NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
DUALITY IN HOMOGENEOUS PROGRAMMING

by

E. Eisenberg
DUALITY IN HOMOGENEOUS PROGRAMMING

by

E. Eisenberg
Operations Research Center
University of California, Berkeley

26 June 1961

Research Report 8

Work on this paper was supported, in part, by the Logistics Branch of the Office of Naval Research under Contract Nonr-562(15) at Brown University and the Bureau of Supplies and Accounts of the Office of Naval Research under Contract Nonr-222(83) at the University of California, Berkeley. Reproduction in whole or in part is permitted for any purpose of the United States Government.
DUALITY IN HOMOGENEOUS PROGRAMMING

The problem of maximizing a concave function subject to linear constraints does not have a dual, as is the case in linear programming, in which primal optimizing variables do not appear. As a special case of our principal result it will follow that such a dual does indeed exist whenever the objective function is also homogeneous.

In the linear case we are given an $m \times n$ matrix A and vectors $a \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. The feasibility sets X and Y are defined by: $X = \mathbb{R}^n_+ \cap \{x | xA \leq a\}$, $Y = \mathbb{R}^n_+ \cap \{y | Ay \geq b\}$. Since $xA \leq a$ if and only if $xAy \leq ay$ for all $y \in \mathbb{R}^n_+$ (and similarly for $Ay \geq b$), we may write:

$$X = \mathbb{R}^n_+ \cap \{x | xAy \leq \psi(y) \text{ all } y \in \mathbb{R}^n_+\}$$

(1)

$$Y = \mathbb{R}^n_+ \cap \{y | xAy \geq \phi(x) \text{ all } x \in \mathbb{R}^m_+\}$$

where $\psi(y) = ay$ and $\phi(x) = bx$.

A fundamental theorem of linear programming (see, e.g., [3] and [5]) states that if X and Y are both non-empty then

$$\max_{x \in X} \phi(x), \min_{y \in Y} \psi(y) \text{ exist and are equal.}$$

(2)

We propose to demonstrate that (2) holds for larger class of triples (A, ϕ, ψ).

* \mathbb{R}^m denotes the set of all real m-tuples. If $u, v \in \mathbb{R}^m$ then $u \leq v$ means that the inequality holds for each component. In particular, $\mathbb{R}^m_+ = \mathbb{R}^m \cap \{x | x \geq 0\}$. If M is a $p \times q$ matrix and N is a $q \times t$ matrix then MN represents the usual matrix product. To simplify notation, the same symbol is used for both a column vector and its transpose; the meaning will, in any case, be clear from the context.
Assumption A_1. Let $\phi : R^m_+ \rightarrow R$, $\psi : R^n_+ \rightarrow R$ be positively homogeneous, continuous, concave and convex respectively.

Let us first show that A_1 does not guarantee that (2) holds when X and Y are non-empty. If $m = 2$, $n = 1$ and $A = 1$, $\phi(x) = \phi(\xi, \eta) = \frac{\xi \eta}{\xi + \eta}$, $\psi(y) = y$ then A_1 is satisfied and $X = R^2_+ \cap \{(\xi, \eta) \mid \eta \leq 1\}$, $Y = R_+ \cap \{y \mid y \geq 1\}$ are non-empty. Thus $\min_y \psi(y) = 1$, but if $\eta \leq 1$ then $\phi(\xi, \eta) < 1$, although $\sup_x \phi(x) = 1$, hence $\max_x \phi(x)$ does not exist.

The situation just illustrated cannot occur if the following holds:

Assumption A_2.

i) If $x \in R^m_+$, $xA \leq 0$, $\phi(x) > 0$ then $x = 0$

ii) If $y \in R^n_+$, $Ay \geq 0$, $\psi(y) < 0$ then $y = 0$

One sees immediately that (i) is violated in the preceding example, for let $x = (1, 0)$ then $xA = 0$ and $\phi(x) = 0$.

Before proving that if A_1 and A_2 hold then so does (2), we require the following lemma which specializes to homogeneous functions the well-known fact that a concave function is the infimum of its supports. The proof is presented here for the sake of completeness.

