>661</td>
</tr>
<tr>
<td>AUG 26</td>
<td>2437537.5</td>
<td>OCT 24</td>
<td>662</td>
</tr>
<tr>
<td>AUG 27</td>
<td>2437538.5</td>
<td>OCT 25</td>
<td>663</td>
</tr>
<tr>
<td>AUG 28</td>
<td>2437539.5</td>
<td>OCT 26</td>
<td>664</td>
</tr>
<tr>
<td>AUG 29</td>
<td>2437540.5</td>
<td>OCT 27</td>
<td>665</td>
</tr>
<tr>
<td>AUG 30</td>
<td>2437541.5</td>
<td>OCT 28</td>
<td>666</td>
</tr>
<tr>
<td>SEP 1</td>
<td>2437542.5</td>
<td>OCT 29</td>
<td>667</td>
</tr>
<tr>
<td>SEP 2</td>
<td>2437543.5</td>
<td>OCT 30</td>
<td>668</td>
</tr>
<tr>
<td>SEP 3</td>
<td>2437544.5</td>
<td>OCT 31</td>
<td>669</td>
</tr>
<tr>
<td>SEP 4</td>
<td>2437545.5</td>
<td>NOV 1</td>
<td>670</td>
</tr>
<tr>
<td>SEP 5</td>
<td>2437546.5</td>
<td>NOV 2</td>
<td>671</td>
</tr>
<tr>
<td>SEP 6</td>
<td>2437547.5</td>
<td>NOV 3</td>
<td>672</td>
</tr>
<tr>
<td>SEP 7</td>
<td>2437548.5</td>
<td>NOV 4</td>
<td>673</td>
</tr>
<tr>
<td>SEP 8</td>
<td>2437549.5</td>
<td>NOV 5</td>
<td>674</td>
</tr>
<tr>
<td>SEP 9</td>
<td>2437550.5</td>
<td>NOV 6</td>
<td>675</td>
</tr>
<tr>
<td>SEP 10</td>
<td>2437551.5</td>
<td>NOV 7</td>
<td>676</td>
</tr>
<tr>
<td>SEP 11</td>
<td>2437552.5</td>
<td>NOV 8</td>
<td>677</td>
</tr>
<tr>
<td>SEP 12</td>
<td>2437553.5</td>
<td>NOV 9</td>
<td>678</td>
</tr>
<tr>
<td>SEP 13</td>
<td>2437554.5</td>
<td>NOV 10</td>
<td>679</td>
</tr>
<tr>
<td>SEP 14</td>
<td>2437555.5</td>
<td>NOV 11</td>
<td>680</td>
</tr>
<tr>
<td>SEP 15</td>
<td>2437556.5</td>
<td>NOV 12</td>
<td>681</td>
</tr>
<tr>
<td>SEP 16</td>
<td>2437557.5</td>
<td>NOV 13</td>
<td>682</td>
</tr>
<tr>
<td>SEP 17</td>
<td>2437558.5</td>
<td>NOV 14</td>
<td>683</td>
</tr>
<tr>
<td>SEP 18</td>
<td>2437559.5</td>
<td>NOV 15</td>
<td>684</td>
</tr>
<tr>
<td>SEP 19</td>
<td>2437560.5</td>
<td>NOV 16</td>
<td>685</td>
</tr>
<tr>
<td>SEP 20</td>
<td>2437561.5</td>
<td>NOV 17</td>
<td>686</td>
</tr>
<tr>
<td>SEP 21</td>
<td>2437562.5</td>
<td>NOV 18</td>
<td>687</td>
</tr>
<tr>
<td>SEP 22</td>
<td>2437563.5</td>
<td>NOV 19</td>
<td>688</td>
</tr>
<tr>
<td>SEP 23</td>
<td>2437564.5</td>
<td>NOV 20</td>
<td>689</td>
</tr>
<tr>
<td>SEP 24</td>
<td>2437565.5</td>
<td>NOV 21</td>
<td>690</td>
</tr>
<tr>
<td>SEP 25</td>
<td>2437566.5</td>
<td>NOV 22</td>
<td>691</td>
</tr>
<tr>
<td>SEP 26</td>
<td>2437567.5</td>
<td>NOV 23</td>
<td>692</td>
</tr>
<tr>
<td>SEP 27</td>
<td>2437568.5</td>
<td>NOV 24</td>
<td>693</td>
</tr>
<tr>
<td>SEP 28</td>
<td>2437569.5</td>
<td>NOV 25</td>
<td>694</td>
</tr>
<tr>
<td>SEP 29</td>
<td>2437570.5</td>
<td>NOV 26</td>
<td>695</td>
</tr>
<tr>
<td>SEP 30</td>
<td>2437571.5</td>
<td>NOV 27</td>
<td>696</td>
</tr>
<tr>
<td>OCT 1</td>
<td>2437572.5</td>
<td>NOV 28</td>
<td>697</td>
</tr>
<tr>
<td>OCT 2</td>
<td>2437573.5</td>
<td>DEC 1</td>
<td>700</td>
</tr>
<tr>
<td>OCT 3</td>
<td>2437574.5</td>
<td>DEC 2</td>
<td>701</td>
</tr>
<tr>
<td>OCT 4</td>
<td>2437575.5</td>
<td>DEC 3</td>
<td>702</td>
</tr>
<tr>
<td>OCT 5</td>
<td>2437576.5</td>
<td>DEC 4</td>
<td>703</td>
</tr>
<tr>
<td>OCT 6</td>
<td>2437577.5</td>
<td>DEC 5</td>
<td>704</td>
</tr>
<tr>
<td>OCT 7</td>
<td>2437578.5</td>
<td>DEC 6</td>
<td>705</td>
</tr>
<tr>
<td>OCT 8</td>
<td>2437579.5</td>
<td>DEC 7</td>
<td>706</td>
</tr>
<tr>
<td>OCT 9</td>
<td>2437580.5</td>
<td>DEC 8</td>
<td>707</td>
</tr>
<tr>
<td>OCT 10</td>
<td>2437581.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT 11</td>
<td>2437582.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APR 6, 1962</td>
<td>826</td>
<td>2437819.5</td>
<td>JUN 4, 1962</td>
</tr>
<tr>
<td>APR 7, 1962</td>
<td>827</td>
<td>2437820.5</td>
<td>JUN 5, 1962</td>
</tr>
<tr>
<td>APR 8, 1962</td>
<td>828</td>
<td>2437821.5</td>
<td>JUN 6, 1962</td>
</tr>
<tr>
<td>APR 9, 1962</td>
<td>829</td>
<td>2437822.5</td>
<td>JUN 7, 1962</td>
</tr>
<tr>
<td>APR 10, 1962</td>
<td>830</td>
<td>2437823.5</td>
<td>JUN 8, 1962</td>
</tr>
<tr>
<td>APR 11, 1962</td>
<td>831</td>
<td>2437824.5</td>
<td>JUN 9, 1962</td>
</tr>
<tr>
<td>APR 12, 1962</td>
<td>832</td>
<td>2437825.5</td>
<td>JUN 10, 1962</td>
</tr>
<tr>
<td>APR 13, 1962</td>
<td>833</td>
<td>2437826.5</td>
<td>JUN 11, 1962</td>
</tr>
<tr>
<td>APR 14, 1962</td>
<td>834</td>
<td>2437827.5</td>
<td>JUN 12, 1962</td>
</tr>
<tr>
<td>APR 15, 1962</td>
<td>835</td>
<td>2437828.5</td>
<td>JUN 13, 1962</td>
</tr>
<tr>
<td>APR 16, 1962</td>
<td>836</td>
<td>2437829.5</td>
<td>JUN 14, 1962</td>
</tr>
<tr>
<td>APR 17, 1962</td>
<td>837</td>
<td>2437830.5</td>
<td>JUN 15, 1962</td>
</tr>
<tr>
<td>APR 18, 1962</td>
<td>838</td>
<td>2437831.5</td>
<td>JUN 16, 1962</td>
</tr>
<tr>
<td>APR 19, 1962</td>
<td>839</td>
<td>2437832.5</td>
<td>JUN 17, 1962</td>
</tr>
<tr>
<td>APR 20, 1962</td>
<td>840</td>
<td>2437833.5</td>
<td>JUN 18, 1962</td>
</tr>
<tr>
<td>APR 21, 1962</td>
<td>841</td>
<td>2437834.5</td>
<td>JUN 19, 1962</td>
</tr>
<tr>
<td>APR 22, 1962</td>
<td>842</td>
<td>2437835.5</td>
<td>JUN 20, 1962</td>
</tr>
<tr>
<td>APR 23, 1962</td>
<td>843</td>
<td>2437836.5</td>
<td>JUN 21, 1962</td>
</tr>
<tr>
<td>APR 24, 1962</td>
<td>844</td>
<td>2437837.5</td>
<td>JUN 22, 1962</td>
</tr>
<tr>
<td>APR 25, 1962</td>
<td>845</td>
<td>2437838.5</td>
<td>JUN 23, 1962</td>
</tr>
<tr>
<td>APR 26, 1962</td>
<td>846</td>
<td>2437839.5</td>
<td>JUN 24, 1962</td>
</tr>
<tr>
<td>APR 27, 1962</td>
<td>847</td>
<td>2437840.5</td>
<td>JUN 25, 1962</td>
</tr>
<tr>
<td>APR 28, 1962</td>
<td>848</td>
<td>2437841.5</td>
<td>JUN 26, 1962</td>
</tr>
<tr>
<td>APR 29, 1962</td>
<td>849</td>
<td>2437842.5</td>
<td>JUN 27, 1962</td>
</tr>
<tr>
<td>APR 30, 1962</td>
<td>850</td>
<td>2437843.5</td>
<td>JUN 28, 1962</td>
</tr>
<tr>
<td>MAY 1, 1962</td>
<td>851</td>
<td>2437844.5</td>
<td>JUN 29, 1962</td>
</tr>
<tr>
<td>MAY 2, 1962</td>
<td>852</td>
<td>2437845.5</td>
<td>JUN 30, 1962</td>
</tr>
<tr>
<td>MAY 3, 1962</td>
<td>853</td>
<td>2437846.5</td>
<td>JUL 1, 1962</td>
</tr>
<tr>
<td>MAY 4, 1962</td>
<td>854</td>
<td>2437847.5</td>
<td>JUL 2, 1962</td>
</tr>
<tr>
<td>MAY 5, 1962</td>
<td>855</td>
<td>2437848.5</td>
<td>JUL 3, 1962</td>
</tr>
<tr>
<td>MAY 6, 1962</td>
<td>856</td>
<td>2437849.5</td>
<td>JUL 4, 1962</td>
</tr>
<tr>
<td>MAY 7, 1962</td>
<td>857</td>
<td>2437850.5</td>
<td>JUL 5, 1962</td>
</tr>
<tr>
<td>MAY 8, 1962</td>
<td>858</td>
<td>2437851.5</td>
<td>JUL 6, 1962</td>
</tr>
<tr>
<td>MAY 9, 1962</td>
<td>859</td>
<td>2437852.5</td>
<td>JUL 7, 1962</td>
</tr>
<tr>
<td>MAY 10, 1962</td>
<td>860</td>
<td>2437853.5</td>
<td>JUL 8, 1962</td>
</tr>
<tr>
<td>MAY 11, 1962</td>
<td>861</td>
<td>2437854.5</td>
<td>JUL 9, 1962</td>
</tr>
<tr>
<td>MAY 12, 1962</td>
<td>862</td>
<td>2437855.5</td>
<td>JUL 10, 1962</td>
</tr>
<tr>
<td>MAY 13, 1962</td>
<td>863</td>
<td>2437856.5</td>
<td>JUL 11, 1962</td>
</tr>
<tr>
<td>MAY 14, 1962</td>
<td>864</td>
<td>2437857.5</td>
<td>JUL 12, 1962</td>
</tr>
<tr>
<td>MAY 15, 1962</td>
<td>865</td>
<td>2437858.5</td>
<td>JUL 13, 1962</td>
</tr>
<tr>
<td>MAY 16, 1962</td>
<td>866</td>
<td>2437859.5</td>
<td>JUL 14, 1962</td>
</tr>
<tr>
<td>MAY 17, 1962</td>
<td>867</td>
<td>2437860.5</td>
<td>JUL 15, 1962</td>
</tr>
<tr>
<td>MAY 18, 1962</td>
<td>868</td>
<td>2437861.5</td>
<td>JUL 16, 1962</td>
</tr>
<tr>
<td>MAY 19, 1962</td>
<td>869</td>
<td>2437862.5</td>
<td>JUL 17, 1962</td>
</tr>
<tr>
<td>MAY 20, 1962</td>
<td>870</td>
<td>2437863.5</td>
<td>JUL 18, 1962</td>
</tr>
<tr>
<td>MAY 21, 1962</td>
<td>871</td>
<td>2437864.5</td>
<td>JUL 19, 1962</td>
</tr>
<tr>
<td>MAY 22, 1962</td>
<td>872</td>
<td>2437865.5</td>
<td>JUL 20, 1962</td>
</tr>
<tr>
<td>MAY 23, 1962</td>
<td>873</td>
<td>2437866.5</td>
<td>JUL 21, 1962</td>
</tr>
<tr>
<td>MAY 24, 1962</td>
<td>874</td>
<td>2437867.5</td>
<td>JUL 22, 1962</td>
</tr>
<tr>
<td>MAY 25, 1962</td>
<td>875</td>
<td>2437868.5</td>
<td>JUL 23, 1962</td>
</tr>
<tr>
<td>MAY 26, 1962</td>
<td>876</td>
<td>2437869.5</td>
<td>JUL 24, 1962</td>
</tr>
<tr>
<td>MAY 27, 1962</td>
<td>877</td>
<td>2437870.5</td>
<td>JUL 25, 1962</td>
</tr>
<tr>
<td>MAY 28, 1962</td>
<td>878</td>
<td>2437871.5</td>
<td>JUL 26, 1962</td>
</tr>
<tr>
<td>MAY 29, 1962</td>
<td>879</td>
<td>2437872.5</td>
<td>JUL 27, 1962</td>
</tr>
<tr>
<td>MAY 30, 1962</td>
<td>880</td>
<td>2437873.5</td>
<td>JUL 28, 1962</td>
</tr>
<tr>
<td>MAY 31, 1962</td>
<td>881</td>
<td>2437874.5</td>
<td>JUL 29, 1962</td>
</tr>
<tr>
<td>JUN 1, 1962</td>
<td>882</td>
<td>2437875.5</td>
<td>JUL 30, 1962</td>
</tr>
<tr>
<td>JUN 2, 1962</td>
<td>883</td>
<td>2437876.5</td>
<td>JUL 31, 1962</td>
</tr>
<tr>
<td>JUN 3, 1962</td>
<td>884</td>
<td>2437877.5</td>
<td>AUG 1, 1962</td>
</tr>
<tr>
<td>Date</td>
<td>Time</td>
<td>Temperature</td>
<td>Date</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>AUG 2 1962</td>
<td>944</td>
<td>2437937.5</td>
<td>SEP 30 1962</td>
</tr>
<tr>
<td>AUG 3 1962</td>
<td>945</td>
<td>2437938.5</td>
<td>OCT 1 1962</td>
</tr>
<tr>
<td>AUG 4 1962</td>
<td>946</td>
<td>2437939.5</td>
<td>OCT 2 1962</td>
</tr>
<tr>
<td>AUG 5 1962</td>
<td>947</td>
<td>2437940.5</td>
<td>OCT 3 1962</td>
</tr>
<tr>
<td>AUG 6 1962</td>
<td>948</td>
<td>2437941.5</td>
<td>OCT 4 1962</td>
</tr>
<tr>
<td>AUG 7 1962</td>
<td>949</td>
<td>2437942.5</td>
<td>OCT 5 1962</td>
</tr>
<tr>
<td>AUG 8 1962</td>
<td>950</td>
<td>2437943.5</td>
<td>OCT 6 1962</td>
</tr>
<tr>
<td>AUG 9 1962</td>
<td>951</td>
<td>2437944.5</td>
<td>OCT 7 1962</td>
</tr>
<tr>
<td>AUG 10 1962</td>
<td>952</td>
<td>2437945.5</td>
<td>OCT 8 1962</td>
</tr>
<tr>
<td>AUG 11 1962</td>
<td>953</td>
<td>2437946.5</td>
<td>OCT 9 1962</td>
</tr>
<tr>
<td>AUG 12 1962</td>
<td>954</td>
<td>2437947.5</td>
<td>OCT 10 1962</td>
</tr>
<tr>
<td>AUG 13 1962</td>
<td>955</td>
<td>2437948.5</td>
<td>OCT 11 1962</td>
</tr>
<tr>
<td>AUG 14 1962</td>
<td>956</td>
<td>2437949.5</td>
<td>OCT 12 1962</td>
</tr>
<tr>
<td>AUG 15 1962</td>
<td>957</td>
<td>2437950.5</td>
<td>OCT 13 1962</td>
</tr>
<tr>
<td>AUG 16 1962</td>
<td>958</td>
<td>2437951.5</td>
<td>OCT 14 1962</td>
</tr>
<tr>
<td>AUG 17 1962</td>
<td>959</td>
<td>2437952.5</td>
<td>OCT 15 1962</td>
</tr>
<tr>
<td>AUG 18 1962</td>
<td>960</td>
<td>2437953.5</td>
<td>OCT 16 1962</td>
</tr>
<tr>
<td>AUG 19 1962</td>
<td>961</td>
<td>2437954.5</td>
<td>OCT 17 1962</td>
</tr>
<tr>
<td>AUG 20 1962</td>
<td>962</td>
<td>2437955.5</td>
<td>OCT 18 1962</td>
</tr>
<tr>
<td>AUG 21 1962</td>
<td>963</td>
<td>2437956.5</td>
<td>OCT 19 1962</td>
</tr>
<tr>
<td>AUG 22 1962</td>
<td>964</td>
<td>2437957.5</td>
<td>OCT 20 1962</td>
</tr>
<tr>
<td>AUG 23 1962</td>
<td>965</td>
<td>2437958.5</td>
<td>OCT 21 1962</td>
</tr>
<tr>
<td>AUG 24 1962</td>
<td>966</td>
<td>2437959.5</td>
<td>OCT 22 1962</td>
</tr>
<tr>
<td>AUG 25 1962</td>
<td>967</td>
<td>2437960.5</td>
<td>OCT 23 1962</td>
</tr>
<tr>
<td>AUG 26 1962</td>
<td>968</td>
<td>2437961.5</td>
<td>OCT 24 1962</td>
</tr>
<tr>
<td>AUG 27 1962</td>
<td>969</td>
<td>2437962.5</td>
<td>OCT 25 1962</td>
</tr>
<tr>
<td>AUG 28 1962</td>
<td>970</td>
<td>2437963.5</td>
<td>OCT 26 1962</td>
</tr>
<tr>
<td>AUG 29 1962</td>
<td>971</td>
<td>2437964.5</td>
<td>OCT 27 1962</td>
</tr>
<tr>
<td>AUG 30 1962</td>
<td>972</td>
<td>2437965.5</td>
<td>OCT 28 1962</td>
</tr>
<tr>
<td>AUG 31 1962</td>
<td>973</td>
<td>2437966.5</td>
<td>OCT 29 1962</td>
</tr>
<tr>
<td>SEP 1 1962</td>
<td>974</td>
<td>2437967.5</td>
<td>OCT 30 1962</td>
</tr>
<tr>
<td>SEP 2 1962</td>
<td>975</td>
<td>2437968.5</td>
<td>OCT 31 1962</td>
</tr>
<tr>
<td>SEP 3 1962</td>
<td>976</td>
<td>2437969.5</td>
<td>NOV 1 1962</td>
</tr>
<tr>
<td>SEP 4 1962</td>
<td>977</td>
<td>2437970.5</td>
<td>NOV 2 1962</td>
</tr>
<tr>
<td>SEP 5 1962</td>
<td>978</td>
<td>2437971.5</td>
<td>NOV 3 1962</td>
</tr>
<tr>
<td>SEP 6 1962</td>
<td>979</td>
<td>2437972.5</td>
<td>NOV 4 1962</td>
</tr>
<tr>
<td>SEP 7 1962</td>
<td>980</td>
<td>2437973.5</td>
<td>NOV 5 1962</td>
</tr>
<tr>
<td>SEP 8 1962</td>
<td>981</td>
<td>2437974.5</td>
<td>NOV 6 1962</td>
</tr>
<tr>
<td>SEP 9 1962</td>
<td>982</td>
<td>2437975.5</td>
<td>NOV 7 1962</td>
</tr>
<tr>
<td>SEP 10 1962</td>
<td>983</td>
<td>2437976.5</td>
<td>NOV 8 1962</td>
</tr>
<tr>
<td>SEP 11 1962</td>
<td>984</td>
<td>2437977.5</td>
<td>NOV 9 1962</td>
</tr>
<tr>
<td>SEP 12 1962</td>
<td>985</td>
<td>2437978.5</td>
<td>NOV 10 1962</td>
</tr>
<tr>
<td>SEP 13 1962</td>
<td>986</td>
<td>2437979.5</td>
<td>NOV 11 1962</td>
</tr>
<tr>
<td>SEP 14 1962</td>
<td>987</td>
<td>2437980.5</td>
<td>NOV 12 1962</td>
</tr>
<tr>
<td>SEP 15 1962</td>
<td>988</td>
<td>2437981.5</td>
<td>NOV 13 1962</td>
</tr>
<tr>
<td>SEP 16 1962</td>
<td>989</td>
<td>2437982.5</td>
<td>NOV 14 1962</td>
</tr>
<tr>
<td>SEP 17 1962</td>
<td>990</td>
<td>2437983.5</td>
<td>NOV 15 1962</td>
</tr>
<tr>
<td>SEP 18 1962</td>
<td>991</td>
<td>2437984.5</td>
<td>NOV 16 1962</td>
</tr>
<tr>
<td>SEP 19 1962</td>
<td>992</td>
<td>2437985.5</td>
<td>NOV 17 1962</td>
</tr>
<tr>
<td>SEP 20 1962</td>
<td>993</td>
<td>2437986.5</td>
<td>NOV 18 1962</td>
</tr>
<tr>
<td>SEP 21 1962</td>
<td>994</td>
<td>2437987.5</td>
<td>NOV 19 1962</td>
</tr>
<tr>
<td>SEP 22 1962</td>
<td>995</td>
<td>2437988.5</td>
<td>NOV 20 1962</td>
</tr>
<tr>
<td>SEP 23 1962</td>
<td>996</td>
<td>2437989.5</td>
<td>NOV 21 1962</td>
</tr>
<tr>
<td>SEP 24 1962</td>
<td>997</td>
<td>2437990.5</td>
<td>NOV 22 1962</td>
</tr>
<tr>
<td>SEP 25 1962</td>
<td>998</td>
<td>2437991.5</td>
<td>NOV 23 1962</td>
</tr>
<tr>
<td>SEP 26 1962</td>
<td>999</td>
<td>2437992.5</td>
<td>NOV 24 1962</td>
</tr>
<tr>
<td>SEP 27 1962</td>
<td>1000</td>
<td>2437993.5</td>
<td>NOV 25 1962</td>
</tr>
<tr>
<td>SEP 28 1962</td>
<td>1001</td>
<td>2437994.5</td>
<td>NOV 26 1962</td>
</tr>
<tr>
<td>SEP 29 1962</td>
<td>1002</td>
<td>2437995.5</td>
<td>NOV 27 1962</td>
</tr>
<tr>
<td>Date</td>
<td>Month</td>
<td>Temperature</td>
<td>Date</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>2438114.5</td>
<td>MAR</td>
<td>26, 1963</td>
<td>1180</td>
</tr>
<tr>
<td>2438115.5</td>
<td>MAR</td>
<td>27, 1963</td>
<td>1182</td>
</tr>
<tr>
<td>2438116.5</td>
<td>MAR</td>
<td>28, 1963</td>
<td>1183</td>
</tr>
<tr>
<td>2438117.5</td>
<td>MAR</td>
<td>29, 1963</td>
<td>1184</td>
</tr>
<tr>
<td>2438118.5</td>
<td>MAR</td>
<td>30, 1963</td>
<td>1185</td>
</tr>
<tr>
<td>2438119.5</td>
<td>MAR</td>
<td>31, 1963</td>
<td>1186</td>
</tr>
<tr>
<td>2438120.5</td>
<td>APR</td>
<td>1, 1963</td>
<td>1187</td>
</tr>
<tr>
<td>2438121.5</td>
<td>APR</td>
<td>2, 1963</td>
<td>1188</td>
</tr>
<tr>
<td>2438122.5</td>
<td>APR</td>
<td>3, 1963</td>
<td>1189</td>
</tr>
<tr>
<td>2438123.5</td>
<td>APR</td>
<td>4, 1963</td>
<td>1190</td>
</tr>
<tr>
<td>2438124.5</td>
<td>APR</td>
<td>5, 1963</td>
<td>1191</td>
</tr>
<tr>
<td>2438125.5</td>
<td>APR</td>
<td>6, 1963</td>
<td>1192</td>
</tr>
<tr>
<td>2438126.5</td>
<td>APR</td>
<td>7, 1963</td>
<td>1193</td>
</tr>
<tr>
<td>2438127.5</td>
<td>APR</td>
<td>8, 1963</td>
<td>1194</td>
</tr>
<tr>
<td>2438128.5</td>
<td>APR</td>
<td>9, 1963</td>
<td>1195</td>
</tr>
<tr>
<td>2438129.5</td>
<td>APR</td>
<td>10, 1963</td>
<td>1196</td>
</tr>
<tr>
<td>2438130.5</td>
<td>APR</td>
<td>11, 1963</td>
<td>1197</td>
</tr>
<tr>
<td>2438131.5</td>
<td>APR</td>
<td>12, 1963</td>
<td>1198</td>
</tr>
<tr>
<td>2438132.5</td>
<td>APR</td>
<td>13, 1963</td>
<td>1199</td>
</tr>
<tr>
<td>2438133.5</td>
<td>APR</td>
<td>14, 1963</td>
<td>1200</td>
</tr>
<tr>
<td>2438134.5</td>
<td>APR</td>
<td>15, 1963</td>
<td>1201</td>
</tr>
<tr>
<td>2438135.5</td>
<td>APR</td>
<td>16, 1963</td>
<td>1202</td>
</tr>
<tr>
<td>2438136.5</td>
<td>APR</td>
<td>17, 1963</td>
<td>1203</td>
</tr>
<tr>
<td>2438137.5</td>
<td>APR</td>
<td>18, 1963</td>
<td>1204</td>
</tr>
<tr>
<td>2438138.5</td>
<td>APR</td>
<td>19, 1963</td>
<td>1205</td>
</tr>
<tr>
<td>2438139.5</td>
<td>APR</td>
<td>20, 1963</td>
<td>1206</td>
</tr>
<tr>
<td>2438140.5</td>
<td>APR</td>
<td>21, 1963</td>
<td>1207</td>
</tr>
<tr>
<td>2438141.5</td>
<td>APR</td>
<td>22, 1963</td>
<td>1208</td>
</tr>
<tr>
<td>2438142.5</td>
<td>APR</td>
<td>23, 1963</td>
<td>1209</td>
</tr>
<tr>
<td>2438143.5</td>
<td>APR</td>
<td>24, 1963</td>
<td>1210</td>
</tr>
<tr>
<td>2438144.5</td>
<td>APR</td>
<td>25, 1963</td>
<td>1211</td>
</tr>
<tr>
<td>2438145.5</td>
<td>APR</td>
<td>26, 1963</td>
<td>1212</td>
</tr>
<tr>
<td>2438146.5</td>
<td>APR</td>
<td>27, 1963</td>
<td>1213</td>
</tr>
<tr>
<td>2438147.5</td>
<td>APR</td>
<td>28, 1963</td>
<td>1214</td>
</tr>
<tr>
<td>2438148.5</td>
<td>APR</td>
<td>29, 1963</td>
<td>1215</td>
</tr>
<tr>
<td>2438149.5</td>
<td>APR</td>
<td>30, 1963</td>
<td>1216</td>
</tr>
<tr>
<td>2438150.5</td>
<td>MAY</td>
<td>1, 1963</td>
<td>1217</td>
</tr>
<tr>
<td>2438151.5</td>
<td>MAY</td>
<td>2, 1963</td>
<td>1218</td>
</tr>
<tr>
<td>2438152.5</td>
<td>MAY</td>
<td>3, 1963</td>
<td>1219</td>
</tr>
<tr>
<td>2438153.5</td>
<td>MAY</td>
<td>4, 1963</td>
<td>1220</td>
</tr>
<tr>
<td>2438154.5</td>
<td>MAY</td>
<td>5, 1963</td>
<td>1221</td>
</tr>
<tr>
<td>2438155.5</td>
<td>MAY</td>
<td>6, 1963</td>
<td>1222</td>
</tr>
<tr>
<td>2438156.5</td>
<td>MAY</td>
<td>7, 1963</td>
<td>1223</td>
</tr>
<tr>
<td>2438157.5</td>
<td>MAY</td>
<td>8, 1963</td>
<td>1224</td>
</tr>
<tr>
<td>2438158.5</td>
<td>MAY</td>
<td>9, 1963</td>
<td>1225</td>
</tr>
<tr>
<td>2438159.5</td>
<td>MAY</td>
<td>10, 1963</td>
<td>1226</td>
</tr>
<tr>
<td>2438160.5</td>
<td>MAY</td>
<td>11, 1963</td>
<td>1227</td>
</tr>
<tr>
<td>2438161.5</td>
<td>MAY</td>
<td>12, 1963</td>
<td>1228</td>
</tr>
<tr>
<td>2438162.5</td>
<td>MAY</td>
<td>13, 1963</td>
<td>1229</td>
</tr>
<tr>
<td>2438163.5</td>
<td>MAY</td>
<td>14, 1963</td>
<td>1230</td>
</tr>
<tr>
<td>2438164.5</td>
<td>MAY</td>
<td>15, 1963</td>
<td>1231</td>
</tr>
<tr>
<td>2438165.5</td>
<td>MAY</td>
<td>16, 1963</td>
<td>1232</td>
</tr>
<tr>
<td>2438166.5</td>
<td>MAY</td>
<td>17, 1963</td>
<td>1233</td>
</tr>
<tr>
<td>2438167.5</td>
<td>MAY</td>
<td>18, 1963</td>
<td>1234</td>
</tr>
<tr>
<td>2438168.5</td>
<td>MAY</td>
<td>19, 1963</td>
<td>1235</td>
</tr>
<tr>
<td>2438169.5</td>
<td>MAY</td>
<td>20, 1963</td>
<td>1236</td>
</tr>
<tr>
<td>2438170.5</td>
<td>MAY</td>
<td>21, 1963</td>
<td>1237</td>
</tr>
<tr>
<td>2438171.5</td>
<td>MAY</td>
<td>22, 1963</td>
<td>1238</td>
</tr>
<tr>
<td>2438172.5</td>
<td>MAY</td>
<td>23, 1963</td>
<td>1239</td>
</tr>
<tr>
<td>Date</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL 22, 1963</td>
<td>1298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL 23, 1963</td>
<td>1299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL 24, 1963</td>
<td>1300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL 25, 1963</td>
<td>1301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL 26, 1963</td>
<td>1302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL 27, 1963</td>
<td>1303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL 28, 1963</td>
<td>1304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL 29, 1963</td>
<td>1305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL 30, 1963</td>
<td>1306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL 31, 1963</td>
<td>1307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 1, 1963</td>
<td>1308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 2, 1963</td>
<td>1309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 3, 1963</td>
<td>1310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 4, 1963</td>
<td>1311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 5, 1963</td>
<td>1312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 6, 1963</td>
<td>1313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 7, 1963</td>
<td>1314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 8, 1963</td>
<td>1315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 9, 1963</td>
<td>1316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 10, 1963</td>
<td>1317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 11, 1963</td>
<td>1318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 12, 1963</td>
<td>1319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 13, 1963</td>
<td>1320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 14, 1963</td>
<td>1321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 15, 1963</td>
<td>1322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 16, 1963</td>
<td>1323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 17, 1963</td>
<td>1324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 18, 1963</td>
<td>1325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 19, 1963</td>
<td>1326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 20, 1963</td>
<td>1327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 21, 1963</td>
<td>1328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 22, 1963</td>
<td>1329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 23, 1963</td>
<td>1330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 24, 1963</td>
<td>1331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 25, 1963</td>
<td>1332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 26, 1963</td>
<td>1333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 27, 1963</td>
<td>1334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 28, 1963</td>
<td>1335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 29, 1963</td>
<td>1336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 30, 1963</td>
<td>1337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG 31, 1963</td>
<td>1338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 1, 1963</td>
<td>1339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 2, 1963</td>
<td>1340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 3, 1963</td>
<td>1341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 4, 1963</td>
<td>1342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 5, 1963</td>
<td>1343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 6, 1963</td>
<td>1344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 7, 1963</td>
<td>1345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 8, 1963</td>
<td>1346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 9, 1963</td>
<td>1347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 10, 1963</td>
<td>1348</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 11, 1963</td>
<td>1349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 12, 1963</td>
<td>1350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 13, 1963</td>
<td>1351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 14, 1963</td>
<td>1352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 15, 1963</td>
<td>1353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 16, 1963</td>
<td>1354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 17, 1963</td>
<td>1355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP 18, 1963</td>
<td>1356</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP 19, 1963</td>
<td>1357</td>
</tr>
<tr>
<td>SEP 20, 1963</td>
<td>1358</td>
</tr>
<tr>
<td>SEP 21, 1963</td>
<td>1359</td>
</tr>
<tr>
<td>SEP 22, 1963</td>
<td>1360</td>
</tr>
<tr>
<td>SEP 23, 1963</td>
<td>1361</td>
</tr>
<tr>
<td>SEP 24, 1963</td>
<td>1362</td>
</tr>
<tr>
<td>SEP 25, 1963</td>
<td>1363</td>
</tr>
<tr>
<td>SEP 26, 1963</td>
<td>1364</td>
</tr>
<tr>
<td>SEP 27, 1963</td>
<td>1365</td>
</tr>
<tr>
<td>SEP 28, 1963</td>
<td>1366</td>
</tr>
<tr>
<td>SEP 29, 1963</td>
<td>1367</td>
</tr>
<tr>
<td>SEP 30, 1963</td>
<td>1368</td>
</tr>
<tr>
<td>OCT 1, 1963</td>
<td>1369</td>
</tr>
<tr>
<td>OCT 2, 1963</td>
<td>1370</td>
</tr>
<tr>
<td>OCT 3, 1963</td>
<td>1371</td>
</tr>
<tr>
<td>OCT 4, 1963</td>
<td>1372</td>
</tr>
<tr>
<td>OCT 5, 1963</td>
<td>1373</td>
</tr>
<tr>
<td>OCT 6, 1963</td>
<td>1374</td>
</tr>
<tr>
<td>OCT 7, 1963</td>
<td>1375</td>
</tr>
<tr>
<td>OCT 8, 1963</td>
<td>1376</td>
</tr>
<tr>
<td>OCT 9, 1963</td>
<td>1377</td>
</tr>
<tr>
<td>OCT 10, 1963</td>
<td>1378</td>
</tr>
<tr>
<td>OCT 11, 1963</td>
<td>1379</td>
</tr>
<tr>
<td>OCT 12, 1963</td>
<td>1380</td>
</tr>
<tr>
<td>OCT 13, 1963</td>
<td>1381</td>
</tr>
<tr>
<td>OCT 14, 1963</td>
<td>1382</td>
</tr>
<tr>
<td>OCT 15, 1963</td>
<td>1383</td>
</tr>
<tr>
<td>OCT 16, 1963</td>
<td>1384</td>
</tr>
<tr>
<td>OCT 17, 1963</td>
<td>1385</td>
</tr>
<tr>
<td>OCT 18, 1963</td>
<td>1386</td>
</tr>
<tr>
<td>OCT 19, 1963</td>
<td>1387</td>
</tr>
<tr>
<td>OCT 20, 1963</td>
<td>1388</td>
</tr>
<tr>
<td>OCT 21, 1963</td>
<td>1389</td>
</tr>
<tr>
<td>OCT 22, 1963</td>
<td>1390</td>
</tr>
<tr>
<td>OCT 23, 1963</td>
<td>1391</td>
</tr>
<tr>
<td>OCT 24, 1963</td>
<td>1392</td>
</tr>
<tr>
<td>OCT 25, 1963</td>
<td>1393</td>
</tr>
<tr>
<td>OCT 26, 1963</td>
<td>1394</td>
</tr>
<tr>
<td>OCT 27, 1963</td>
<td>1395</td>
</tr>
<tr>
<td>OCT 28, 1963</td>
<td>1396</td>
</tr>
<tr>
<td>OCT 29, 1963</td>
<td>1397</td>
</tr>
<tr>
<td>OCT 30, 1963</td>
<td>1398</td>
</tr>
<tr>
<td>OCT 31, 1963</td>
<td>1399</td>
</tr>
<tr>
<td>NOV 1, 1963</td>
<td>1400</td>
</tr>
<tr>
<td>NOV 2, 1963</td>
<td>1401</td>
</tr>
<tr>
<td>NOV 3, 1963</td>
<td>1402</td>
</tr>
<tr>
<td>NOV 4, 1963</td>
<td>1403</td>
</tr>
<tr>
<td>NOV 5, 1963</td>
<td>1404</td>
</tr>
<tr>
<td>NOV 6, 1963</td>
<td>1405</td>
</tr>
<tr>
<td>NOV 7, 1963</td>
<td>1406</td>
</tr>
<tr>
<td>NOV 8, 1963</td>
<td>1407</td>
</tr>
<tr>
<td>NOV 9, 1963</td>
<td>1408</td>
</tr>
<tr>
<td>NOV 10, 1963</td>
<td>1409</td>
</tr>
<tr>
<td>NOV 11, 1963</td>
<td>1410</td>
</tr>
<tr>
<td>NOV 12, 1963</td>
<td>1411</td>
</tr>
<tr>
<td>NOV 13, 1963</td>
<td>1412</td>
</tr>
<tr>
<td>NOV 14, 1963</td>
<td>1413</td>
</tr>
<tr>
<td>NOV 15, 1963</td>
<td>1414</td>
</tr>
<tr>
<td>NOV 16, 1963</td>
<td>1415</td>
</tr>
</tbody>
</table>

A-28
<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUL 10, 1964</td>
<td>1652</td>
</tr>
<tr>
<td>JUL 11, 1964</td>
<td>1653</td>
</tr>
<tr>
<td>JUL 12, 1964</td>
<td>1654</td>
</tr>
<tr>
<td>JUL 13, 1964</td>
<td>1655</td>
</tr>
<tr>
<td>JUL 14, 1964</td>
<td>1656</td>
</tr>
<tr>
<td>JUL 15, 1964</td>
<td>1657</td>
</tr>
<tr>
<td>JUL 16, 1964</td>
<td>1658</td>
</tr>
<tr>
<td>JUL 17, 1964</td>
<td>1659</td>
</tr>
<tr>
<td>JUL 18, 1964</td>
<td>1660</td>
</tr>
<tr>
<td>JUL 19, 1964</td>
<td>1661</td>
</tr>
<tr>
<td>JUL 20, 1964</td>
<td>1662</td>
</tr>
<tr>
<td>JUL 21, 1964</td>
<td>1663</td>
</tr>
<tr>
<td>JUL 22, 1964</td>
<td>1664</td>
</tr>
<tr>
<td>JUL 23, 1964</td>
<td>1665</td>
</tr>
<tr>
<td>JUL 24, 1964</td>
<td>1666</td>
</tr>
<tr>
<td>JUL 25, 1964</td>
<td>1667</td>
</tr>
<tr>
<td>JUL 26, 1964</td>
<td>1668</td>
</tr>
<tr>
<td>JUL 27, 1964</td>
<td>1669</td>
</tr>
<tr>
<td>JUL 28, 1964</td>
<td>1670</td>
</tr>
<tr>
<td>JUL 29, 1964</td>
<td>1671</td>
</tr>
<tr>
<td>JUL 30, 1964</td>
<td>1672</td>
</tr>
<tr>
<td>JUL 31, 1964</td>
<td>1673</td>
</tr>
<tr>
<td>AUG 1, 1964</td>
<td>1674</td>
</tr>
<tr>
<td>AUG 2, 1964</td>
<td>1675</td>
</tr>
<tr>
<td>AUG 3, 1964</td>
<td>1676</td>
</tr>
<tr>
<td>AUG 4, 1964</td>
<td>1677</td>
</tr>
<tr>
<td>AUG 5, 1964</td>
<td>1678</td>
</tr>
<tr>
<td>AUG 6, 1964</td>
<td>1679</td>
</tr>
<tr>
<td>AUG 7, 1964</td>
<td>1680</td>
</tr>
<tr>
<td>AUG 8, 1964</td>
<td>1681</td>
</tr>
<tr>
<td>AUG 9, 1964</td>
<td>1682</td>
</tr>
<tr>
<td>AUG 10, 1964</td>
<td>1683</td>
</tr>
<tr>
<td>AUG 11, 1964</td>
<td>1684</td>
</tr>
<tr>
<td>AUG 12, 1964</td>
<td>1685</td>
</tr>
<tr>
<td>AUG 13, 1964</td>
<td>1686</td>
</tr>
<tr>
<td>AUG 14, 1964</td>
<td>1687</td>
</tr>
<tr>
<td>AUG 15, 1964</td>
<td>1688</td>
</tr>
<tr>
<td>AUG 16, 1964</td>
<td>1689</td>
</tr>
<tr>
<td>AUG 17, 1964</td>
<td>1690</td>
</tr>
<tr>
<td>AUG 18, 1964</td>
<td>1691</td>
</tr>
<tr>
<td>AUG 19, 1964</td>
<td>1692</td>
</tr>
<tr>
<td>AUG 20, 1964</td>
<td>1693</td>
</tr>
<tr>
<td>AUG 21, 1964</td>
<td>1694</td>
</tr>
<tr>
<td>AUG 22, 1964</td>
<td>1695</td>
</tr>
<tr>
<td>AUG 23, 1964</td>
<td>1696</td>
</tr>
<tr>
<td>AUG 24, 1964</td>
<td>1697</td>
</tr>
<tr>
<td>AUG 25, 1964</td>
<td>1698</td>
</tr>
<tr>
<td>AUG 26, 1964</td>
<td>1699</td>
</tr>
<tr>
<td>AUG 27, 1964</td>
<td>1700</td>
</tr>
<tr>
<td>AUG 28, 1964</td>
<td>1701</td>
</tr>
<tr>
<td>AUG 29, 1964</td>
<td>1702</td>
</tr>
<tr>
<td>AUG 30, 1964</td>
<td>1703</td>
</tr>
<tr>
<td>AUG 31, 1964</td>
<td>1704</td>
</tr>
<tr>
<td>SEP 1, 1964</td>
<td>1705</td>
</tr>
<tr>
<td>SEP 2, 1964</td>
<td>1706</td>
</tr>
<tr>
<td>SEP 3, 1964</td>
<td>1707</td>
</tr>
<tr>
<td>SEP 4, 1964</td>
<td>1708</td>
</tr>
<tr>
<td>SEP 5, 1964</td>
<td>1709</td>
</tr>
<tr>
<td>SEP 6, 1964</td>
<td>1710</td>
</tr>
</tbody>
</table>