Lemma 1. Let ϕ be as in assumption A_1, consider

$T = R^m_+ \cap \{t \mid tx \geq \phi(x) \text{ all } x \in R^m_+\}$, then T is non-empty, and $\phi(x) = \inf_{t \in T} tx$, for all $x \in R^m_+$.

Proof. Let $C = \{(x, \lambda) \mid x \in R^m_+, \lambda \leq \phi(x)\}$ then C is a closed convex cone. Now if $x_0 \in R^m_+$, $\mu > 0$, then $(x_0, \mu + \phi(x_0)) \notin C$, whence (see [2], Theorem 1)

* A function $f : C \rightarrow R^q$, where $C \subseteq R^p$ is a cone, is positively homogeneous providing $f(\lambda x) = \lambda f(x)$ for all $x \in C$ and $\lambda \in R_+$.
there exist $t \in \mathbb{R}^m$ and $\alpha \in \mathbb{R}$ such that $tx_0 - a[\mu + \phi(x_0)] < 0 \leq tx - a\lambda$ all $(x, \lambda) \in C$.

It then follows that $\alpha > 0$, so that (dividing by α) we may assume $\alpha = 1$, but then $t \in T$. Reiterating, if $x_0 \in \mathbb{R}^m_+$, $\mu > 0$ then $\exists t \in T$ such that:

$$tx_0 - \mu \leq \phi(x_0) \leq tx_0$$

which is a contradiction. Thus (see [2], Theorem 1) there exist $x_0 \in \mathbb{R}^m_+$, $y_0 \in \mathbb{R}^n_+$, $\lambda \in \mathbb{R}^n_+$, not all zero and such that $(s - xA)y_0 + x_0(Ay - t) + \lambda[\phi(x) - \psi(y)] \leq 0$ for all $x \in \mathbb{R}^m_+$, $y \in \mathbb{R}^n_+$, $s \in S$, $t \in T$. From the homogeneity and continuity of ϕ and ψ it then follows that:
\[xAy_0 \geq \lambda \phi(x), \quad \text{all } x \in \mathbb{R}^m\]
\[x_0Ay \leq \lambda \psi(y), \quad \text{all } y \in \mathbb{R}^n\]
\[sy_0 \leq tx_0, \quad \text{all } s \in S, t \in T\]

The last condition together with Lemma 1 imply:
\[\psi(y_0) \leq \phi(x_0)\]

Now if \(\lambda = 0\) then either \(x_0 \neq 0\) or \(y_0 \neq 0\) and \(Ay_0 \geq 0, x_0A \leq 0\).
Suppose \(x_0 \neq 0\), if \(y_0 \neq 0\) the argument is analogous, then by \(A_2(i)\) we have \(\phi(x_0) < 0\), whence \(\psi(y_0) < 0\) and \(y_0 \neq 0\), contradicting \(A_2(ii)\). Thus \(\lambda > 0\)
and, dividing all inequalities by \(\lambda\), we may assume \(\lambda = 1\). This tells us that \(x_0 \in X, y_0 \in Y\) and \(\phi(x_0) \leq x_0Ay_0 \leq \psi(y_0) \leq \phi(x_0)\). So that if \(x \in X, y \in Y\) then
\[\phi(x) \leq xAy_0 \leq \psi(y_0) = \phi(x_0)\]
\[\psi(y) \geq x_0Ay \geq \phi(x_0) = \psi(y_0)\]
proving the theorem.

In case \(\phi\) and \(\psi\) are linear-homogeneous then it is true that \(\max\ \phi(x)\)
exists if and only if \(\min\ \psi(y)\) exists, in which case they are equal. As above,
this statement is not always true under assumption \(A_1\); however, we show:

Theorem 2.