A-31
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOV 5, 1964</td>
<td>1770</td>
<td></td>
</tr>
<tr>
<td>NOV 6, 1964</td>
<td>1771</td>
<td></td>
</tr>
<tr>
<td>NOV 7, 1964</td>
<td>1772</td>
<td></td>
</tr>
<tr>
<td>NOV 8, 1964</td>
<td>1773</td>
<td></td>
</tr>
<tr>
<td>NOV 9, 1964</td>
<td>1774</td>
<td></td>
</tr>
<tr>
<td>NOV 10, 1964</td>
<td>1775</td>
<td></td>
</tr>
<tr>
<td>NOV 11, 1964</td>
<td>1776</td>
<td></td>
</tr>
<tr>
<td>NOV 12, 1964</td>
<td>1777</td>
<td></td>
</tr>
<tr>
<td>NOV 13, 1964</td>
<td>1778</td>
<td></td>
</tr>
<tr>
<td>NOV 14, 1964</td>
<td>1779</td>
<td></td>
</tr>
<tr>
<td>NOV 15, 1964</td>
<td>1780</td>
<td></td>
</tr>
<tr>
<td>NOV 16, 1964</td>
<td>1781</td>
<td></td>
</tr>
<tr>
<td>NOV 17, 1964</td>
<td>1782</td>
<td></td>
</tr>
<tr>
<td>NOV 18, 1964</td>
<td>1783</td>
<td></td>
</tr>
<tr>
<td>NOV 19, 1964</td>
<td>1784</td>
<td></td>
</tr>
<tr>
<td>NOV 20, 1964</td>
<td>1785</td>
<td></td>
</tr>
<tr>
<td>NOV 21, 1964</td>
<td>1786</td>
<td></td>
</tr>
<tr>
<td>NOV 22, 1964</td>
<td>1787</td>
<td></td>
</tr>
<tr>
<td>NOV 23, 1964</td>
<td>1788</td>
<td></td>
</tr>
<tr>
<td>NOV 24, 1964</td>
<td>1789</td>
<td></td>
</tr>
<tr>
<td>NOV 25, 1964</td>
<td>1790</td>
<td></td>
</tr>
<tr>
<td>NOV 26, 1964</td>
<td>1791</td>
<td></td>
</tr>
<tr>
<td>NOV 27, 1964</td>
<td>1792</td>
<td></td>
</tr>
<tr>
<td>NOV 28, 1964</td>
<td>1793</td>
<td></td>
</tr>
<tr>
<td>NOV 29, 1964</td>
<td>1794</td>
<td></td>
</tr>
<tr>
<td>NOV 30, 1964</td>
<td>1795</td>
<td></td>
</tr>
<tr>
<td>DEC 1, 1964</td>
<td>1796</td>
<td></td>
</tr>
<tr>
<td>DEC 2, 1964</td>
<td>1797</td>
<td></td>
</tr>
<tr>
<td>DEC 3, 1964</td>
<td>1798</td>
<td></td>
</tr>
<tr>
<td>DEC 4, 1964</td>
<td>1799</td>
<td></td>
</tr>
<tr>
<td>DEC 5, 1964</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>DEC 6, 1964</td>
<td>1801</td>
<td></td>
</tr>
<tr>
<td>DEC 7, 1964</td>
<td>1802</td>
<td></td>
</tr>
<tr>
<td>DEC 8, 1964</td>
<td>1803</td>
<td></td>
</tr>
<tr>
<td>DEC 9, 1964</td>
<td>1804</td>
<td></td>
</tr>
<tr>
<td>DEC 10, 1964</td>
<td>1805</td>
<td></td>
</tr>
<tr>
<td>DEC 11, 1964</td>
<td>1806</td>
<td></td>
</tr>
<tr>
<td>DEC 12, 1964</td>
<td>1807</td>
<td></td>
</tr>
<tr>
<td>DEC 13, 1964</td>
<td>1808</td>
<td></td>
</tr>
<tr>
<td>DEC 14, 1964</td>
<td>1809</td>
<td></td>
</tr>
<tr>
<td>DEC 15, 1964</td>
<td>1810</td>
<td></td>
</tr>
<tr>
<td>DEC 16, 1964</td>
<td>1811</td>
<td></td>
</tr>
<tr>
<td>DEC 17, 1964</td>
<td>1812</td>
<td></td>
</tr>
<tr>
<td>DEC 18, 1964</td>
<td>1813</td>
<td></td>
</tr>
<tr>
<td>DEC 19, 1964</td>
<td>1814</td>
<td></td>
</tr>
<tr>
<td>DEC 20, 1964</td>
<td>1815</td>
<td></td>
</tr>
<tr>
<td>DEC 21, 1964</td>
<td>1816</td>
<td></td>
</tr>
<tr>
<td>DEC 22, 1964</td>
<td>1817</td>
<td></td>
</tr>
<tr>
<td>DEC 23, 1964</td>
<td>1818</td>
<td></td>
</tr>
<tr>
<td>DEC 24, 1964</td>
<td>1819</td>
<td></td>
</tr>
<tr>
<td>DEC 25, 1964</td>
<td>1820</td>
<td></td>
</tr>
<tr>
<td>DEC 26, 1964</td>
<td>1821</td>
<td></td>
</tr>
<tr>
<td>DEC 27, 1964</td>
<td>1822</td>
<td></td>
</tr>
<tr>
<td>DEC 28, 1964</td>
<td>1823</td>
<td></td>
</tr>
<tr>
<td>DEC 29, 1964</td>
<td>1824</td>
<td></td>
</tr>
<tr>
<td>DEC 30, 1964</td>
<td>1825</td>
<td></td>
</tr>
<tr>
<td>DEC 31, 1964</td>
<td>1826</td>
<td></td>
</tr>
</tbody>
</table>
H. LISTING OF THE N-BODY PROGRAM
CALL TITLE
11 CALL ORGN
IF (TEM) 12,2,12
12 CALL TERN
WGT 10+10
10 FORMAT (2H1)
CALL OUT
IF (NCKE) 26,100,26
26 ERASE WMA,WL
XDOTP = PK(4)
YDOTP = PM(5)
ZDOTP = PM(6)
XDOTP(2) = PL(7)
YDOTP(2) = PL(7)
ZDOTP(7) = PM(6)
27 SGOD = PM(1)
SGOD(2) = PL(1)
SGOD(3) = PM(2)
SGOD(4) = PL(2)
SGOD(5) = PM(3)
SGOD(6) = PL(3)
CALL FAD (WM(4),WL(4),XDOTP(1),XDOTP(2),XDOT(1),XDOT(2))
CALL FAD (WM(5),WL(5),YDOTP(1),YDOTP(2),YDOT(1),YDOT(2))
CALL FAD (WM(6),WL(6),ZDOTP(1),ZDOTP(2),ZDOT(1),ZDOT(2))
28 CALL RECT
WGT 10,29,E(1),A1,XN(1)
29 FORMAT (1P35H0)
1 T,6H N=E15.7,6H A=E15.
30 ERASE WMA,WL,DTME,VNZ
CALL PUSH
32 IF(NORG) 34,31,3*
31 IF(SCEN-1.5E-4) 41,33,33
41 KOB = 1
GO TO 34
33 ERASE KOB
34 IF (NSDT) 35, 50, 35
35 IF (SCEN-RA02) 36, 38, 39
36 IF (SCEN-RA01) 37, 37, 38
37 DT = DTA
GO TO 40
38 DT = DTB
GO TO 40
39 DT = DTC
CONTINUE
40 CONTINUE
H SUB MGM
H STO MAFDT
42 CALL INTN
GO TO 72
50 TSAVE = DTME
TSAVE = T
NSAVE = NNN
IF (DTMAX-DT) 99,99,99
98 DT = DT : DT

A-35
99 DT = DT + DT

H SUB MOD

H SLW HAFDT

DO 55 I = 1, N
XX (I) = X (I)
YY (I) = Y (I)
55 ZZ (I) = Z (I)

QM(4) = XP(4)
QM(5) = YP(5)
QM(6) = ZP(6)
QL(4) = XP(4)
QL(5) = YP(5)
QL(6) = ZP(6)

DO 60 I = 1, 6
PPH (I) = WM (I)
60 PPL (I) = WL (I)

DO 61 I = 1, 3
PKM (I) = PK (I)
61 PQL (I) = PL (I)

SM(4) = XP(4)
SM(5) = YP(5)
SM(6) = ZP(6)
SL(4) = XP(4)
SL(5) = YP(5)
SL(6) = ZP(6)

CALL INTN
SM (1) = WM (1)
SL (1) = WL (1)
SM (2) = WM (2)
SL (2) = WL (2)
SM (3) = WM (3)
SL (3) = WL (3)

66 DT = HAFDT

H SUB MOD

H SLW HAFDT

DTME = TSAV
T = TSAVE

IF (NNN-NSAV) 63,65,64
63 NSAV = 4
64 NNN = NSAV
65 DO 68 I = 1, N
X (I) = XX (I)
Y (I) = YY (I)
68 ZZ (I) = ZZ (I)

DO 67 I = 1, 3
PKM (I) = PKM (I)
67 PPL (I) = PPL (I)

DO 69 I = 1, 6
WM (I) = WM (I)
69 WL (I) = WL (I)

XP(1) = SM(4)
YP(1) = SM(5)
ZP(1) = SM(6)
XP(2) = SL(4)
YP(2) = SL(5)
ZP(2) = SL(6)
XPM = QM(4)
YPM = QM(5)
ZPM = QM(6)
XPL = QL(4)
YPL = QL(5)
ZPL = QL(6)
CALL INTn
DO 70 I = 1, 3
QM(I) = WM(I)
70 GL(I) = WL(I)
CALL FAD (XP(1) + XP(2) + XM(1) + XM(2) + PM(1) + PL(1))
CALL FAD (YP(1) + YP(2) + XM(1) + XM(2) + PM(2) + PL(2))
CALL FAD (ZP(1) + ZP(2) + XM(3) + XM(4) + PM(3) + PL(3))
CALL INTn
CALL FSb (SM(1) + SL(I) + XM(1) + XM(2) + TEM + TEL)
IF (ABS(FTEM) - EP1) 73, 73, 75
73 CALL FSb (SM(2) + SL(2) + XM(2) + XM(3) + TEM + TEL)
IF (ABS(FTEM) - EP1) 74, 74, 75
74 CALL FSb (SM(3) + SL(3) + XM(3) + XM(4) + TEM + TEL)
IF (ABS(FTEM) - EP1) 72, 72, 75
75 DO 71 I = 1, 3
SM(I) = QM(I)
71 SL(I) = OL(I)
GO TO 66
72 NOT = NOT + 1
CALL FAD (XP(1) + XP(2) + XM(1) + XM(2) + PM(1) + PL(1))
CALL FAD (YP(1) + YP(2) + XM(1) + XM(2) + PM(2) + PL(2))
CALL FAD (ZP(1) + ZP(2) + XM(3) + XM(4) + PM(3) + PL(3))
IF (NOT = NOT) 83, 84, 83
83 SCEN = SQRT(PM(1) * PM(2) + PM(3) * PM(3))
GO TO 76
84 PM(4) = WM(4) + XD0TP
PM(5) = WM(5) + YD0TP
PM(6) = WM(6) + ZD0TP
SL(4) = RK(M4+4)/DT
SL(5) = RK(M4+5)/DT
SL(6) = RK(M4+6)/DT
CALL OUT
ERASE NOT
IF (EMAX - ETA) 333, 333, 430
430 IF (EMAX - ETA) 333, 333, 431
431 IF (SMAX - RSN) 333, 333, 76
76 IF (SCEN - RADORG) 277, 277, 86
277 IF (NOT) 84, 279, 84
279 IF (NTARG - NUKG) 169, 165, 169
86 IF (T-TMAX) 202, 278, 278
278 PM(4) = WM(4) + XD0TP
PM(5) = WM(5) + YD0TP
PM(6) = WM(6) + ZD0TP
SL(4) = RK(M4+4)/DT

A-37
SL(5) = RKM(4,5)/DT
SL(6) = RKM(4,6)/DT
GO TO 150

202 IF (IHEX) 203, 210, 203
203 TTEH = WTS/RPM - WTS/RPM
TEH = SUNX*SUMX+SUMY+SUMZ+SUMZ+SUMZ
IF (ITEH) 207, 207, 210

207 ERASE NCKE
CALL FAD (WM(4), WL(4), XDTPP(1), XDTP(2), PM(4), PL(4))
CALL FAD (WM(5), WL(5), XDTPP(1), XDTP(2), PM(5), PL(5))
CALL FAD (WM(6), WL(6), ZDTPP(1), ZDTP(2), PM(6), PL(6))
WOT 10*208

208 FORMAT (12H0, COWELL/2H0)
GO TO 110

210 IF (IWSW) 211, 38, 211
211 IF (INOT) 212, 38, 212
212 IF (ITEMX) 214, 212, 212
217 NEWARG = NTARG
217 CALL FAD (WM(4), WL(4), XDTPP(1), XDTP(2), PM(4), PL(4))
CALL FAD (WM(5), WL(5), XDTPP(1), XDTP(2), PM(5), PL(5))
CALL FAD (WM(6), WL(6), ZDTPP(1), ZDTP(2), PM(6), PL(6))
CALL Switch
GO TO 26

218 NEWARG = 0
GO TO 217

88 IF (ABSWM(1)/XP(1) - 05) 89, 27, 27
89 IF (ABSWM(2)/YP(1) - 05) 90, 27, 27
90 IF (ABSFM(3)/ZP(1) - 05) 91, 27, 27
91 IF (ABSFM(4)/XDOTP(1) - 05) 92, 27, 27
92 IF (ABSFM(5)/YDOTP(1) - 05) 93, 27, 27
93 IF (ABSFM(6)/ZDOTP(1) - 05) 94, 27, 27
94 IF (ABSFM(7)/ZP(1)) 95, 27, 27
95 IF (ABSFM(8)/ZP(1)) 96, 27, 27
96 IF (ABSFM(9)/ZP(1)) 97, 27, 27
100 IF (INORD) 1030, 101, 1030
101 IF (SCEN - 1, 5E-4) 102, 103, 103
102 KOB = 1
GO TO 1030
103 ERASE KOB
1030 IF (MSD) 104, 112, 104
104 IF (SCEN - RAD2) 105, 107, 108
105 IF (SCEN - RAD1) 106, 106, 107
106 DT = DTA
GO TO 109
107 DT = DTF
GO TO 109
108 DT = DTC
109 CONTINUE
M SUB MGM
H STO HAFDT
CALL INT
GO TO 142

A-38
112 TSAV = T
113 NSAV = NNN
114 IF (DTMAX-DT) 141, 141, 140
115 DT = DT + DT
116 DT = DT + DT
117 SUB MGM
118 H
119 SLW HAFDT
120 DO 116 I = 1, N
121 XX (I) = X (I)
122 YY (I) = Y (I)
123 ZZ (I) = Z (I)
124 DO 119 I = 1, 6
125 PPM (I) = PM (I)
126 CALL INT
127 DO 120 I = 1, 3
128 PM (I) = PL (I)
129 CALL INT
130 IF (ABS(TEM)-EP1) 128, 128, 134
131 CALL FSB (SM(1), SL(1), PM(1), PL(1), TEM, TEL)
132 IF (ABS(TEM)-EP1) 130, 130, 134
133 CALL FSB (SM(2), SL(2), PM(2), PL(2), TEM, TEL)
134 CALL FSB (SM(3), SL(3), PM(3), PL(3), TEM, TEL)
135 IF (ABS(TEM)-EP1) 142, 142, 143
136 DO 136 I = 1, 3
137 SM (I) = QM (I)
138 DO 138 I = 1, 6
139 PM (I) = PPM (I)
140 PL (I) = PPL (I)
141 GO TO 121
142 NOT = NOT + 1
143 IF (NOUT-NOT) 146, 145, 146
144 SL(4) = RKM(4,4)/DT
145
146
SL(5) = RKM(4,5)/DT
SL(6) = RKM(4,6)/DT
CALL OUT
ERASE NUT
IF (EMAX-REA) 333, 333, 330
330 IF (TMAX-RTA) 333, 333, 331
331 IF (SMAX-RSN) 333, 333, 146
333 WOT 10, 334
334 FORMAT (24MO) "MAXIMUM DISTANCE"
GO TO 2
146 IF (K4-RADORG) 168, 168, 147
168 IF (NB) 169, 165, 169
169 WOT 10, 144
144 FORMAT (1, 1O16X, 13HIMPACT ORIGIN)
GO TO 2
147 DU 147 I = 1*N
IF (LIST(I) = RAD(I)) 77, 77, 148
148 CONTINUE
149 IF (T-TMAX) 400, 250, 250
400 IF (HOSW) 155, 170, 155
155 IF (NB) 157, 170, 157
157 IF (LIST(NB)-RR) 178, 170, 170
178 IF (NTARG) 179, 181, 179
179 NEWORG = NTARG
180 CALL SWITCH
GO TO 100
181 NEWORG = 0
GO TO 100
170 IF (MET) 173, 100, 175
175 TEL = SUMX*SU;X+SU;Y*SUY+SUMZ*SUMZ
TEM = GMX*GMX+GMY*GMY+GMZ*GMZ
IF (TEM-(TEL/100)*100, 176
176 NCKE = 1.
GO TO 26
250 SL(4) = RKM(4,4)/DT
SL(5) = RKM(4,5)/DT
SL(6) = RKM(4,6)/DT
150 IF (NOT) 151, 152, 151
151 CALL OUT
152 WOT 10, 153
153 FORMAT (25HO) "MAXIMUM TIME"
GO TO 2
77 IF (NOT) 78, 162, 78
78 CALL OUT
162 IF (I-1) 79, 163, 79
163 IF (NORG) 280, 79, 280
280 WOT 10, 281
281 FORMAT (1H012X, 12HIMPACT EARTH)
GO TO 2
79 IF (I-NB) 80, 165, 80
80 WOT 10, 82, MB(1)
82 FORMAT (1H012X, 12HIMPACT BODY 12)
GO TO 2

A-40
107 FORMAT (1H0, 1X, 13H IMPACT TARGET)
GO TO 2
END (1.1.0.0.0.1)
SUBROUTINE OUT
SCEN = SQRTF (PM(1)*PM(1)*PM(2)*PM(2)*PM(3)*PM(3))
VCEN = SQRTF (PM(4)*PM(4)*PM(5)*PM(5)*PM(6)*PM(6))
5 IF (NORG < NTARG) 8, 9, 5
8 XEA = PM (1) - X
YEA = PM (2) - Y
ZEA = PM (3) - Z
REA = SQRTF (XEA*XEA+YEA*YEA+ZEA*ZEA)
GO TO 10
9 XEA = PM (1)
YEA = PM (2)
ZEA = PM (3)
REA = SCEN
10 IF (NORG < NTARG) 11, 12, 11
11 XTARGET = PM (1) - X (NBT)
YTARGET = PM (2) - Y (NBT)
ZTARGET = PM (3) - Z (NBT)
RTARGET = SQRTF (XTARGET*XTARGET+YTARGET*YTARGET+ZTARGET*ZTARGET)
GO TO 14
12 XTARGET = PM (1)
YTARGET = PM (2)
ZTARGET = PM (3)
RTARGET = SCEN
14 IF (NORG < 1) 15, 16, 15
15 XSN = PM (1) - X (NBS)
YSN = PM (2) - Y (NBS)
ZSN = PM (3) - Z (NBS)
RSN = SQRTF (XSN*XSN+YSN*YSN+ZSN*ZSN)
GO TO 17
16 XSN = PM (1)
YSN = PM (2)
ZSN = PM (3)
RSN = SCEN
17 TOUT = T - TO CALL HLO
19 FORMAT (11H0, TIME=F9.4, 14H TAPE TIME=F10.3, 12H DELTA T=I)
WOT 10, 19, TOUT, T, DT, NORG
1 B.3, 17H CENTER IS NO. 13/112MO POSIT FROM EARTH TA
2 RGET SUN CENTER VELOCITY AC
3 CELEBRATION
20 WOT 10, 22, XEA, XTARGET, XSN, PM (1), PM (1) +, SL (4)
22 FORMAT (3H XIPE617.7)
WOT 10, 24, YEA, YTARGET, YSN, PM (2), PM (2) +, SL (5)
24 FORMAT (3H YIPE617.7)
WOT 10, 26, ZEA, ZTARGET, ZSN, PM (3), PM (3) +, SL (6)
26 FORMAT (3H ZIPE617.7)
WOT 10, 28, REA, RTARGET, RSN, SCEN, VCEN
28 FORMAT (8H RIPE617.7)
CALL WHL
IF (SENSE_SWITCH 1) 37, 42
PRINT 19, TOUT, T, DT, NORG
PRINT 22, XEA, XTARG, XSN, PM (1), PM (4), SL (4)
PRINT 24, YEA, YTARG, YSN, PM (2), PM (5), SL (5)
PRINT 26, ZEA, ZTARG, ZSN, PM (3), PM (6), SL (6)
PRINT 28, REL, RTA, RSN, SCEN, VCEN
RETURN
END (1, 0, 0, 0, 1)
SUBROUTINE ORGN
IF (NORG) 6, 10, 6
WT (1) = WT0 - WT1
RAU (1) = RADORG
NORG = NWORG
IF (NORG) 12, 20, 12
IF (NORG = NBR (1)) 13, 17, 13
DO 13 I = 2, N
IF (NORG = NBR (I)) 14, 15, 14
CONTINUE
WT 1D+50
50 FORMAT (1H010X, 22HORIGIN BODY IS MISSING)
ERASE TEM
GO TO 42
10 J = 1
K = NB (1)
NB (1) = NB (J)
NB (J) = K
TEM = WT (1)
WT (1) = WT (J)
WT (J) = TEM
TEL = RAU (1)
RAD (1) = RAU (J)
RAD (J) = TEL
15 RAD1 = J * RAD (1)
RAD2 = 100. * RAD (1)
RADORG = RAD (1)
RAD (1) = RADE
WT (1) = WT (1) + WT (1)
WT (1) = WTE
GO TO 25
20 WTS = WTE + WT1
RADORG = RADE
RAD1 = 3 * RADE
RAD2 = 100. * RADE
IF (NTARG) 29, 26, 29
IF (NORG) 28, 27, 28
27 NBT = 0
GO TO 35
28 NBT = 1
GO TO 35
29 IF (NTARG = NORG) 31, 30, 31
30 NBT = 0
GO TO 35
31 DO 32 I = 1, N
IF (NTARG-NB(I)) \geq 32, 33, 32
32 CONTINUE
WOT 10.55
'55 FORMAT (1H010X,22HTARGET BODY IS MISSING
ERASE TEM
GO TO 42
33 NBT = 1
35 IF (NORG-I) \geq 39, 39, 36
36 DO 38 I = 1, N
IF (NB(I)-1) \geq 38, 40, 18
38 CONTINUE
39 NBS = 0
GO TO 41
40 NBS = 1
41 TEM = 1.
42 RETURN
END (1+1+0+0+0+0)
SUBROUTINE TITLE
2 TEM = 1.
WOT 10.5
3 FORMAT (1H010X,17HN BODY TRAJECTORY/1H010X,20HGENERAL ELECTRIC CO./
H010X,8MM,S.V.O./1H010X,20HSTART TABLE TIME = F10.3)
WOT 10.510
5 FORMAT (1H020X.22HCURRENT IS BODY1,8H MASS = 1PE14.6)
GO TO 11
10 DO 12 I = 1, N
IF (NNEWORG-NU(I)) \geq 12, 9, 12
9 WOT 10.5NB(I)+BM(I))
GO TO 11
12 CONTINUE
11 IF (NTARG) \geq 14, 17, 14
ERASE TEM
WOT 10.510
13 FORMAT (1H020X.19HDESTINATION IS BODY1,8H MASS = 1PE14.6)
GO TO 20
14 DO 16 I = 1, N
IF (NTARG-NB(I)) \geq 16, 15, 16
15 WOT 10.5NB(I)+BM(I))
GO TO 20
16 CONTINUE
19 FORMAT (1H020X.17HM ASS OF VEHICLE = 1PE14.6)
20 WOT 10.5TV
IF (N-I) \geq 33, 33, 21
21 WOT 10.22
22 FORMAT (1H020X.17MOTHER BODIES ARE
IF (TEM) 24, 26, 24
24 WOT 10.25
25 FORMAT (1H025X,6MBODY 1,8H MASS = 1PE14.6)
26 DO 32 I = 1, N
IF (NEWURG-NU(I)) 27,32,27
28 IF (NTARG-NB(I)) 28,32,28
29 WIT 10,25,NI(I),WI(I)
30 CONTINUE
31 WOT 10,42,42
32 FORMAT (1H020X,34HGRAVITATIONAL CONSTANT =1PE14.6)
33 IF (INSDT) 34,36,34
34 WOT 10,35,WT=U10,UTC
35 FORMAT (1H020X,6H01T 1 =F7.3*3X,6H01T 2 =F7.3*3X,6H01T 3 =F7.3)
36 GO TO 39
37 WOT 10,37,EP(0,DT,=)
38 FORMAT (1H020X,24HTEGRATION =1PE9.2*3X,18HMAXIMUM DE
39 LTA T = OPF+11)
40 IF (MET) 30,40,40
41 WOT 10,41,41
42 FORMAT (1H020X,33HCOWELL AND ERKKE METHODS ARE USED)
43 GO TO 50
44 IF (HCKE) 43,45,43
45 WOT 10,44
46 FORMAT (1H020X,20HHERKE METHOD IS USED)
47 GO TO 50
48 WOT 10,47
49 FORMAT (1H020X,21HMCowell METHOD IS USED)
50 IF (NUSA) 52,54,52
51 WOT 10,52
52 FORMAT (1H020X,21HTHE ORIGIN MAY CHANGE)
53 GO TO 58
54 WOT 10,55
55 FORMAT (1H020X,19HTHE ORIGIN IS FIXED)
56 RETURN
57 END (1,0,0,0,0,0)
58 SUBROUTINE TEMP
59 GO 25 NN = NNN+65
60 IF (TL(NN)-T) 25,30,30
61 CONTINUE
62 DO 27 IT = 1,7
63 TL(II) = TL(IT+60)
64 DO 27 J = 1,9
65 PX (J+IT) = PX (J+IT+60)
66 PY (J+IT) = PY (J+IT+60)
67 TZ (J+IT) = PZ (J+IT+60)
68 READ TAPE26 (TLJ,(PXIJ),PYIJ),PZIJ,J,= 1,9),J,= 6,67)
69 NNN = 6
70 GO TO 10
71 NN = NNN
72 TI (1) = T - TL (NN-3)
73 TI (2) = T - TL (NN-2)
74 TI (3) = T - TL (NN-1)
75 TI (4) = T - TL (NN)
76 TI (5) = T - TL (NN+1)
77 TI (6) = T - TL (NN+2)
78 TT = TI (4) * TI (5) * TI (6)
79 TTT = TI (3) * TT
\[\begin{align*}
C(1) &= TI(1) * TIT/(1-29859840) \\
C(2) &= TI(1) * TIT/2985984. \\
C(3) &= TI(1) * TI(2) * TI(1) \\
TIT &= TI(4) * TIT \\
C(4) &= TIT * TI(5) * TI(6) / 2985984. \\
C(5) &= TIT * TIT * TI(6) / 2985984. \\
C(6) &= TIT * TIT * TI(6) / 2985984. \\
\end{align*} \]

\[\begin{align*}
33 \quad &DO 36 K = 1, N \\
& \quad NA = No(N) \\
34 \quad &DO 36 K = 1, N \\
& \quad X(N) = PX(N) * CL(N+3) * CL(N+1) + PX(N+2) * CL(N+4) + PX(N+3) * CL(N+5) + PX(N+4) * CL(N+6) + PX(N+5) * CL(N+7) + PX(N+6) * CL(N+8) \\
35 \quad &IF (NORG) 40.43*40 \\
& \quad DO 42 K = 1, N \\
& \quad X(K) = X(K) - X \\
& \quad Y(K) = Y(K) - Y \\
36 \quad &Z(K) = Z(K) - Z \\
37 \quad RETURN \\
\end{align*} \]
H SUB MGM
H SLW GL
H CAL RKM-20
H SUB MGM
H SLW MM
H CAL RKL-20
H SLW HL

10 CALL FAD (PM(4) *, PL(4) *, FH, FL *, AM *, AL)
CALL FAD (PM(5) *, PL(5) *, GH, GL *, OH *, BL)
CALL FAD (PM(6) *, PL(6) *, HH, HL *, CH *, CL)
CALL FMPS (AM *, AL *, DT *, RKM(2 *, 1) *, RKL(2 *, 1))
CALL FMPS (SH *, BL *, DT *, RKM(2 *, 2) *, RKL(2 *, 2))
CALL FMPS (CM *, CL *, DT *, RKM(2 *, 3) *, RKL(2 *, 3))

H CAL RNM
H SUB MGM
H SLW FM
H CAL RKL
H SUB MGM
H SLW FL
H CAL RKM-4
H SUB MGM
H SLW GM
H CAL RKL-4
H SUB MGM
H SLW GL
H CAL RKM-8
H SUB MGM
H SLW HM
H CAL RKL-8
H SUB MGM
H SLW HL

14 CALL FAD (PM(1) *, PL(1) *, FH, FL *, SM *, AL)
CALL FAD (PM(2) *, PL(2) *, GM *, GL *, SB *, BL)
CALL FAD (PM(3) *, PL(3) *, HH, HL *, CM *, CL)
T = T * HAFDT
CALL TERP
CALL ACC

16 CALL FMPS (FM *, FLX *, DT *, RKM(2 *, 4) *, RKL(2 *, 4))
CALL FMPS (FM *, FLY *, DT *, RKM(2 *, 5) *, RKL(2 *, 5))
CALL FMPS (FM *, FLZ *, DT *, RKM(2 *, 6) *, RKL(2 *, 6))

H CAL RKM-13
H SUB MGM
H SLW FM
H CAL RKL-13
H SUB MGM
H SLW FL
H CAL RKM-17
H SUB MGM
H SLW GM
H CAL RKL-17
H SUB MGM
H SLW GL

A-46
H CAL RKM-21
H SUB MGM
H SLW HM
H CAL RKL-21
H SUB MGM
H CAL RKL-21
20 CALL FAD(PM(4)+PL(4)+FM*FL*AH*AL)
CALL FAD(PM(5)+PL(5)+GM*GL*BM*BL)
CALL FAD(PM(6)+PL(6)+HM*HL*CM*CL)
CALL FMPS(AM+AL+DT+RKM(3+1)+RKL(3+1))
CALL FMPS(AM+AL+DT+RKM(3+2)+RKL(3+2))
CALL FMPS(CH+CL+DT+RKM(3+3)+RKL(3+3))
H CAL RKM-1
H SUB MGM
H SLW FM
H CAL RKL-9
H SUB MGM
H SLW GL
H CAL RKM-9
H SUB MGM
H SLW HM
H CAL RKL-9
H SUB MGM
H SLW HL
24 CALL FAD(PM(1)+PL(1)+FM*FL*SAM*SAL)
CALL FAD(PM(2)+PL(2)+GM*GL*SBM*SBL)
CALL FAD(PM(3)+PL(3)+HM*HL*SCM*SCL)
CALL ACC
CALL FMPS(FMX*FLX+DT+RKM(3+4)+RKL(3+4))
CALL FMPS(FMY*FLY+DT+RKM(3+5)+RKL(3+5))
CALL FMPS(FHZ*FLZ+DT+RKM(3+6)+RKL(3+6))
28 CALL FAD(PM(4)+PL(4)+RKM(3+4)+RKL(3+4)+AH+AL)
CALL FAD(PM(5)+PL(5)+RKM(3+5)+RKL(3+5)+BM+BL)
CALL FAD(PM(6)+PL(6)+RKH(3+6)+RKL(3+6)+CM+CL)
CALL FMPS(AM+AL+DT+RKM(4+1)+RKL(4+1))
CALL FMPS(BM*BL+DT+RKM(4+2)+RKL(4+2))
CALL FMPS(CH*CL+DT+RKH(4+3)+RKL(4+3))
32 CALL FAD(PM(1)+PL(1)+RKH(3+1)+RKL(3+1)+SAM+SAL)
CALL FAD(PM(2)+PL(2)+RKM(3+2)+RKL(3+2)+SBM+SBL)
CALL FAD(PM(3)+PL(3)+RKN(3+3)+RKL(3+3)+SCM+SCL)
T = T+HAFDT
CALL TERP
VNZ = 1
CALL ACC
VNZ = 0
CALL FMPS(FMX*FLX+DT+RKH(4+4)+RKL(4+4))
CALL FMPS(FMY*FLY+DT+RKH(4+5)+RKL(4+5))

A-47
CALL FMPS(FMZ*FLZ*DT,RRM(4,6)*RLR(4,6))

DO 42 NA = 1,6
SDM = RKM(1,NA)
SDL = RLR(1,NA)
SEN = RKM(2,NA)
SEL = RLR(2,NA)
SFN = RKM(3,NA)
SFL = RLR(3,NA)
DO 42 NA = 1,6
SDG = RKL(4,NA)
SDL = RKL(4,NA)

CALL FAD(SEM,SEL,SFM,SFL,SEH,SEL)
CALL FAD(SEM,SEL,SFM,SFL,SEH,SEL)
CALL FAD(SEM,SEL,SFM,SFL,SEH,SEL)
CALL FAD(SEM,SEL,SFM,SFL,SEH,SEL)
CALL FDYS(SEM,SEL,6,0,SEM,SEL)
SFM = RM(NA)
SFL = PL(NA)

DO 42 NA = 1,6
RETURN
END (1,1,0,0,0,0)

SUBROUTINE ACC
2 CALL S0(SAM,SAL,AM,AL)
CALL S0(SBM,SBL,SM,SL)
CALL S0(SCM,SCL,CM,CL)
3 CALL FAD(AM,AL,BM,BL,AM,AL)
CALL FAD(RM,RL,CM,CL,RM,RL)
CALL FAD(RM,RL,CM,CL,RM,RL)
4 CALL DPSRT(RU,RL,RR,SS)
5 CALL FNP(RR,SS,RO,RL,RR,SS)
6 CALL FDY(MT,ZERO,RR,RR,TEM,TEL)
7 CALL FNP(SAM,SAL,TEM,TEL,GMX,GLX)
CALL FNP(SBM,SBL,TEM,TEL,GMY,GLY)
CALL FNP(SCM,SCL,TEM,TEL,GMZ,GLZ)
70 IF (KUB) J = 8,71
71 CALL FNP(RU,RL,RR,RR,TEM,TEL)
CALL FMP(CM,CL,SM,TEL,TEM,TEL)
CALL FSY(TEM,TEL,RO,RL,TEM,TEL)
CALL FSY(TEM,TEL,RO,RL,TEM,TEL)
72 CALL FDP(TEM,TEL,T1(1),T1(2),TEM,TEL)
CALL FNP(TEM,TEL,BM,BL,TEM,TEL)
CALL FNP(TEM,TEL,BM,BL,TEM,TEL)
CALL FNP(TEM,TEL,SM,SA,TEM,TEL)
CALL FNP(TEM,TEL,BM,BL,TEM,TEL)
73 CALL FNP(RU,RL,RR,RR,TEM,TEL)
CALL FMP(CM,CL,SM,TEL,TEM,TEL)
CALL FSY(TEM,TEL,RO,RL,TEM,TEL)
CALL FSY(TEM,TEL,RO,RL,TEM,TEL)
74 CALL FNP(TEM,TEL,T1(1),T1(2),TEM,TEL)
CALL FNP(TEM,TEL,T1(1),T1(2),TEM,TEL)
CALL FNP(TEM,TEL,T1(1),T1(2),TEM,TEL)
75 CALL FSB(TEM,TEL,RO,RL,TEM,TEL)
CALL FSB(TEM,TEL,RO,RL,TEM,TEL)
CALL FSB(TEM,TEL,RO,RL,TEM,TEL)
CALL FSB(TEM,TEL,RO,RL,TEM,TEL)
76 CALL FSB(GMX,GLX,SM,SL,GMX,GLX)
CALL FSB(GMY,GLY,SM,SL,GMY,GLY)
CALL FSB(GMZ,GLZ,ZM,ZN,GMZ,GLZ)
8 ERASE SUMX,SULX,SUMY,SULY,SUMZ,SULZ
9 DO 29 J = 1, N
XH = X(J)
YM = Y (J)
ZM = Z (J)
WTA = WT (J)

12 CALL FSBS (SAM, SAL, XM, XM, XLM)
CALL FSBS (SAM, SAL, YM, YM, YLM)
CALL FSBS (SCM, SCL, ZM, ZM, ZLM)
13 CALL SQ (XM, XL, AM, AL)
CALL SQ (YM, YL, BM, BL)
CALL SQ (ZM, ZL, CM, CL)
14 CALL FAD (AM, AL, BM, BL, RM, RL)
CALL FAD (RM, RL, CM, CL, RM, RL)
15 CALL DPSQRT (RM, RL, RRR, SSS)
IF (VNZ) 16, 17, 16
16 DIS (J) = A
DIST (J) = RRR
17 CALL FMP (RM, RL, RRR, SSS, RGM, RL)
CALL FDY (XM, XL, AM, AL)
CALL FDY (YM, YL, BM, BL)
CALL FDY (ZM, ZL, CM, CL)

A = (X(J)*X(J) + Y(J)*Y(J) + Z(J)*Z(J))**1.5
BX = X(J)/A
BY = Y(J)/A
BZ = Z(J)/A

26 CALL FADS (AM, AL, BX, BM, AL)
CALL FADS (BM, BL, BY, BM, BL)
CALL FADS (CM, CL, BZ, CM, CL)
22 CALL FMP5 (AM, AL, WTA, AM, AL)
CALL FMP5 (BM, BL, WTA, BM, BL)
CALL FMP5 (CM, CL, WTA, CM, CL)
23 CALL FAD (AM, AL, SUMX, SULX, SUMX, SULX)
CALL FAD (BM, BL, SUMY, SULY, SUMY, SULY)
25 CALL FAD (CM, CL, SUMZ, SULZ, SUMZ, SULZ)
CALL FAD (GMX, GLX, SUMX, SULX, FMX, FLX)
CALL FAD (GMY, GLY, SUMY, SULY, FMY, FLY)
32 CALL FAD (GMZ, GLZ, SUMZ, SULZ, FMZ, FLZ)
CALL FMP5 (FMX, FLX, GMX, GLX, FMX, FLX)
CALL FMP5 (FMY, FLY, GMY, GLY, FMY, FLY)
CALL FMP5 (FMZ, FLZ, GMZ, GLZ, FMZ, FLZ)
RETURN

END (1, 1.0, 0.0, 0.0, 0.0)
SUBROUTINE SWITCH

1 WOT 10, 2
2 FORMAT (8HO SWITCH)
 IF (LIST(NBT) = 20.0 * RAD(Nadt)) 5, 5, 8
5 DT = DT/8.
 GO TO 10
8 DT = DT/2.
10 HAFDT = DT/2.
25 QM(1) = 137.
QM(2) = 300.
QM(3) = 300.
QM(4) = -200.
QM(5) = 75.
OM(6) = -12,
TSAVE = T
IF (NNN-NSAVE) 14,14,15
14 NSAVE = 4
GO TO 16
15 NSAVE = NNN-2
16 XPM = X(NBT)
YPM = Y(NBT)
ZPM = Z(NBT)
20 CALL FSBS (PM(1),PL(1),XPM,PPM(1),PPL(1))
CALL FSBS (PM(2),PL(2),YPM,PPM(2),PPL(2))
CALL FSBS (PM(3),PL(3),ZPM,PPM(3),PPL(3))
27 CALL FMPS (PPM(1),PPL(1),WM(1),WL(1))
CALL FMPS (PPM(2),PPL(2),WM(2),WL(2))
CALL FMPS (PPM(3),PPL(3),WM(3),WL(3))
DO 35 I = 2,6
28 CALL INT
29 SL(4) = RKM(4,4)/DT
SL(5) = RKM(4,5)/DT
SL(6) = RKM(4,6)/DT
CALL OUT
XM = X(NBT)
YM = Y(NBT)
ZM = Z(NBT)
FM = OM(1)
CALL FSBS(PM(1),PL(1),XM,QL(1),QL(2))
CALL FSBS(PM(2),PL(2),YM,QL(3),QL(4))
CALL FSBS(PM(3),PL(3),ZM,QL(5),QL(6))
30 CALL FMPS (QL(1),QL(2),FM,FMX,FLX)
CALL FMPS (QL(3),QL(4),FM,FMY,FLY)
CALL FMPS (QL(5),QL(6),FM,FMZ,FLZ)
CALL FADS (WH(1),WL(1),FMX,FLX,WM(1),WL(1))
CALL FADS (WH(2),WL(2),FMY,FLY,WM(2),WL(2))
CALL FADS (WH(3),WL(3),FMZ,FLZ,WM(3),WL(3))
GM = -60.*DT
CALL FDYS (WM(1),WL(1),GM,PPM(4),PPL(4))
CALL FDYS (WM(2),WL(2),GM,PPM(5),PPL(5))
CALL FDYS (WM(3),WL(3),GM,PPM(6),PPL(6))
EPGL = SQRT((PPM(1)**2+PPM(2)**2+PPM(3)**2)*4*10**-10
37 CALL ORGN
38 DO 40 I = 1,6
PM(I) = PPM(I)
40 PL(I) = PPL(I)
T = TSAVE
IF (NNN-NSAVE) 41,43,42
41 BACKSPACE 26
BACKSPACE 26
READ TAPE26
TL(J) = PX(I,J)+PY(I,J)+PZ(I,J),I = 1,9, J = 8,67
42 NNN = NSAVE
43 CALL TERP
DO 44 I = 2,6
44 WOT 10,45,T,PM(1),PM(2),PM(3)
FORMAT (1H0F12.4,1PE17.7)
CALL FSF(QL(1),QL(2),PL(1),SH(1),SL(1))
CALL FSF(QL(3),PL(2),SH(2),SL(2))
CALL FSF(QL(5),PL(3),SH(3),SL(3))
DO 53 I = 1,3
52 IF (APSFSH(1)) ESSL 53,53,58
53 CONTINUE
54 RETURN
58 HM = 1 - SAVE
CALL FDFS (SH(1),SL(1),HM,PM(1),PL(1))
CALL FDFS (SH(2),SL(2),HM,PM(2),PL(2))
CALL FDFS (SH(3),SL(3),HM,PM(3),PL(3))
CALL FAD (PPM(4),PPM(4),PN(1),PL(1))
CALL FAD (PPM(5),PPM(5),PN(2),PL(2))
CALL FAD (PPM(6),PPM(6),PN(3),PL(3))
DO TO 38
END (1) 0D 0D 00

RECTIFICATION BY MARY ELLEN

SUBROUTINE REC

EQUIVALENCE (WH(1),XM(1)) (HM(2),YM(2))
(WM(3),ZM(3)) (WM(4),XM4D)
1 (WH(6),ZM(6)) (WM(5),ZM(5)) (WM(7),ZM(7)) (WM(8),ZM(8))
2 (WH(9),ZM(9)) (WM(10),ZM(10)) (WM(11),ZM(11)) (WM(12),ZM(12))
DAD I X(9),Y(9),Z(9),T(6),RKM(4.6),RRK(4.6),ZM(9)
1 WT(9),RAD(9),DUMMY(27),DIST(9),FM(6),PL(6),PPM(6)
2 PPL(6),YH(6),UL(6),WH(6),WL(6),XX(9),YY(9),ZZ(9),ZC(6),CL(6)

COMMON NEurar(GAMR,PM,FLY,FLZ,AM,AL,BL,CM,CL
CMH,ON,PM,AM,AL,BL,CM,CL
1, 2, 3, 4, 5, 6, 7
DAD X(1),Y(1),Z(1),T(1)

COMMON A1,A2,FJ1,FJ2,SFJ1,SFJ2,CFJ1,CFJ2,S1,S2,EPS1
COMMON DTDTN,RPH
DAD SM(6),SL(6),XMJ(12)

VECT Gordon OBx,TSAVE,KEH,RTA,RSN,HP1,THP1,Kn,NGS

CALL FNP (X(1),X(2),XDOT(1),XDOT(2),RR1,RR2)
100 CALL FNP (Y(1),Y(2),YDOT(1),YDOT(2),T1,T2)
101 CALL FNP (Z(1),Z(2),ZDOT(1),ZDOT(2),T1,T2)
102 CALL FNP (X(1),X(2),XDOT(1),XDOT(2),T1,T2)
103 CALL FNP (Y(1),Y(2),YDOT(1),YDOT(2),T1,T2)
104 CALL FNP (Z(1),Z(2),ZDOT(1),ZDOT(2),T1,T2)

RETURN

VECTOR DOT PRODUCT OF R x DOT IN LOC'S. RR1,RR2

CALL SO (XDOT1),XDOT2,SD1,SD2
105 CALL SO (YDOT1),YDOT2,T1,T2
106 CALL SO (ZDOT1),ZDOT2,T1,T2
107 CALL SO (RDOT1),RDOT2,T1,T2
108 CALL SO (RDOT1),RDOT2,T1,T2
VECTOR DOT PRODUCT OF ROOT WITH ITSELF (SDOT**2) IN SD1+2

CALL SQ (X11, X12, AR1, AR2)
111 CALL SQ (Y11, Y12, T1, T2)
112 CALL FAD (T1, T2, AR1, AR2, AR1, AR2)
113 CALL SQ (Z11, Z12, T1, T2)
114 CALL FAD (T1, T2, AR1, AR2, AR1, AR2)
115 CALL DPSORT (AR1, AR2, AR1, AR2)

MAGNITUDE OF VECTOR IN LOC5, AR1*AR2
C

CALL FMPS (X11, X12, Y11, Y12, Z11, Z12, C1, C2)
121 CALL FDY (2.0, 0.0, AR1, AR2, T1, T2)
122 CALL FDY (SD1, SD2, C1, C2, TT1, TT2)
123 CALL FSQ (T1, T2, TT1, TT2, T1, T2)
124 CALL FDY (1.0, 0.0, TT1, TT2, A1, A2)

SECTION 120-124 CALCULATES VALUE A, STORED IN LOC5, A1*A2

IF (A1) 133, 131, 137
C QUANTITY A = 0 INDICATES PARABOLIC ORBIT. SET A = -1E-8 AND
USE EQUATIONS FOR HYPERBOLIC ORBIT.
C
A1 = -1.0 E-8
132 ERASE A2
133 CALL FMPS (A1, A2, -1.0, A1, A2)
C SET A = ABSF(A) FOR COMPUTING EASE IN THIS SUBROUTINE
135 M = 1
C QUANTITY A NEGATIVE INDICATES HYPERBOLIC ORBIT - SET M = 1
136 GO TO 138
C QUANTITY A POSITIVE INDICATES ELLIPTIC ORBIT - SET M = 2
137 M = 2
138 CALL FMPS (C1, C2, A1, A2, S1, S2)
139 CALL SQ (RR1, RR2, TT1, TT2)
140 CALL FDY (TT1, TT2, S1, S2, T1, T2)
141 CALL DPSORT (S1, S2, S1, S2)
142 CALL FDY (RR1, RR2, S1, S2, SV1, SV2)
143 CALL CUBE (A1, A2, SAV1, SAV2)
C EXTRA CALCULATIONS TO OBTAIN MAXIMUM ACCURACY
145 CALL SQ (COND, CON2, TT1, TT2)
146 GO TO (147, 150), M
147 CALL FSQ (TT1, TT2, T1, T2, ESQ1, ESQ2)
148 GO TO 131
150 CALL FAD (TT1, TT2, T1, T2, ESQ1, ESQ2)
151 CALL DPSORT (ESQ1, ESQ2, E(1), E(2))
C E CALCULATED IN SECTION 143-151
153 IF (E(1)) 900, 910, 154
C E = 0 INDICATES CIRCULAR ORBIT - ERROR RETURN - NERR = 3
154 CALL FDY (SV1, SV2, E(1), E(2), T1, T2)
155 CALL FDY (COND, CON2, E(1), E(2), TT1, TT2)
156 GO TO (160, 180), M
C SECTION 160 - 172 USED WHEN A IS NEG., M=1, HYPERBOLIC ORBIT
160 CALL FAD (T1, T2, TT1, TT2, T1, T2)
161 CALL DLOG (T1, T2, FJ1, FJ2, I)
C SECTION 160-161 CALCULATES FJ IN LOC5, FJ1,FJ2
162 GO TO (163, 900), I
163 CALL DPSINH (FJ1, FJ2, SFJ1, SFJ2, I)

A-52
164 GO TO (165, 900), I
165 CALL FMP (E1, E2, SFJ1, SFJ2, T1, T2)
166 CALL FSB (T1, T2, FJ1, FJ2, XMJ(1), XMJ(2))
C H SUB J COMPUTED IN SECTION 162-166 STORED XMJ(2)
167 CALL FSB (ESQ1, ESQ2, 1.0, T1, T2)
168 CALL DPSORT (TI, T2, CCON1, CCON2)
C ERROR RETURN NERR = 4 IF E SQUARED MINUS 1 IS NEGATIVE
170 CALL FDY(-1.0, 0.0, CCON1, CCON2)
171 CALL DPCOSH (FJ1, FJ2, CFJ1, CFJ2, 1)
172 GO TO (200, 900), I
C SECTION 130 - 195 USED WHEN A IS POSITIVE, M = 2, ELLIPTIC ORBIT
180 IF (T1) 181, 194, 184
181 IF (T1) 182, 183, 185
182 NOP = 3
GO TO 187
183 NOP = 4
GO TO 187
184 IF (T1) 185, 186, 186
185 NOP = 2
GO TO 187
186 NOP = 1
187 IF (ABS(T1) - ABS(TT1)) 188, 189, 189
188 CALL S2 (T1, T2, TI, TT1)
CALL FSB (1.0, 0.0, T1, T2, TI, TT1)
CALL DPSORT (T1, T2, TI, TT1)
C ERROR RETURN NERR = 6 IF UNABLE TO CALC. COS EJ OR SIN EJ
189 CALL OPASIN (1.0, 0.0, T1, T2, FJ1, FJ2)
IF (T1) 1890, 1891, 1890
1890 GO TO (1699, 1892, 1893, 1893), NOP
1892 CALL FSB (PI(1), PI(2), FJ1, FJ2, FJ1, FJ2)
GO TO 1899
1893 XNUM = FJ1 / ABSF(FJ1)
1894 CALL FMP(FJ1, FJ2, XNUM, FJ1, FJ2)
1895 GO TO (1899, 1899, 1896, 1897), NOP
1896 CALL FDY (1.0, 0.0, 0.0, CCON1, CCON2)
GO TO 1899
1897 CALL FSB (PI(1), PI(2), FJ1, FJ2, FJ1, FJ2)
1898 CALL DPCOSH (FJ1, FJ2, CFJ1, CFJ2)
1899 CALL DPCOSH (FJ1, FJ2, CFJ1, CFJ2)
190 CALL FMP (E1, E2, SFJ1, SFJ2, T1, T2)
191 CALL FSB (FJ1, FJ2, T1, T2, XMJ(1), XMJ(2))
C SECTION 186-191 COMPUTES M SUB J STORED IN LOCS. XMJ(2)
192 CALL FSB (1.0, 0.0, ESQ1, ESQ2, T1, T2)
C SECTION 192-195 FOR ELLIPTIC CASE PARALLELS SECTION 167-171
C FOR HYPERBOLIC CASE
193 CALL DPSORT (T1, T2, CCON1, CCON2)
195 CALL FDY (1.0, 0.0, 0.0, CCON1, CCON2)
C SECTION 200 USED FOR BOTH TYPES OF ORBITS
200 CALL FDY (CFJ1, CFJ2, AR1, AR2, ESQ1, ESQ2)
201 CALL FDY (A1, A2, C1, C2, T1, T2)
CALL DPSORT (T1, T2, T1, T2)
202 CALL FMP (T1, T2, SFJ1, SFJ2, RR1, RR2)
203 CALL FDY (SFJ1, SFJ2, AR1, AR2, SV1, SV2)
204 CALL FSB (CFJ1, CFJ2, ESQ1, ESQ2, T1, T2)

A-53
CALL FMP (TT1, TT2, T1, T2, SQ1, SQ2)

CALL FMPSI3V1, SV2, TT1, TT2, SQ1, SQ2

CALL FMPSIA1, A2, TT1, TT2, SQ1, SQ2

CHANGE SIGN OF A TO MINUS AGAIN

SECTION 210-218 CALCULATES 3 COMPONENTS OF VECTOR P FOR BOTH TYPES OF ORBITS

CALL FMP (XI, X2, ESQ1, ESQ2, TT1, TT2)

CALL FMP (XDOT1, XDOT2, RR1, RR2, TT1, TT2)

CALL FMP (YI, Y2, ESQ1, ESQ2, TT1, TT2)

CALL FMP (YDOT1, YDOT2, RR1, RR2, TT1, TT2)

CALL FMP (ZI, Z2, ESQ1, ESQ2, TT1, TT2)

CALL FMP (ZDOT1, ZDOT2, RR1, RR2, TT1, TT2)

CALL FSD (TT1, TT2, T1, T2, PY1, PY2)

SECTION 220-242 CALCULATES 3 COMPONENTS OF VECTOR O FOR BOTH TYPES OF ORBITS

CALL FMP (XI, X2, SV1, SV2, TT1, TT2)

CALL FMP (XDOT1, XDOT2, SD1, SD2, TT1, TT2)

CALL FAD (TT1, TT2, TT1, TT2, QX1, QX2)

CALL FAD (TT1, TT2, TT1, TT2, QY1, QY2)

CALL FAD (TT1, TT2, TT1, TT2, QZ1, QZ2)

SECTION 243-250 CALLS SUBROUTINE POSN

POSITION BY MARY ELLEN

END (1, ID, DJ, D, O, O)
C QUANTITY A NEGATIVE INDICATES HYPERBOLIC ORBIT - SET M = 1
C QUANTITY A POSITIVE INDICATES ELLIPTIC ORBIT - SET M = 2
C M = 1
94 GO TO 102
C M = 2
99 GO TO 102
102 CALL FMPS(XNN(1),XNN(2),DT,SD1,SD2)
103 CALL FAD (XMJ(1),XMJ(2),SD1,SD2,XMJ(1),XMJ(2))
104 EJ1 = FJ1
105 EJ2 = FJ2
106 USE VALUE EJ OR FJ AT T = I, FOR FIRST GUESS AT T = TJ + DELTA T
C SECTION 110 - 160 DOES NEWTON-RAPHSON ITERATION FOR E(J+1)
110 DO 160 K = 1, 99
112 CALL FMPS(E11,E12,SEJ1,SEJ2,TT1,TT2)
113 CALL FSb (EJ1,EJ2,TT1,TT2)
114 CALL FMPS (E11,E12,CEJ1,CEJ2,TT1,TT2)
115 CALL FSb (CEJ1,CEJ2,TT1,TT2)
116 GO TO 130
C SECTION 112-116 INITIALIZES DELTA F CALC. FOR ELLIPTIC CASE
120 CALL FMPS (E11,E12,SEJ1,SEJ2,TT1,TT2)
121 CALL FSb (TT1,TT2,EJ1+EJ2,TT1,TT2)
122 CALL FMPS (E11,E12,CEJ1,CEJ2,TT1,TT2)
123 CALL FSb (TT1,TT2,TT1,TT2)
C SECTION 120-123 INITIALIZES DELTA F CALC. FOR HYPERBOLIC CASE
130 CALL FSb (XNP(1),XNP(2),TT1,TT2,XNN1,XNN2)
131 CALL FDY (XNN1,XNN2,TT1,TT2,DEJ1,DEJ2)
132 IF (AUSF(EIJ1)-EPS1) 170, 170, 140
140 CALL FAD (EJ1+EJ2,DEJ1,DEJ2,EJ1,EJ2)
C REPLACE OLD GUESS WITH NEW ONE
148 GO TO (155,150)
150 CALL DPSC (EJ1,EJ2,SEJ1,SEJ2,CEJ1,CEJ2,1)
151 GO TO 160
155 CALL DPHM (EJ1+EJ2,SEJ1,SEJ2,1)
156 GO TO (157,900), 1
157 CALL DPGM (EJ1+EJ2,CEJ1,CEJ2,1)
158 GO TO (160,900), 1
160 CONTINUE
C GIVE NEWTON-RAPHSON 99 CHANCES TO CONVERGE
C MAKE ALL SORTS OF TESTS ON SINUS EJ TO DETERMINE FINAL VALUE
C EJ AT T + DELTA T = SECTION 171-193 FOR ELLIPTIC CASE
C
C 161 GO TO 900
C 170 GO TO (200,171) +M
C 171 IF (SEJ1) 170,178,174
C 172 IF (CEJ1) 170,176,173
C 173 AMX = MFI
C 174 ERRSE XMIN
C 175 GO TO 185
C 176 XMAX = PI
C 177 XMIN = MPI
C 178 GO TO 185
C 179 IF (CEJ1) 179,179,181
C 180 XMAX = TMPI
C 181 GO TO 185
C 182 XMIN = PI
C 183 IF (EJ1 -XMAX) 184,200,185
C 184 IF (EJ1 -XMIN) 186,200,200
C 185 CALL FSo(EJ1,EJ2,P[1(1),P1(2),EJ1,EJ2)
C 186 CALL FAD (EJ1,EJ2,P1(1),P1(2),EJ1,EJ2)
C 187 IF (EJ1 -XMAX) 188,110,185
C 188 IF (EJ1 -XMIN) 189,110,110
C 200 CALL FS0 (CEJ1,CEJ2) +E(2) +T1 +T2)
C 201 CALL FMP (T1 +T2,A1 +A2 +Xw1 +Xw2)
C 202 CALL FMP(T1 +T2+A1 +A2 +EJ1 +EJ2 +Xw1 +Xw2)
C
C SECTION 200-202 COMPUTES Xw AND YW AT J+1
C 204 CALL SJ (Xw1 +Xw2 +T1 +T2)
C 205 CALL SJ (Yw1 +Yw2 +T1 +T2)
C 206 CALL FAD (T1 +T2,T1 +T2 +T1 +T2)
C 207 CALL DPSGT ((T1 +T2,A1 +A2 +AR1 +AR2)
C
C SECTION 210-215 COMPUTES Xw DOT Yw AT J+1
C 210 CALL FMP (S1 +S2 +SEJ1 +SEJ2 +T1 +T2)
C 211 CALL FMY (T1 +T2,A1 +AR1 +A2 +XW1 +XW2)
C 212 CALL FMP (XW1 +XW2 +T1 +T2)
C 213 CALL FMP (S1 +S2 +CON1 +CON2 +T1 +T2)
C 214 CALL FMP (T1 +T2 +SEJ1 +SEJ2 +T1 +T2)
C 215 CALL FMY (T1 +T2 +AR1 +AR2 +YW1 +YW2)
C
C SECTION 220-230 COMPUTES 3 COMPONENTS OF VECTORS RRoot AT
C T = T + DELTA T (J+1)
C 220 CALL FMP (XW1 +XW2 +PX(1) +PX(2) +T1 +T2)
C 221 CALL FMP (YW1 +YW2 +PY(1) +PY(2) +T1 +T2)
C 222 CALL FAD (T1 +T2,T1 +T2 +XP1 +XP2)
C 223 CALL FMP (XW1 +XW2 +Py(1) +Py(2) +T1 +T2)
C 224 CALL FMP (YW1 +YW2 +Py(1) +Py(2) +T1 +T2)
C 225 CALL FAD (T1 +T2,T1 +T2 +XP(1) +XP(2))
C 226 CALL FMP (XW1 +XW2 +Py(1) +Py(2) +T1 +T2)
C 227 CALL FMP (YW1 +YW2 +Py(1) +Py(2) +T1 +T2)
C 228 CALL FAD (T1 +T2 +T1 +T2 +ZP(1) +ZP(2))
C 229 CALL SJ (XP(1) +XP(2) +AM +AL)

A-56
CALL SQ (YP(1), YP(2), R+UQ)
CALL SQ (ZP(1), ZP(2), C+UQ)
CALL FHU (RX+CM, DX+CM, RX+CM, RX+CM)
CALL FAV (C+CM, CM+RCL+RP+RPL)
CALL DPSOR (RP+RPL+CM+RCL)
CALL FMF (RX+CM, RX+CM, RX+CM, RX+CM)
CALL FDX (RX+CM, RX+CM, RX+CM, RX+CM)
CALL FAP (YP(1), YP(2), RWM+RKL+YP+YPL)
CALL FMP (ZP(1), ZP(2), RWM+RKL+ZPM+ZPL)
IF ILW(2) < 16 * 16 + 2.0
250 CALL FRO (XWU1,XWU2,PA(1),PA(2), T1, T2)
251 CALL FPA (Y1U1,Y1U2,QA(1),QA(2), T1, T2)
252 CALL FAD (T1,T2, T1,T2,XOUTP(1),XOUTP(2))
253 CALL FPA (XWU1,XWU2,PA(1),PA(2), T1, T2)
254 CALL FPA (Y1U1,Y1U2,QA(1),QA(2), T1, T2)
255 CALL FAD (T1,T2, T1,T2,YOUTP(1),YOUTP(2))
256 CALL FPA (XWU1,XWU2,PA(1),PA(2), T1, T2)
257 CALL FPA (Y1U1,Y1U2,QA(1),QA(2), T1, T2)
258 CALL FAD (T1,T2, T1,T2,ZDOTP(1),ZDOTP(2))
259 FJL = EJ1
FJ2 = EJ2
RETURN
STOP 7777
END (1,1,0,0,0,0)
SUBROUTINE INTN
6 CALL FMPS (X1D1,M1D1,DT1,RKM(1,1),RKL(1,1))
CALL FMPS (Y1D1,Y1D1,DT1,RKM(1,2),RKL(1,2))
CALL FMPS (Z1D1,Z1D1,DT1,RKM(1,3),RKL(1,3))
8 SNN = PM (1)
SAL = PL (1)
SNN = PM (2)
SBL = PL (2)
SCM = PM (3)
SCL = PL (3)
CALL ACCN
12 CALL FMPS (F1X,FLX,DT1,RKM(1,4),RKL(1,4))
CALL FMPS (F1Y,FLY,DT1,RKM(1,5),RKL(1,5))
CALL FMPS (F1Z,FLZ,DT1,RKM(1,6),RKL(1,6))
M CALL RKM-12
H SUB MGM
H SLW FM
H CAL RKL-12
M SUB MGM
M SLW FL
H CALL RKM-16
H SUB MGM
H SLW GM
H CAL RKL-16
M SUB MGM
H SLW UL
H CALL RKM-20
M SUB MGM

A-57
CALL FAD (XIM×XIL×XPL1×XP1(2)×XAM×XAL)
CALL FAD (Y1M×Y1L×YP1(2)×YAM×YL)
CALL FAD (Z1M×Z1L×ZP2(2)×ZAM×ZAL)
CALL FAD (XAM×XAL×FM×FL×SM×SL)
CALL FAD (YAM×YAL×GM×GL×SM×SBL)
CALL FAD (ZAM×ZAL×HM×HL×SM×SCL)
CALL ACCN
CALL FADS (FMX×FLX×DT×XRM(2,4)×XKL(2,4))
CALL FADS (FMY×FLY×DT×XRM(2,5)×XRL(2,5))
CALL FADS (FMZ×FLZ×DT×XRM(2,6)×XKL(2,6))

CAL RKM-13
CAL RKL-13
CAL RKM-13
CAL RKL-17
CAL RKM-17
SUB MGM
SLW GM
CAL RKL-17
SUB MGM
A-58
SLW GL
CALL RKM-1
SUD MGM
SLW MM
CALL RKL-21
SUL MGM
SLW ML
CALL FAD (XUM.XUL.FH+FL+RAH+AL)
CALL FAD (YUM.YUL.GM+GL+BM+BL)
CALL FAD (ZUM.ZUL.HM+HL+CM+CL)
CALL FHP5 (AM+AL+DT+RKM(3.1)+RKL(3.1))
CALL FHP5 (BM+BL+DT+RKM(3.2)+RKL(3.2))
CALL FHP5 (CM+CL+DT+RKM(3.3)+RKL(3.3))
CALL RKM-1
SUD MGM
SLW FM
CALL RKL-1
SUD MGM
SLW FL
CALL RKM-5
SUB MGM
SLW GM
CALL RKL-5
SUD MGM
SLW GL
CALL RKM-9
SUD MGM
SLW HM
CALL RKL-9
SUD MGM
SLW HL
CALL FAD (XAM.XAL.FN+FL+SAN+SL)
CALL FAD (YAM.YAL.GM+GL+SBM+SL)
CALL FAD (ZAM.ZAL.HM+HL+SCM+SL)
CALL ACCN
CALL FHP5 (FMX+FLX+DT+RKM(3.1)+RKL(3.1))
CALL FHP5 (FMX+FLX+DT+RKM(3.2)+RKL(3.2))
CALL FHP5 (FMX+FLX+DT+RKM(3.3)+RKL(3.3))
CALL FAD (XUM.XUL.RKM(3.4)+RKL(3.4)+AM+AL)
CALL FAD (YUM.YUL.RKM(3.5)+RKL(3.5)+BM+BL)
CALL FAD (ZUM.ZUL.RKM(3.6)+RKL(3.6)+CM+CL)
CALL FHP5 (AM+AL+DT+RKM(4.1)+RKL(4.1))
CALL FHP5 (AM+AL+DT+RKM(4.2)+RKL(4.2))
CALL FHP5 (AM+AL+DT+RKM(4.3)+RKL(4.3))
DTME = DTME + HAFDT
T = T + HAFDT
CALL TCRP
WNZ = 1
CALL P03N
CALL FAD (X1H+X1L+RKM(3.1)+RKL(3.1)+AM+AL)
CALL FAD (Y1H+Y1L+RKM(3.2)+RKL(3.2)+BM+BL)
CALL FAD (Z1H+Z1L+RKM(3.3)+RKL(3.3)+BM+CL)
CALL FAD (AM+AL+XP(1)+XP(2)+SAN+SL)

A-59
CALL FHP (ZM+ZL+UJ+ZM+ZL)
CALL FSB (TM+TEL+ZM+ZL+ZM+ZL)
CALL FHP (ZM+ZL+UJ+ZM+ZL)
CALL FSB (UMX+ULX+XN+XM+ULX)
CALL FSB (UMY+ULY+YM+YM+ULY)
CALL FSB (UMZ+ULZ+ZM+ZL+ULZ)
8 ERASE SUMX+SULX+SUY+SULY+SUMZ+SULZ
9 DO 29 J = 1+N
AM = A (J)
YM = Y (J)
ZM = Z (J)
WTA = WT (J)
12 CALL FSB (SAM+SAM+XM+XM+XM)
CALL FSB (SAM+SAM+YM+YM+YM)
CALL FSB (SAM+SAM+ZM+ZM+ZM)
13 CALL SO (XM+X+AM+AL)
CALL SO (YM+YL+DM+BL)
CALL SO (ZM+ZL+CM+CL)
14 CALL FAU (RM+RL+DM+DL+RM+RL)
CALL FAU (RM+RL+CM+CL+RM+RL)
15 CALL UPSUM (XM+RL+RR+SSS)
IF (VNZ) 16*17*18
16 DIS (J) = RM
DIS (J) = RR
17 CALL FAU (RM+RL+RR+SSS+RR+RL)
CALL FDU (XM+X+X+AM+AL)
CALL FDU (YM+Y+X+AM+BL)
CALL FDU (ZM+Z+X+AM+CL)
A = X (J)*X (J)+Y (J)*Y (J)+Z (J)*Z (J)**1.5
BX = X (J)/A
BY = Y (J)/A
BZ = Z (J)/A
26 CALL FAUS (AM+AL+DX+AM+AL)
CALL FAUS (BM+BL+BY+BM+BL)
CALL FAUS (CM+CL+BC+CH+CL)
22 CALL FMPS (AM+AL+WTA+AM+AL)
CALL FMPS (BM+BL+WTA+BM+BL)
CALL FMPS (CM+CL+WTA+CM+CL)
23 CALL FAU (AM+AL+SUMX+SULX+SUMX+SULX)
CALL FAU (QM+QL+SUMY+SULY+SUMY+SULY)
29 CALL FAU (CM+CL+SUNZ+SULZ+SUNZ+SULZ)
CALL FAU (GM+GL+SUNX+SULX+SUNX+SULX)
CALL FAU (GMY+GLY+SUNY+SULY+SUNY+SULY)
32 CALL FAU (GMR+GLZ+SUNZ+SULZ+SUNZ+SULZ)
CALL FMPS (FX+FLX+GF+FMX+FLX)
CALL FMPS (FX+FLX+GF+FMX+FLX)
RETURN
END (1+1+0+0+0)
APPENDIX B

OPERATIONAL DIRECTORIES, LISTING AND CHECK PROBLEMS FOR SECTIONS II, III AND IV

A. TWO POSITION VECTOR PROGRAM

a. Operational Directory

Purpose

To find the position and velocity vector of an observed body at time T_o from two-range vectors.

Usage

Input - All decimal input is read by a modified DBC FORTRAN sub-routine which accepts variable length fields. All fields are floating point numbers except for starred fields which are integers. Following is the list of input quantities in the order in which they are read into the program. All range measurements must be converted to units of earth's equatorial radius (6378.388 km. = equatorial radius of earth). All angles are to be expressed in degrees and decimals of a degree. Time is to be in days and decimals of a day.

Field 1 - ρ_o Magnitude of range measurement at time, T_o
Field 2 - ρ_1 Magnitude of range measurement at time, T_1
Field 3 - X_o, Geocentric, equatorial coordinates
Field 4 - Y_o, of observer's position on earth
Field 5 - Z_o, at time, T_o
Field 6 - X_1, Geocentric, equatorial coordinates
Field 7 - Y_1, of observer's position on earth
Field 8 - Z_1 at time, T.
Field 9 - δ_0 Declination of observed body at time, T_0.
Field 10 - δ_1 Declination of observed body at time, T_1.
Field 11 - α_0 Right ascension of observed body at time, T_0.
Field 12 - α_1 Right ascension of observed body at time, T_1.
Field 13 - T_0, Time
Field 14 - T_1, Time
Field 15 - Control parameter, KO. If KO ≤ 0, the unit of time will be equal to 806.996813 sec. If KO ≥ 1, the unit of time will be 58.132441 days.

Sample Input

Card 1

F 1.41889, 1.47513, 1.00082, 0.05063, 0.02196*

Card 2

F 2.3587, -2.7808, -1.9578, -9.34, -10.51*

Card 3

F 342.34, 341.465, 72.5, 80.5, XO*

Output - The X, Y, Z components of the position vector are printed in units of Earth's equatorial radius, kilometers, and astronomical units. The \dot{X}, \dot{Y}, \dot{Z} components of the velocity vector are printed in units of Earth's equatorial radius per 806.996813 sec., km per sec. and A.U. per hr., if KO ≤ 0. If KO ≥ 1, the velocity will be printed out in units of Earth's equatorial radius per 58.132441 days, km per sec. and A.U. per hr.
b. Two Position Vector Program

```
DIMENSION PM(6), PL(6), PZM(6), PZL(6)
1 RIT2, 16, RHO, RHOI, XO, YO, ZO, XI, YI, ZI, PHIO, PHII, ALPO,
1 ALPI, TO, TI, KO
16 FORMAT (515)
ERASE K, KNT
NO = 1
2 CALL DPSC(PHIO, O., SPOM, SPOL, CPOM, CPOL, O)
CALL DPSC(PHII, O., SPIM, SPIL, CPIM, CPIL, O)
CALL DPSC(ALPO, O., SAOM, SAOL, CAOM, CAOL, O)
CALL DPSC(ALPI, O., SAIM, SAIL, CAIM, CAIL, O)
CALL FMP(CPOM, CPOL, CAOM, CAOL, CCM, CCL)
CALL FMPS(CCM, CCL, RHO, CCM, CCL)
CALL FADS(CCM, CCL, XO, PM(1), PL(1))
CALL FMP(CPOM, CPOL, SAOM, SAOL, CCM, CCL)
CALL FMPS(CCM, CCL, RHO, CCM, CCL)
CALL FADS(CCM, CCL, YO, PM(2), PL(2))
CALL FMPS(SPOM, SPOL, RHO, CCM, CCL)
CALL FADS(CCM, CCL, ZO, PM(3), PL(3))
CALL FMP(CPIM, CPIL, CAIM, CAIL, CCM, CCL)
CALL FMPS(CCM, CCL, RHOI, CCM, CCL)
CALL FADS(CCM, CCL, XI, XIM, XIL)
CALL FMP(CPIM, CPIL, SAIM, SAIL, CCM, CCL)
CALL FMPS(CCM, CCL, RHOI, CCM, CCL)
CALL FADS(CCM, CCL, YI, YIM, YIL)
CALL FMPS(SPIM, SPIL, RHOI, CCM, CCL)
CALL FADS(CCM, CCL, ZI, ZIM, ZIL)
3 CALL SQ(PM(1), PL(1), XSQOM, XSQOL)
CALL SQ(PM(2), PL(2), YSQOM, YSQOL)
CALL SQ(PM(3), PL(3), ZSQOM, ZSQOL)
```
CALL FAD(XSQOM, XSQOL, YSQOM, YSQOL, CCM, CCL)
CALL FAD(ZSQOM, ZSQOL, CCM, CCL, RO2M, RO2L)
CALL DPSQRT(RO2M, RO2L, ROM, ROL)
CALL CUBE(ROM, ROL, ROCM, ROCL)
CALL FDY(1., O., ROCM, ROCCL, MUM, MUL)
CALL FSBS(TI, O., TO, CCM, CCL)
IF (KO) 30, 30, 31
30 TU = 1.7072813E+2
 GO TO 32
31 TU = .017202098
32 CALL FMPS(CCM, CCL, TU, TAUM, Taul)
 CALL SQ(TAUM, Taul, TAU2M, TAU2L)
 CALL CUBE(TAUM, Taul, TAU3M, TAU3L)
 CALL SQ(TAU2M, TAU2L, TAU4M, TAU4L)
 CALL FMP(TAU2M, TAU2L, TAU3M, TAU3L, TAU5M, TAU5L)
 CALL FMP(MUM, MUL, TAU2M, TAU2L, FIM, FIL)
 CALL FMPS(FIM, FIL, .5, FIM, FIL)
 CALL FSBI(TAUM, Taul, GIM, GIL, GIM, GIL)
 CALL FMP(MUM, MUL, TAU2M, TAU2L, FIM, FIL)
 CALL FMPS(FIM, FIL, .5, FIM, FIL)
 CALL FMPS(MTM, MTL, .5, AM, AL)
 CALL FMP(MUM, MUL, TAU4M, TAU4L, MCM, MCL)
 CALL FDYS(MCM, MCL, 24., CM, CL)
 CALL FMPS(MCM, MCL, .25, HM, HL)
 CALL FMP(MUM, MUL, TAU5M, TAU5L, MDM, MDL)
 CALL FDYS(MDM, MDL, -8., EM, EL)
 CALL FDYS(MDM, MDL, 120., OM, OL)
 CALL FAD(MUM, MUL, MUM, MUL, DM, DL)
 CALL FMPS(DM, DL, 4., QM, QL)
 GM = GIM
GL = GIL
FM = FIM
FL = FIL

4 CALL FMP(PM(1), PL(1), FM, FL, CCM, CCL)
CALL FSB(XIM, XIL, CCM, CCL, CCM, CCL)
CALL FDY(CCM, CCL, GM, GL, DXOM, DXOL)
CALL FMP(PM(2), PL(2), FM, FL, CCM, CCL)
CALL FSB(YIM, YIL, CCM, CCL, CCM, CCL)
CALL FDY(CCM, CCL, GM, GL, DYOM, DYOL)
CALL FMP(PM(3), PL(3), FM, FL, CCM, CCL)
CALL FSB(ZIM, ZIL, CCM, CCL, CCM, CCL)
CALL FDY(CCM, CCL, GM, GL, DZOM, DZOL)

GO TO (9, 10), NO

9 NO = 2
GO TO 6

10 CALL FSB(DXOM, DXOL, DXM, DXL, DIXM, DIXL)
 IF (ABSF(DIXM) -4E-8) 11, 11, 5

11 CALL FSB(DYOM, DYOL, DYM, DYL, DIYM, DIYL)
 IF (ABSF(DIYM) 04E-8) 12, 12, 5

12 CALL FSB(DZOM, DZOL, DZM, DZL, DIZM, DIZL)
 IF (ABSF(DIZM) -4E-8) 13, 13, 5

13 K = K + 1
 IF (K-2) 6, 14, 14

5 ERASE K

6 KNT = KNT + 1

 CALL SQ(DXOM, DXOL, DSQXM, DSQXL)
 CALL SQ(DYOM, DYOL, DSQYM, DSQYL)
 CALL SQ(DZOM, DZOL, DSQZM, DSQZL)
 CALL FAD(DSQXM, DSQXL, DSQYM, DSQYL, DSM, DSL)
 CALL FAD(DSM, DSI, DSQZM, DSQZL, DRO2M, DRO2L)
 CALL FMP(PM(1), PL(1), DXOM, DXOL, XDXM, XDXL)
CALL FMP(PM(2), PL(2), DYOM, DYOL, YDYM, YDYL)
CALL FMP(PM(3), PL(3), DZOM, DZOL, ZDZM, ZDZL)
CALL FAD(XDXM, XDXL, YDYM, YDYL, CCM, CCL)
CALL FAD(CCM, CCL, ZDZM, ZDZL, RDRM, RDRL)
CALL FDY(RDRM, RDRL, RO2M, RO2L, SIGMAM, SIGMAL)
CALL FDY(DR02M, DRO2L, RO2M, RO2L, OMEGAM, OMEGAL)
CALL SQ(SIGMAM, SIGMAL, SIGMSM, SIGMSL)
CALL FMPS(SIGMSM, SIGMSL, 7., RM, RL)
CALL FMPS(SIGMSM, SIGMSL, 15., SM, SL)
CALL FMPS(SM, SL, 3., TM, TL)
CALL FMPS(OMEGAM, OMEGAL, 3., UM, UL)
CALL FMPS(UM, UL, 3., VM, VL)
CALL FMP(AM, AL, SIGMAM, SIGMAL, TAM, TAL)
CALL FSB(UM, UL, DM, DL, CCM, CCL)
CALL FSB(CCM, CCL, SM, SL, TSM, TSL)
CALL FMP(CM, CL, TSM, TSL, TSM, TSL)
CALL FSB(CCM, CCL, RM, RL, CCM, CCL)
CALL FMP(EM, EL, CCM, CCL, CDM, CDL)
CALL FMP(CDM, CDL, SIGMAM, SIGMAL, TRM, TRL)

COMPUTE F
CALL FAD(FIM, FIL, TAM, TAL, FM, FL)
CALL FAD(FM, FL, TSM, TSL, FM, FL)
CALL FAD(FM, FL, TRM, TRL, FM, FL)
CALL FMP(HM, HL, SIGMAM, SIGMAL, HTM, HTL)
CALL FSB(VM, VL, QM, QL, TOM, TOL)
CALL FSB(TOM, TOL, TM, TL, TOM, TOL)
CALL FMP(TOM, TOL, OM, OL, TOM, TOL)
CALL FAD(TOM, TOL, HTM, HTL, HTM, HTL)
CALL FAD(HTM, HTL, GIM, GIL, GM, GL)

DXM = DXOM
DXL = DXOL
DYM = DYOM
DYL = DYOL
DZM = DZOM
DZL = DZOL

IF (KNT - 100) 4, 4, 22

14 PM(4) = DXOM
 PL(4) = DXOL
 PM(5) = DYOM
 PL(5) = DYOL
 PM(6) = DZOM
 PL(6) = DZOL

IF (KO) 17, 17, 18

17 WOT 10, 15, TO, (PM(I), I=1, 6)
 GO TO 20

18 WOT 10, 19, TO, (PM(I), I=1, 6)

15 FORMAT(1H13X, 6HTIME = F9. 2, 39X, 1HX, 24X, IHY, 24X 1HZ/
 1HO3X, 8HPOSITION 9X, 1PE40. 7, 9X, E16. 7, 11X, E14. 7/1H 6X
 20HUNITS OF EARTH RADII/1HO3X, 8HVELOCITY35X, E14. 7,
 3 11X, E14. 7, 11X, E14. 7/1H 6X, 33HUNITS OF EARTH RADII/
 4 806. 928 SEC. ///)

19 FORMAT(1H13X, 6HTIME = F9. 2, 39X, 1HX, 24X, IHY, 24X, 1HZ/1
 HO3X, 8HPOSITION 9X, 1PE40. 7, 9X, E16. 7, 11X, E14. 7/1H 6X,
 20HUNITS OF EARTH RADII/1HO3X, 8HVELOCITY35X, E14. 7,
 3 11X, E14. 7, 11X, E14. 7/1H 6X, 33HUNITS OF EARTH RADII/
 4 58. 13244 DA. ///)

20 DO 50 I = 1, 3
 PS = PM(I)
 PSL = PL(I)
 CALL FMPS(PS, PSL, 6378. 388, PAM, PAL)
 PZM(I) = PAM
 PZL(I) = PAL
 CALL FDYS(PAM, PAL, 149. 5042132E+6, PAM, PAL)
PM(I) = PAM
50 PL(I) = PAL
 DO 51 I = 4, 6
 PS = PM(I)
 PSL = PL(I)
 IF (KO) 60, 60, 61
 60 CALL FMPS(PS, PSL, 7.90453641, PAM, PAL)
 GO TO 62
 61 CALL FMPS(PS, PSL, .126992648E-2, PAM, PAL)
 62 PZM(I) = PAM
 PZL(I) = PAL
 CALL FMPS(PAM, PAL, .24079588E-4, PAM, PAL)
 PM(I) = PAM
51 PL(I) = PAL
 WOT 10, 24, TO, (PZM(I), I = 1, 6)
 WOT 10, 27, TO, (PM(I), I = 1, 6)
24 FORMAT(1HO3X, 6HTIME = F9.2, 39X, 1HX, 24X, 1HY, 24X, 1HZ/
 1 HO3X, 8HPOSITION9X, 1PE40.7, 5H KM E20.7, 3H KM8X.
 2 E14.7, 3H KM/1HO3X, 8HVELOCITY35X, E14.7, 7H KM/SEC4X,
 3 E14.7, 7H KM/SEC4X, E14.7, 7H KM/SEC//)
27 FORMAT(1HO3X, 6HTIME = F9.2, 39X, 1HX, 24X, 1HY, 24X, 1HZ/
 1 HO3X, 8HPOSITION9X, 1PE40.7, 7H A. U. E18.7, 5H A. U.
 3 HR3X, E14.7, 8H A. U./HR 3X, E14.7, 8H A. U./HR)
 GO TO 1
22 WOT 10, 23
23 FORMAT(1H15X, 9XGIVING UP)
 GO TO 1
 END (1, 1, 0, 0, 0, 1)
c. Two Position Vector Program

Check Problem

Output:

\[
\text{Time} = 72.50
\]

Position - Units of Earth Radii
\[
X = 2.3358772E\quad 00\quad Y = -3.7095247E\quad -01\quad Z = -2.0855989E\quad -01
\]

Velocity - Units of Earth Radii/58.13244 DAY
\[
X = 1.7789361E\quad -01\quad Y = 6.7356692E\quad -01\quad Z = 9.2517561E\quad -02
\]

\[
\text{Time} = 72.50
\]

Position
\[
X = 1.4899131E\quad 04KM\quad Y = -2.3660788E\quad 03KM\quad Z = 1.3302759E\quad 03KM
\]

Velocity
\[
X = 2.2591180E\quad -04KM/SEC\quad Y = 8.5538046E\quad -04KM/SEC\quad Z = 1.1749050E\quad -04KM/SEC
\]

\[
\text{Time} = 72.50
\]

Position
\[
X = 9.9656929E\quad -05 A. U.\quad Y = -1.5826168E\quad -05 A. U.\quad Z = -8.8979160E\quad -06 A. U.
\]

Velocity
\[
X = 5.4398631E\quad -09 A. U./HR\quad Y = 2.0597209E\quad -08 A. U./HR\quad Z = 2.8291228E\quad -09 A. U./HR
\]

Input:

Card 1: F 1.41889, 1.47513, 1.00082, .05063, .02196*
Card 2: F .98156, .17543, .07609, -9.35, -10.6166667*
Card 3: F 342.475, 341.775, 72.5, 80.5*
Card 4: X1*
B. THREE ANGULAR POSITION PROGRAM

a. Operational Directory

Purpose

To find the position and velocity of an observed body at Time, \(T_o \), from measurements of the right ascension and declination or azimuth and elevation at three different Times, \(T_1 \), \(T_0 \), \(T_3 \).

Usage

Input - All decimal input is read by a modified DBC FORTRAN subroutine which accepts variable length fields. All fields are floating point numbers except starred fields which are integers. The list of input quantities follows in the order in which they must be read into the program and then the input for a sample problem. All angle inputs must be in degrees and decimals of a degree. Range measurements must be in units of Earth's equatorial radius, (6378.388 km. = equatorial radius of Earth).

Card 1
Field 1 - Control Parameter, \(KO \) If \(KO \leq 0 \), the unit of time will be equal to 58.132441 days. If \(KO \geq 1 \), the unit of time will equal to 806.996813 sec.

Card 2
Field 1 - \(T_1 \). Time \(T_1 \) in days and decimals of a day.
Field 2 - \(\alpha_1 \), right ascension in degrees and decimals of a degree at \(T_1 \).
Field 3 - \(\delta_1 \), declination in degrees and decimals of a degree at \(T_1 \).
Field 4 - \(X_1 \), Geocentric, equatorial coordinates of observer's position on Earth at time \(T_1 \) in units of earth's equatorial radius.
Field 5 - \(Y_1 \),
Field 6 - \(Z_1 \),
Card 3 - \(T_a, \delta_a, x_a, y_a, z_a \); Same format as Card 2.

Card 4 - \(T_a, \delta_a, x_a, y_a, z_a \); Same format as Card 2.

Sample Input

Card 1

\(\text{XI*} \)

Card 2

\(F 64.5, 343.279, -7.98, 1.0012, -0.0712, -0.03258* \)

Card 3

\(F 72.5, 342.280, -9.34, 1.00082, 0.05063, 0.02196* \)

Card 4

\(F 80.5, 341.469, -10.56, 0.98125, 0.17543, 0.07609* \)

Output - The \(X, Y, Z \) components of the position vector are printed out in units of Earth's equatorial radius, kilometers, and astronomical units; the \(X, Y, Z \) components of the velocity vector are printed out in units of Earth's equatorial radius per 806.996813 sec., km. per sec. and A. U. per hr., If \(KO > 1 \). If \(K0 < 0 \), the velocity will be printed out in units of Earth's equatorial radius per 58.132441 days, km. per sec. and A. U. per hr.

b. Three Angular Position Program

\[
\text{DIMENSION T(3), ALPHA(3), PHI(3), X(3), Y(3), Z(3), YOUM (3),} \\
\text{YOUL(3), VEEM(3), VEEL(3), PIM(3), PIL(3), QM(3), QL(3), PM(6)} \\
\text{PL(6)}}
\]

\[
\text{DIMENSION PZM(6), PZL(6)}}
\]

\[
\text{RIT2, 1, KO, (T[I], ALPHA(I), PHI(I), X(I), Y(I), Z(I), I = 1, 3)}
\]

\[
\text{FORMAT (515)}
\]

\[
\text{ERASE KNT} \\
\text{DO 5 I = 1, 3} \\
\text{ALPM = ALPHA (I)}
\]

B-11
PHIM = PHI (I)
CALL DFSC (ALPM, O., SINAM, SINAL, COSAM, COSAL, O.)
CALL DFSC (PHIM, O., SINPM, SINPL, COSPM, COSPL, O.)
CALL FDY (SINAM, SINAL, COSAM, COSAL, TANAM, TANAL)
CALL FDY (SINPM, SINPL, COSPM, COSPL, TANPM, TANPL)
YOUM (I) = TANAM
YOUL (I) = TANAL
CALL FDY (TANPM, TANPL, COSAM, COSAL, TASEM, TASEL)
VEEM (I) = TASEM
VEEL (I) = TASEL
XM = X (I)
CALL FMPS (TANAM, TANAL, XM, UXM, UXL)
YM = Y (I)
CALL FSB (YM, O., UXM, UXL, YUXM, YUXL)
PIM (I) = YUXM
PIL (I) = YUXL
CALL FMPS (TASEM, TASEL, XM, VXM, VXL)
ZM = Z (I)
CALL FSB (ZM, O., VXM, VXL, ZVXM, ZVXL)
QM (I) = ZVXM
QL (I) = ZVXL
IF (KO) 9, 9, 10
9 TU = 58.132441
GO TO 11
10 TU = .93394389E-2
11 CALL FSBS (T(1), O., T (2), DTM, DTL)
CALL FDYS (DTM, DTL, TU, TAUM1, TAUL1)
CALL FSBS (T(3), O., T(2), DTM, DTL)
CALL FDYS (DTM, DTL, TU, TAUM3, TAUL3)
CALL FSB (TAUM3, TAUL3, TAUM1, TAUL1, DTAUM, DTAUL)
CALL FSB (YOUM(1), YOUL(1), YOUM(2), YOUL(2), UNM1, UNL1)
CALL FDY (UNM1, UNL1, TAUM1, TAUL1, UM1, UL1)
CALL FSB (YOUm (3), YOUl(3), YOUm(2), YOUl(2), UNM3, UNL3)
CALL FDY (UNM3, UNL3, TAUM3, TAUL3, UM3, UL3)
CALL FSB (VEEM (1), VEEL (1), VEEM (2), VEEL (2), VNM1, VNL1)
CALL FDY (VNM1, VNL1, TAUM1, TAUL1, VM1, VL1)
CALL FSB (VEEM(3), VEEL(3), VEEM(2), VEEL(2), VNM3, VNL3)
CALL FDY (VNM3, VNL3, TAUM3, TAUL3, VM3, VL3)
CALL FSB (PNM(1), PIL(1), PIM(2), PIL(2), PNM1, PNL1)
CALL FDY (PNM1, PNL1, TAUM1, TAUL1, PM1, PL1)
CALL FSB (PNM(3), PIL(3), PIM(2), PIL(2), PNM3, PNL3)
CALL FDY (PNM3, PNL3, TAUM3, TAUL3, PM3, PL3)
CALL FSB (QM(1), QL(1), QM(2), QL(2), QNM1, QNL1)
CALL FDY (QNM1, QNL1, TAUM1, TAUL1, QM1, QL1)
CALL FSB (QM(3), QL(3), QM(2), QL(2), QNM3, QNL3)
CALL FDY (QNM3, QNL3, TAUM3, TAUL3, QM3, QL3)

12 NO = 1
PAM = UM1
PAL = UL1
PBM = UM3
PBL = UL3

13 CALL FMP (TAUM3, TAUL3, PAM, PAL, TMVM, TMVL)
CALL FMP (TAUM1, TAUL1, PBM, PBL, TSVM, TSVL)
CALL FSB (TMVM, TMVL, TSVM, TSVL, TNM, TNL)
CALL FDY (TNM, TNL, DTAUM, DTAUL, DOM, DOL)
CALL FSB (PBM, PBL, PAM, PAL, TNM, TNL)
CALL FDY (TNM, TNL, DTAUM, DTAUL, D2OM, D2OL)
GO TO (20, 21, 22, 23), NO

20 DUM = DOM
DUL = DOL
D2UM = D2OM
D2UL = D2OL
PAM = VM1
PAL = VL1
PBM = VM3
PBL = VL3
NO = NO + 1
GO TO 13

21
DVM = DOM
DVL = DOL
D2VM = D2OM
D2VL = D2OL
PAM = PM1
PAL = PL1
PBM = PM3
PBL = PL3
NO = NO + 1
GO TO 13

22
DPM = DOM
DPL = DOL
D2PM = D2OM
D2PL = D2OL
PAM = QM1
PAL = QL1
PBM = QM3
PBL = QL3
NO = NO + 1
GO TO 13

23
DQM = DOM
DQL = DOL
D2QM = D2OM
D2QL = D2OL
CALLFMP(D2UM, D2UL, DVM, DVL, UVMM, UVML)
CALL FMP(D2VM, D2VL, DUM, DUL, UVSM, UVSL)
CALL FSB(UVSM, UVSL, UVMM, UVML, DM, DL)
CALL FMP(D2PM, D2PL, DVM, DVL, PVMM, PVML)
CALL FMP(D2QM, D2QL, DUM, DUL, QUMM, QUML)
CALL FSB(PVMM, PVML, QUMM, QUML, AM, AL)
CALL FMP(PIM(2), PIL(2), DVM, DVL, PVMM, PVML)
CALL FMP(QM(2), QL(2), DUM, DUL, QUMM, QUML)
CALL FSB(PVMM, PVML, QUMM, QUML, BM, BL)
CALL SQ(VEEM(2), VEEL(2), VSQM, VSQL)
CALL SQ(YOUUM(2), YOUL(2), USQM, USQL)
CALL FAD(VSQM, VSQL, USQM, USQL, UVSQM, UVSQ)
CALL FADS(UVSQM, UVSQ, 1., GM, CL)
CALL FMP(YOUUM(2), YOUL(2), PIM(2), PIL(2), UPM, UPL)
CALL FMP(VEEM(2), VEEL(2), QM(2), QL(2), VQM, VQL)
CALL FAD(UPM, UPL, VQM, VQL, EM, EL)
CALL SQ(PIM(2), PIL(2), PSQM, PSQL)
CALL SQ(QM(2), QL(2), QSQM, QSQL)
CALL FAD(PSQM, PSQL, QSQM, QSQ, FM, FL)
CALL FMP(D2QM, D2QL, D2UM, D2UL, D2QUM, D2QUL)
CALL FMP(D2PM, D2PL, D2VM, D2VL, D2PVM, D2PVL)
CALL FSB(D2QUM, D2QUL, D2PVM, D2PVL, GM, GL)
CALL FMP(D2UM, D2UL, QM(2), QL(2), D2UQM, D2UQL)
CALL FMP(D2VM, D2VL, PIM(2), PIL(2), D2VPM, D2VPL)
CALL FSB(D2UQM, D2UQL, D2VPM, D2VPL, HM, HL)
RM = 1.02
RL = 0.
CALL CUBE(RM, RL, R3M, R3L)
CALL FAD(R3M, R3L, R3M, R3L, R3M, R3L)
CALL FDY(BM, BL, R3M, R3L, BRM, BRL)
CALL FAD(AM, AL, BRM, BRL, BARM, BARL)
CALL FDY(BARM, BARL, DM, DL, XM, XL)
CALL SQ (XM, XL, X2M, X2L)
CALL FMP (X2M, X2L, CM, CL, CXM, CXL)
CALL FMP (XM, XL, EM, EL, EXM, EXL)
CALL FAD (EXM, EXL, EXM, EXL, EXM, EXL)
CALL FAD (CXM, CXL, EXM, EXL, ECXM, ECXL)
CALL FAD (ECXM, ECXL, FM, FL, RNM, RNL)
CALL DPSQRT (RNM, RNL, RNM, RNL)
WOT 10, 3, XM, RNM

3 FORMAT (1HO10X, 4HX = E16. 7, 10X, 4HR = E16. 7)
KNT = KNT + 1
CALL FSB (RNM, RNL, RM, RL, DRM, DRL)
IF (ABSF(DRM) - 1E - 8) 33, 33, 34
34 IF (KNT - 100) 35, 35, 36
35 RM = RNM
36 RL = RNL
GO TO 30

WOT 10, 4
4 FORMAT (1HO10X, 9HGIVING UP)
GO TO 6

32 CALL CUBE (RNM, RNL, RNM, RNL)
33 CALL FAD (RNM, RNL, RNM, RNL, RNM, RNL)
34 CALL FDY (BM, BL, RNM, RNL, BRM, BRL)
35 CALL FAD (AM, AL, BRM, BRL, BARM, BARL)
36 CALL FDY (BARM, BARL, DM, DL, PM(1), PL(1))
37 CALL FDY (HM, HL, RNM, RNL; HRM, HRL)
38 CALL FAD (HRM, HRL, GM, GL, HRM, HRL)
39 CALL FDY (HRM, HRL, GM, GL, HRM, HRL)
40 CALL FAD (HRM, HRL, DM, DL, PM(1), PL(1))
41 CALL FMP (YOUM(2), YOUL(2), PM(1), PL(1), XUM, XUL)
42 CALL FAD (XUM, XUL, PM(2), PL(2), PM(2), PL(2))
43 CALL FMP (DUM, DUL, PM(1), PL(1), DXUM, DXUL)
44 CALL FMP (YOUM(2), YOUL(2), PM(4), PL(4), DUXM, DUXL)
45 CALL FAD (DXUM, DXUL, DUXM, DUXL, DYM, DYL)
CALL FAD(DYM, DYI, DPM, DPL, PM(5), PL(5))
CALL FMP(VEEM(2), VEEL(2), PM(1), PL(1), VXM, VXL)
CALL FAD(VXM, VXL, QM(2), QL(2), PM(3), PL(3))
CALL FMP(DVM, DVL, PM(1), PL(1), DVXM, DVXL)
CALL FMP(VEEM(2), VEEL(2), PM(4), PL(4), DXVM, DXVL)
CALL FAD(DVXM, DXVL, DXVM, DXVL, DXM, DXL)
CALL FAD(DXM, DXL, DQM, DQL, PM(6), PL(6))
IF (KO) 17, 17, 18
17 WOT 10, 19, T(2), (PM(I), I = 1, 6)
 GO TO 63
18 WOT 10, 15, T(2), (PM(I), I = 1, 6)
15 FORMAT (1H13X, 6HTIME = F9. 2, 39X, 1HX, 24X, 1HY, 24X, 1HZ/
 11HO3X, 8HPOSITION 9X, 1PE40. 7, 9X, E16. 7, 11X, E14. 7/1H
 26X, 20HUNITS OF EARTH RADII/1H03X, 8HVELOCITY35X,
 4806. 928 SEC. //)
19 FORMAT (1H13X, 6HTIME = F9. 2, 39X, 1HX, 24X, 1HY, 24X, 1HZ/
 11HO3X, 8HPOSITION 9X, 1PE40. 7, 9X, E16. 7, 11X, E14. 7/1H 6X,
 220HUNITS OF EARTH RADII/1HO3X, 8HVELOCITY35X, E14. 7,
 311X, E14. 7, 11X, E14. 7/1H 6X, 33HUNITS OF EARTH RADII/
 458. 13244 DA. //)
63 DO 50 I = 1, 3
 PS = PM(I)
 PSL = PL(I)
 CALL FMPS(PS, PSL, 6378. 388, PAM, PAL)
 PZM(I) = PAM
 PZL(I) = PAL
 CALL FDYS(PAM, PAL, 149. 5042132E + 6, PAM, PAL)
 PM(I) = PAM
50 PL(I) = PAL
 DO 51 I = 4, 6

B-17
\(FS = PM(I) \)
\(PSL = PL(I) \)

\(\text{IF (KO) 60, 60, 61} \)

\(\text{60 CALL FMPS (PS, PSL, 12992648E-2, PAM, PAL)} \)
\(\text{GO TO 62} \)

\(\text{61 CALL FMPS (PS, PSL, 7.90453641, PAM, PAL)} \)

\(\text{62 PZM(I) = PAM} \)
\(\text{PZL(I) = PAL} \)
\(\text{CALL FMPS (PAM, PAL, 24079588E-4, PAM, PAL)} \)
\(PM(I) = PAM \)

\(\text{51 PL(I) = PAL} \)
\(\text{WOT 10, 24 T(2), (PZM(I), I = 1, 6)} \)
\(\text{WOT 10, 27, T(2), (PM(I), I = 1, 6)} \)

\(\text{24 FORMAT (1HO3X, 6HTIME = F9.2, 39X, 1HX, 24X, 1HY, 24X, 1HZ/} \)
\(\text{1 1HO3X, 8HPOSITION 9X, 1PE40.7, 5H KM E20.7, 3H KM8X,} \)
\(\text{2 E14.7, 3H KM/1HO3X, 8HVELOCITY 35X, E14.7, 7H KM/SEC4X,} \)
\(\text{3 E14.7, 7H KM/SEC4X, E14.7H KM/SEC/} \) \)

\(\text{27 FORMAT (1HO3X, 6HTIME = F9.2, 39X, 1HX, 24X, 1HY, 24X, 1HZ/} \)
\(\text{1 1HO3X, 8HPOSITION 9X, 1PE40.7, 7H A. U. E18.7, 5H A. U.} \)
\(\text{2 6X, E14.7, 5H A. U. /1HO3X, 8HVELOCITY35X, E14.7, 8H A. U. /} \)
\(\text{3 HR3X, E14.7, 8H A. U. /HR3X, E14.7, 8H A. U. /HR)} \)
\(\text{40 GO TO 6} \)
\(\text{END (1, 1, 0, 0, 0, 1)} \)

c. Three Angular Position Program

Check Problem

Output:

Time 33.91
Position-Units of Earth Radii

B-18
$X = 2.2272140 \times 10^{00}$ $Y = -6.4261167 \times 10^{-01}$ $Z = -2.4354754 \times 10^{-01}$

Velocity - Units of Earth Radii/58.13244 Day

$X = 2.5257830 \times 10^{-01}$ $Y = 6.6070658 \times 10^{-01}$ $Z = 8.8773156 \times 10^{-02}$

Time = 33.91

Position

$X = 1.4206035 \times 10^{04}$ KM $Y = -4.0988266 \times 10^{-03}$ KM $Z = 1.5534407 \times 10^{-03}$ KM

Velocity

$X = 3.2816609 \times 10^{-04}$ KM/SEC $Y = 8.5843279 \times 10^{-04}$ KM/SEC $Z = 1.1533984 \times 10^{-04}$ KM/SEC

Time = 33.91

Position

$X = 9.5020968 \times 10^{-05}$ A. U. $Y = -2.7416128 \times 10^{-05}$ A. U. $Z = -1.0390615 \times 10^{-05}$ A. U.

Velocity

$X = 7.9021043 \times 10^{-09}$ A. U./HR $Y = 2.0670708 \times 10^{-08}$ A. U./HR $Z = 2.7773358 \times 10^{-09}$ A. U./HR

Input:

Card 1: XO*
Card 2: F 30.006, 346.5265, -3.690944, 9217386, -3.782763, -1.1402741*
Card 3: F 33.9067, 345.92583, -4.510222, 9460249, -3.214131, -1.1393582*
Card 4: F 37.9351, 345.28958, -5.365694, 9667071, -3.212860, -1.1132835*

C. CONVERSION OF COORDINATES FROM EQUINOX TO EQUINOX

a. Operational Directory

Purpose

To rotate a given vector $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ from the equinox of 1950.0 to other equinoxes and vice versa.
Usage

Input - All decimal input is read by a modified DBC FORTRAN subroutine which accepts variable length fields. All fields are floating point numbers except for starred fields which are integers.

Following is the list of input quantities in the order in which they are read into the program:

Card 1
*Field 1 - N5, Control Parameter
If N5 ≥ 1, X will be rotated from equinox of date to equinox of 1950.0.
If N5 ≤ 0, X will be rotated from equinox of 1950.0 to equinox of date.

*Field 2 - NP, Control Parameter
NP must be equal to the number of vectors which are to be rotated as specified by N5. 1 ≤ NP ≤ 10.

Cards 2 - NP + 1
Field 1 - Whole number component of Julian Date. The Julian Date must correspond to the beginning of the Besselian Year.
Field 2 - Decimal Component of Julian Date.
Field 3 - X component of vector to be rotated.
Field 4 - Y component of vector to be rotated.
Field 5 - Z component of vector to be rotated.

Sample Input
Card 1 - Columns 1-5
X1, 2
Card 2 - Columns 1-32
Card 2 - Columns 1-32
F 2437203., .5, .2985, .3740, -.6739*

Card 3 - Columns 1-32
F 2437008., .5, .0046, -.5968, -.3702*

Output - The vector components are printed out referenced to the new equinox.

b. Conversion of Coordinates from Equinox to Equinox

DAC AM(i, 3), AL(i, 3), PZM(i0, 3), PZL(i0, 3), DJM(i0), DJL(i0),
1 X(10), Z(10), Y(10), XL(10), YL(10), ZL(10)
G N5 = 1, REDUCTION OF X, Y, Z OF DATE TO EQUINOX OF 1950.0
G N5 = 0, REDUCTION OF X, Y, Z OF 1950.0 TO MEAN EQUINOX OF
1 DATE
1 RIT 2, 3, N5, NP
3 FORMAT (515)
11 RIT 2, 3, (DJM(I), DJL(I), X(I), Y(I), Z(I), i = 1, NP)
ERASE XL, YL, ZL
DO 500 J = 1, NP
DJIM = DJM(J)
DJIL = DJL(J)
IF (N5) 61, 71, 61
61 CALL FSB(2433282., .5, DJIM, DJIL, VM, VL)
GO TO 62
71 CALL FSB(DJIM, DJIL, 2433282., .5, VM, VL)
62 CALL FDYS(VM, VL, 36525., VM, VL)
CALL SQ(VM, VL, VSQM, VSQL)
CALL CUBE(VM, VL, VCUM, VCUL)
CALL FMPS(VSQM, VSQL, .00029696, CM, CL)
CALL FMPS(VCUM, VCUL, .00000014, DM, DL)
CALL FSB(1., 0., CM, CL, CM, CL)
CALL FSB(CM, CL, DM, DL, AM(1, 1), AL(1, 1))
CALL FMPS (VM, VL, -.02234941, CM, CL)
CALL FMPS(VSQM, VSQL, .00000676, DM, DL)
CALL FMPS(VCUM, VCUL, .00000221, EM, EL)
CALL FSB(CM, CL, DM, DL, CM, CL)
CALL FAD(CM, CM, EL, AM(1, 2), AL(1, 2))
CALL FMPS(VM, VL, -.00971691, CM, CL)
CALL FMPS(VSQM, VSQL, .00000206, DM, DL)
CALL FMPS(VCUM, VCUL, .00000098, EM, EL)
CALL FAD(CM, CL, DM, DL, CM, DL)
CALL FAD(CM, CL, EM, EL, AM(1, 3), AL(1, 3))
AM(2, 1) = -AM(1, 2)
AL(2, 1) = -AL(1, 2)
CALL FMPS(VSQM, VSQL, .00024975, CM, CL)
CALL FMPS(VCUM, VCUL, .00000015, DM, DL)
CALL FSB(1., 0., CM, CL, CM, CL)
CALL FSB(CM, CL, DM, DL, AM(2, 2), AL(2, 2))
CALL FMPS(VSQM, VSQL, -.00010858, CM, CL)
CALL FMPS(VCUM, VCUL, .00000003, DM, DL)
CALL FSB(CM, CL, DM, DL, AM(2, 3), AL(2, 3))
AM(3, 1) = AM(1, 3)
AL(3, 1) = -AL(1, 3)
AM(3, 2) = AM(2, 3)
AL(3, 2) = AL(2, 3)
CALL FMPS(VSQM, VSQL, .00004721, CM, CL)
CALL FMPS(VCUM, VCUL, .00000002, DM, DL)
CALL FSB(1., 0., CM, CL, CM, CL)
CALL FAD(CM, CL, DM, DL, AM(3, 3), AL(3, 3))
DO 7 I=1, 3
CALL FMP(AM(I, 1), AL(I, 1), X(J), XL(J), CM, CL)
CALL FMP(AM(I, 2), AL(I, 2), Y(J), YL(J), DM, DL)
CALL FMP(AM(I, 3), AL(I, 3), Z(J), ZL(J), EM, EL)
CALL FAD(CM, CL, DM, DL, CM, CL)
7 CALL FAD(CM, CL, EM, EL, PZM(J, I), PZL(J, I))
500 CONTINUE
DO 9 J = 1, NP
X(J) = PZM(J, 1)
Y(J) = PZM(J, 2)
Z(J) = PZM(J, 3)
XL(J) = PZL(J, 1)
YL(J) = PZL(J, 2)
9 ZL(J) = PZL(J, 3)
IF (N5) 20, 20, 21
20 WOT 10, 24, (X(I), Y(I), Z(I), I = 1, NP)
24 FORMAT(1H16X, 62H COORDINATES REFERENCED TO MEAN
1 EQUINOX OF DATE/(1H06X, 2HX = 1PE14.7, 10X, 2HY = E14.7, 10X
2 2HZ = E14.7)
GO TO 1
21 WOT 10, 30
30 FORMAT(1HO)
WOT 10, 25, (X(I), Y(I), Z(I), I = 1, NP)
25 FORMAT(1H06X, 62H COORDINATES REFERENCED TO MEAN
1 EQUINOX OF 1950/(1H06X, 2HX = 1PE14.7, 10X, 2HY = E14.7, 10X,
2 2HZ = E14.7)
GO TO 1
END (1, 1, 0, 0, 0, 1)
c. Conversion of Coordinates from Equinox to Equinox

Check Problem

Output:

Coordinates Referenced to Mean Equinox of 1950
X = 1.0008215E 00 Y = 5.0628301E-02 Z = 2.1963697E-02

B-23
Coordinates Referenced to Mean Equinox of Date

\[X = 1.0010150 \times 10^0 \quad Y = 4.7274507 \times 10^{-2} \quad Z = 2.0501011 \times 10^{-2} \]

Input:

Card 1: X 1, 1*
Card 2: 2428072., 5, 1.0010150, .04727450, .02050101*
Card 3: X 0, 1*
Card 4: 2428072., 5, 1.0008215, .05062830, .02196369*

D. CONVERSION OF RIGHT ASCENSION AND DECLINATION FROM EQUINOX TO EQUINOX

a. Operational Directory

Purpose

To reduce right ascension and declination referenced to mean equinox of date to right ascension and delination referenced to mean equinox of 1950.0 and vice versa.

Usage

Input - All decimal input is read by a modified DBC FORTRAN subroutine which accepts variable length fields. All fields are floating point numbers except for starred fields which are integers.

The list of input quantities in the order in which they are read into the program follows:

Card 1

*Field 1 - N3, Control Parameter

If \(N3 \geq 1 \), \(\alpha \) and \(\delta \) will be reduced from equinox of 1950.0 to equinox of date.

If \(N3 \leq 0 \), \(\alpha \) and \(\delta \) will be reduced from equinox of date to equinox of 1950.0.
Field 2 - NP, Control Parameter

NP must be equal to the number of reductions which are to be made as specified by N3, 1 \leq NP \leq 10.

Cards 2 - NP + 1

Field 1 - Whole number component of Julian Date.
Field 2 - Decimal component of Julian Date.
Field 3 - Right ascension in degrees and decimals of a degree.
Field 4 - Declination in degrees and decimals of a degree.

Sample Input
Card 1: Columns 1-5
 XO, 1*
Card 2: Columns 1-37
 F 2415020., .5, 332.2054167, -30.9374167*

Output - The right ascension and declination are printed out in degrees and decimals of a degree referenced to desired equinox.

b. Conversion of Right Ascension and Declination from Equinox to Equinox

DAC DJM(10), ALPHAM(10), APL(20), APM(20), DDM(20), DDL(20),
 DJL(10), ALPHAL(10), DELTAM(10), DELTAL(10)
1 RIT 2, 3, N3, NP
3 FORMAT (515)
2 RIT 2, 3, (DJM(I), DJL(I), ALPHAM(I), DELTAM(I), 1 = 1, NP
C CONVERSION OF ALPHA + DELTA FROM DATE TO EQUINOX OF
 1950.0, N3 = 3
C CONVERSION OF ALPHA + DELTA FROM EQUINOX TO DATE,
 1 N3 = +1
 DO 400 I = 1, NP
440 FORMAT (1H1)
 ERASE KNT, ALPHL, DELTL
 DJIM = DJM(I)

B-25
DJIL = DJL(i)
CALL FSB(DJIM, DJIL, 2433281, .5, AMM, AML)
CALL FDYS(AMM, AML, 365.25, RDM, RDL)
CALL FSB(2433281, .5, DJIM, DJIL, REM, REL)
CALL FDYS(REM, REL, 365.25, REM, REL)
C
COMPUTE M AND N, AMM = M, ANM = N
CALL FMPS(RDM, RDL, .25, AQM, AQL)
CALL FMPS(AQM, AQL, .000279, AMM, AML)
CALL FADS(AMM, AML, 46.09905, AMM, AML)
CALL FDYS(AMM, AML, 3600, AMM, AML)
CALL FMPS(AQM, AQL, .000085, ANM, ANL)
CALL FSB(20.0426, 0, ANM, ANL, ANM, ANL)
CALL FDYS(ANM, ANL, 3600, ANM, ANL)

\[\text{ALPHM} = \text{ALPHAM}(i) \]
\[\text{DELT}M = \text{DELT}M(i) \]

\[\text{CALL DPSC(ALPHM, ALPHL, SALPHM, SALPHL, CALPHM),} \]
\[\text{CALPHL, 0)} \]
\[\text{CALL DPSC(DELTM, DELTL, SDELTM, SDETLT}, \text{CDELTM),} \]
\[\text{CDLTL, 0)} \]
C
COMPUTE DALPHA/DT AND DDELTA/DT
CALL FDY(SDELTM, SDETL, CDELTM, CDETL, TDELTM, TDETL)
CALL FMP(TDELTM, TDETL, SALPHM, SALPHL, DADTM, DADTL)
CALL FMP(DADTM, DADTL, ANM, ANL, DADTM, DADTL)
CALL FAD(DADTM, DADTL, AMM, AML, DADTM, DADTL)
CALL FMP(ANM, ANL, CALPHM, CALPHL, DDDTM, DDDTL)
KNT = KNT +1
IF (N3) 50, 50, 51

RDM = REM
RDL = REL

B-26
CALL FMP(RDM, RDL, DADTM, DADTL, APIM, APIL)
CALL FAD(APIM, APIL, ALPHAM(I), ALPHAL(I), APM(KNT))
 APL(KNT)
CALL FMP(RDM, RDL, DDDTM, DDDTL, DDIM, DDIL)
CALL FAD(DDIM, DDIL, DELTAM(I), DELTAL(I), APM(KNT),
 DDL(KNT)
IF (KNT - 2) 53, 54, 54
54 CALL FSB(APM(KNT), APL(KNT), APM(KNT-1), APL(KNT-1),
 DAP, DAL)
CALL FSB(DDM(KNT), DDL(KNT), DDM(KNT-1) DDL(KNT-1),
 DDD, DAL)
IF (ABSF(DAP) - 1E-8)55, 53, 53
55 IF (ABSF(DDD) - 1E-8)62, 53, 53, 53
53 CALL FAD(APM(KNT), APL(KNT), ALPHAM(I), ALPHAL(I), ALPHM,
 ALPHL)
CALL FMPS(ALPHM, ALPHL, .5, ALPHM, ALPHL)
CALL FAD(DDM(KNT), DDL(KNT), DELTAM(I), DELTAL(I), DELTM,
 DELTL)
CALL FMPS(DELTM, DELTL, .5, DELTM, DELTL)
IF (KNT - 20) 60, 80, 80
80 WOT 10, 8
8 FORMAT(1H06X, 9HGIVING UP)
GO TO 400
62 ALPHAM(I) = APM(KNT)
ALPHAL(I) = APL(KNT)
DELTAM(I) = DDM(KNT)
DELTAL(I) = DDL(KNT)
400 CONTINUE
IF (N3) 70, 70, 71
70 WOT 10, 5, (ALPHAM(I), DELTAM(I), I = 1, NP)
5 FORMAT(1H115X, 62HASCENSION AND DECLINATION
B-27
c. Conversion of Right Ascension and Declination from Equinox to Equinox

Check Problem

Output:

Right Ascension and Declination Referenced to Mean Equinox of Date

Alpha = 3.4327915E 02 Degrees
Delta = -7.9466670E 00 Degrees

Alpha = 3.4111123E 02 Degrees Delta = -1.0696111E 01 Degrees

Input:

Card 1: X 0, 2*
Card 2: F 2428064., .5, 343.46521, -7.87047*
Card 3: F 2428080., .5, 341.29838, -10.621060*

Right Ascension and Declination Referenced to Mean Equinox of 1950.0

Alpha = 3.4346521E 02 Degrees
Delta = -7.8704700E 00 Degrees

Alpha = 3.4129838E 02 Degrees
Delta = -1.0621060E 01 Degrees

Input:

Card 1: X 0, 2*
Card 2: F 2428064., .5, 343.27915, -7.946667*
Card 3: F 2428080., .5, 341.111249, -10.696111*
E. COMPUTATION OF RECTANGULAR GEOCENTRIC SITE
COORDINATES AND CONVERSION OF AZIMUTH AND ELEVATION
TO RIGHT ASCENSION AND DECLINATION

a. Operational Directory

Purpose

To compute the geocentric site coordinate and to convert azimuth and elevation to right ascension and declination.

Usage

Input - All decimal input is read by a modified DBC FORTRAN subroutine which accepts variable length fields. All fields are floating point numbers except for starred fields which are integers. Following is the list of input quantities in the order in which they must be read into the program and then the input for a sample problem.

*Field 1 - N4, Control parameter

If N4 ≥ 1, right ascension and declination will be computed from the corresponding azimuth and elevation.

If N4 ≤ 0, right ascension and declination will not be computed.

**Field 2 - NP, Control Parameter which must be equal to the number of cases to be run. 1 ≤ NP ≤ 10

Field 3 - \(\phi \), geocentric latitude of site in degrees and decimals of a degree (+ if North, - if South).

Field 4 - \(h \), height of site above sea level in units of Earth's equatorial radius. (6378.388 km. = equatorial radius of Earth)

Field 5 - \(\lambda \), geographic longitude of site in degrees and decimals of a degree. (+ if East, - if West)

Field 6 - Whole number component of Julian Date.
Field 7 - Decimal component of Julian Date.
Field 8 - Decimal component of corresponding universal time.

NOTE: If \(N_4 \leq 0 \), no more input is required; however, the input must include "NP" sets of data, each set of which must be composed of Fields 3-8.

If \(N_4 \geq 1 \), then each set of the "NP" sets must be composed of Fields 3-10.

Field 9 - Elevation in degrees and decimals of a degree.
Field 10 - Azimuth in degrees and decimals of a degree.

Sample Inputs

Example 1

Card 1: X 1, 1*
Card 2: F 50.35, 023E-6, 4.358, 2428048., .5, 0, 25.46, 209.35*

Example 2

Card 1: X 0, 2*
Card 2: F 53.2, 013E-4, 6.37, 2428072., .5, 0*
Card 3: F 55.2, 014E-5, 6.39, 2428078., .5, 0*

Output - If \(N_4 \leq 0 \), only the rectangular geocentric site coordinates will be printed out in units of Earth's equatorial radius.

If \(N_4 \geq 1 \), the right ascension and declination corresponding to each site vector will be printed out in degrees. Both site coordinates and angles will be referenced to mean equinox of date.

b. Computation of Rectangular Geocentric Site Coordinates and Conversion of Azimuth and Elevation to Right Ascension and Declination

DAC PHIPM(10), PHIPL(10), RM(10), GMSTM(10),
1 GMSTL(10), PHI(10), H(10), BAMDA(10), DJM(10), DJL(10), T(10).

B-30
2 BSTM(10), BSTL(10), SPHIM(10), SPHIML(9), CPHIM(10)
3 CPHIML(10), X(10), Y(10), Z(10)
 DAC CDELM(10), CDELT(10), SDELM(10), SDELT(10),
1 DELTAM(10), DELTAL(10), ALPHAM(10), ALPHAL(10), E(10),
2 A(10), SALPHM(10), CALPHM(10), SALPHL(10), CALPHL(10),
3 HAB(10)
4 FORMAT (15)
1 RIT 2, 4, N4, NP
1 IF (N4) 3, 3, 6
3 RIT 2, 4, (PHI(I), H(I), BAMDA(I), DJM(I), DJL(I), T(I), I = 1, NP)
GO TO 7
6 RIT 2, 4(PHI(I), H(I), BAMDA(I), DJM(I), DJL(I), T(I), E(I), A(I), I =
1 1, NP)
7 DO 1001 = 1, NP
PHIM = PHI(I)
HT = H(I)
DJIM = DJM(I)
DJIL = DJL(I)
BAMDAM = BAMDA(I)
TPHIM = 2.*PHIM
FPHIM = 4.*PHIM
SPHIM = 6.*PHIM
TA = T(I)
C COMPUTE THE GEOCENTRIC LATITUDE PHI PRIME (I-1)
 CALL DPSC(TPHIM, 0., STPHIM, STPHIL, CTPHIM, CTPHIL, 0)
 CALL DPSC(FPHIM, 0., SFPHIM, SFPHIL, CFPHIM, CFPHIL, 0)
 CALL DPSC(SPHIM, 0., SSPHIM, SSPHIL, CSPHIM, CSPHIL, 0)
 CALL FMPS(STPHIM, STPHIL, -695.6635, CM, CL)
 CALL FMPS(SFPHIM, SFPHIL, 1.1731, DM, DL)
 CALL FMPS(SSPHIM, SSPHIL, -.0026, EM, EL)
 CALL FAD(CM, CL, DM, DL, CM, CL)

B-31
CALL FAD(CM, CL, EM, EL, CM, CL)
CALL FDYS(CM, CL, 3600., CM, CL)
CALL FADS(CM, CL, PHIM, PHIPM(I), PHIPL(I))

C COMPUTE THE GEOCENTRIC RADIUS VECTOR OF SITE R(II-2)
CALL FMPS(CTPHIM, CTPHIL, 1.683494E-3, CM, CL)
CALL FMPS(CFPH1M, CFPHIL, 3.549E-6, DM, DL)
CALL FMPS(CSPHIM, CSPHIL, 8.0E-9, EM, EL)
CALL FSB(CM, CL, DM, DL, CM, CL)
CALL FAD(CM, CL, EM, EL, CM, CL)
CALL FADS(CM, CL, .998320047, CM, CL)
CALL FADS(CM, CL, HT, RM(I), RL(I))

C COMPUTE THE GREENWICH MEAN SIDEREAL TIME AT U. T.

CALL FSBS(DJIM, DJIL, 2415020.0, CM, CL)
CALL FDYS(CM, CL, 36525., CM, CL)
CALL SQ(CM, CL, CSQM, CSQL)
CALL FMPS(CSQM, CSQL, .0929, TERM, TERL)
CALL FMP(CM, CL, 86401.84, .542, TM, TL)
CALL FAD(TERM, TERL, TM, TL, GMSTM(I), GMSTL(I))
CALL FADS(GMSTM(I), GMSTL(I), 23925.836, GMSTM(I), GMSTL(I))
CALL FDYS(GMSTM(I) GMSTL(I), 3600., GMSTM(I), GMSTL(I))

CALL FSBS(GMSTM(I), GMSTL(I), 24., GMSTM(I), GMSTL(I))
IF(GMSTM(I) -24.) 61, 61, 60

C COMPUTE THE LOCAL SIDEREAL TIME (II-4)

CALL FDYS(BAMDAM, 0.15., CM, CL)
CALL FMPS(TA, 0., 24., AM, AL)
CALL FAD(AM, AL, CM, CL, CM, CL)
CALL FMPS(AM, AL, .0027369, DM, DL)
CALL FAD(DM, DL, CM, DL, STM, STL)
CALL FAD(STM, STL, GMSTM(I), GMSTL(I), STM, STL)
CALL FMPS(STM, STL, 15., BSTM(I), BSTL(I))
C (II-5)
CALL DPSC(BSTM(I), BSTL(I), SLSTM, SLSTL, CLSTM, CLSTL, 0)
CALL DPSC(PHIPM(I), PHIPL(I), SPHIPM(I), SPHIPL(I))
1 CPHIPM(I), CPHIPL(I), 0)
C COMPUTE RECTANGULAR COMPONENTS (II-6)
CALL FMP(CPHIPM(I), CPHIPL(I), CLSTM, CLSTL, XM, XL)
CALL FMP(XM, XL, RM(I), RL(I), X(I), XL)
CALL FMP(CPHIPM(I), CPHIPL(I), SLSTM, SLSTL, YM, YL)
CALL FMP(YM, YL, RM(I), RL(I), Y(I), YL)
100 CALL FMP(SPHIPM(I), SPHIPL(I), RM(I), RL(I), Z(I), ZL)
5 FORMAT (1H16X, 99HRECTANGULAR SITE COORDINATES
1 REFERENCED TO EQUINOX OF DATE AND IN UNITS OF
2 EARTHS EQUATORIAL RADIUS/(1H03X, 2HX = 1PE14. 7.. 7X,
3 2HY =. E14. 7, 7X, 20HLOCAL SIDEREAL TIME =
4 E14. 7, 8 H DEGREES))
C CONVERSION OF AZIMUTH AND ELEVATION TO RT. ASC.
1 AND DEC (III-1)
IF (N4) 1, 1, 8
8 DO 200 I = 1, NP
EM = E(I)
AM = A(I)
SPHM = SPHIPM(I)
SPHL = SPHIPL(I)
CPHM = CPHIPM(I)
CPHL = CPHIPL(I)
CALL DPSC(EM, 0, SEM, SEL, CEM, CEL, 0)
CALL DPSC(AM, 0, SAM, SAL, CAM, CAL, 0)
CALL FMP(SPHM, SPHL, SEM, SEL, CCM, CCL)
CALL FMP(CPHM, CPHL, CEM, CEL, DM, DL)
CALL FMP(DM, DL, CAM, CAL, DM, DL)

B-33
CALL FAD(DM, DL, CCM, CCL, SDELTM(I), SDETLT(I))
CALL SQ(SDELTM(I), SDETLT(I), SDLTSM, SDLTSL)
CALL FSB(1., 0., SDLTSM, SDLTSL, CDLTSM, CDLTSL)
CALL DPSQRT(CDLTSM, CDLTSL, CDELTM(I), CDETLT(I))
CALL DPASIN(SDELTM(I), SDETLT(I), DELTAM(I), DELTAL(I), KZ)
CALL FMPS(DELTAM(I), DELTAL(I), 57.2957795, DELTAM(I)
DEL TAL(I))
C
COMPUTE RIGHT ASCENSION (III-2)
CALL FMP(CEM, CEL, -SAM, -SAL, DM, DL)
CALL FDY(DM, DL, CDELTM(I), CDETLT(I), SINHAM, SINHAL)
CALL FMP(SEM, SEL, CPHIM, CPHIL, CM, CL)
CALL FMP(CEM, CEL, SHPIM, SPHIL, DM, DL)
CALL FMP(DM, DL, CAM, CAL, DM, DL)
CALL FSB(CM, CL, DM, DL, CM, CL)
CALL FDY(CM, CL, CDELTM(I), CDETLT(I), COSH AM, COSHAL)
CALL DPASIN(SINHAM, SINHAL, HAM, HAL, KZ)
IF (COSH AM) 20, 21, 21
20 IF (SINHAM) 22, 23, 23
22 CALL FSB(PIM, PIL, HAM, HAL, HAM, HAL)
GO TO 25
23 CALL FSB(PIM, PIL, HAM, HAL, HAM, HAL)
C
PIM, PIL, ARE TO BE READ IN ON BINARY CARDS
GO TO 25
21 IF (SINHAM) 24, 25, 25
24 CALL FAD(TPIM, TPIL, HAM, HAL, HAM, HAL)
25 CALL FMPS(HAM, HAL, 57.2957795, HAM, HAL)
HAB(I) = HAM
200 CALL FSB(BSTM(I), BSTL(I), HAM, HAL, ALPHAM(I), ALPHAL(I))
WOT 10, 103, (DELTAM(I), ALPHAM(I), HAB(I), 1 = 1, NP)
103 FORMAT (1H06X, 61HRIGHT ASCENSION AND DECLINATION
c. Computation of Rectangular Geocentric Site Coordinates and Conversion of Azimuth and Elevation to Right Ascension and Declination

Check Problem

Output:

Rectangular Site Coordinates Referenced to Equinox of Date
Units of Earth's Equatorial Radius
Local Sidereal Time = 9.2112108E 00 Degrees
X = 6.2516253E-01 Y = 1.0137977E-01 Z = 7.7127761E-01
Right Ascension and Declination Referenced to Equinox of Date
Delta = -9.4294895E 00 Degrees
Alpha = -1.7721417E 01 Degrees
Hour Angle = 2.6932628E 01 Degrees

Input:
Card 1: X 1, 1*
Card 2: F 50.7985278, .7023213E - 6, 4.3583333, 2428072., 5, 0*
Card 3: F 25.5638611, 209.69025*

F. EPHEMERIS COMPUTATION PROGRAM

a. Operational Directory

Purpose

The program computes the rectangular geocentric site coordinates at Time T referenced to the mean equinox of date; these coordinates are reduced to the mean equinox of 1950.0. The topocentric distance observed
at time \(T \) is computed from the site coordinates and the rectangular geocentric coordinates of the observed body. The right ascension and declination of the observed body at time \(T \) are computed referenced to the mean equinox of 1950.0 and reduced to mean equinox of date. The azimuth and elevation of the observed body at time \(T \) are computed.

Usage

All decimal input is read by a modified DBC FORTRAN subroutine which accepts variable length fields. All fields are floating point numbers except for starred fields which are integers. Following is the list of input quantities in the order in which they are read into the program:

Field 1 - \(\text{T, Whole number component of Julian Date.} \)
Field 2 - \(\text{T, Decimal Component of Julian Date.} \)
Field 3 - \(X \) Rectangular geocentric coordinates of observed body at time \(T \) in units of Earth's equatorial radius
Field 4 - \(Y \) and reference to the mean equinox of 1950.0.
Field 5 - \(Z \) (6378.388 km. = equatorial radius of Earth)
Field 6 - \(\phi \) Geocentric latitude of site in degrees and decimals of a degree (+ if North, - if South).
Field 7 - \(h \) Height of site above sea level in units of Earth's equatorial radius.
Field 8 - \(\lambda \) Geographic longitude of site in degrees and decimals of a degree (+ if East, - if West).
Field 9 - Decimal component of the universal time corresponding to the Julian Date in Fields 1 and 2.

Sample Input:

Example
Card 1: F 2428072., .5, 2.3358772, -3709524T, -.20
Card 2: F 50.7985278, .7023213E-6, 4.3583333, 6

Output:

The rectangular geocentric site coordinates in units of Earth's...