I) If \(A_1\) and \(A_2(ii)\) hold, and \(\max\ \phi(x)\) exists then (2) holds.
\(x \in X\)

II) If \(A_1\) and \(A_2(i)\) hold, and \(\min\ \psi(y)\) exists then (2) holds.
\(y \in Y\)

We prove (I), the proof of (II) is similar. Suppose that \(x_0 \in X\) and \(\phi(x_0) =
= \max\ \phi(x)\), then the system:
(6) \[(x, s) \in \mathbb{R}_+^m \times S\]
\[s - xA > 0\]
\[\phi(x) - \phi(x_0) > 0\]

has no solution. Thus (see [2], Theorem 1) there exist \(y_0 \in \mathbb{R}_+^n, \lambda \in \mathbb{R}_+,\)
not both zero and such that
\[sy_0 - xAy_0 + \lambda[\phi(x) - \phi(x_0)] \leq 0\]
for all \(x \in \mathbb{R}_+^m, s \in S.\) From the
homogeneity of \(\phi\) and Lemma 1 it then follows that
\[xAy_0 \geq \lambda \phi(x), \quad \text{for all } x \in \mathbb{R}_+^m\]
\[(7)\]
\[\psi(y_0) \leq \lambda \phi(x_0)\]

Now, if \(\lambda = 0\) then \(y_0 \neq 0\) and \(Ay_0 \geq 0,\) \(\psi(y_0) \leq 0,\) contradicting \(A_2(ii).\)
It may then be assumed that \(\lambda > 0\) and, in fact, that \(\lambda = 1\) (replacing \(y_0\) by
\(\lambda y_0)\). Thus, from (7), \(y_0 \in Y,\) and for any \(y \in Y\) we have:
\[\psi(y_0) \leq \phi(x_0) \leq x_0Ay \leq \psi(y),\]
i.e.,
\[\psi(y_0) = \min_{y \in Y} \psi(y) = \phi(x_0).\]
q.e.d.

It should be remarked that if \(A_1\) holds then (i) and (ii) of assumption \(A_2\)
are equivalent to (i)' and (ii)' respectively of:

\underline{Assumption \(A'_2\)}

\[\begin{align*}
(i)' & \exists y_0 \in \mathbb{R}_+^n \quad xAy_0 > \phi(x) \quad \text{all } x \in \mathbb{R}_+^m, \ x \neq 0 \\
(ii)' & \exists x_0 \in \mathbb{R}_+^m \quad x_0Ay < \psi(y) \quad \text{all } y \in \mathbb{R}_+^n, \ y \neq 0
\end{align*}\]

These in turn are equivalent to the familiar conditions that \(X, Y\) have non-
empty interiors. To see, for instance, that (i) and (i)' are equivalent it
suffices to show that (i) implies (i)' since the implication in the other direction is trivial. Assuming (i)' false, the system

\[(8) \quad (y, t) \in \mathbb{R}^n \times T
\]
\[Ay - t > 0
\]

has no solution, whence (see [2], Theorem 1) there is an \(x \in \mathbb{R}^m_+, x \neq 0\), and such that \(xAy \leq tx\) for all \(y \in \mathbb{R}^n_+\) and \(t \in T\). Thus \(xA < 0\) and (using Lemma 1) \(\phi(x) > 0\), contradicting (i). To return to our remark about maximizing a concave homogeneous and continuous function \(\phi: \mathbb{R}^m_+ \to \mathbb{R}\), subject to the inequalities \(x \geq 0\) and \(xA \leq a\), the dual is then: minimize \(ay\) subject to \(y \in Y\). Conditions (i) and (ii)' become:

\[x \in \mathbb{R}^m_+, x \neq 0, xA \leq 0, \, \phi(x) > 0 \quad \text{has no solution; and}
\]
\[x \in \mathbb{R}^m_+, xA < a \quad \text{has a solution; respectively.}
\]

Also, since \(y \in Y\) providing \(y \geq 0\) and \(Ay \geq t\) for some support \(t\) of \(\phi\), we may characterize \(Y\) by means of the gradient of \(\phi\).

Results similar to Theorems 1 and 2 can be shown to hold under other and somewhat less restrictive assumptions; the duality theorems of linear programming then turn out to be special cases of these theorems (3, 4 and 5).

Henceforth we assume that \(A\) holds and consider the sets:

\[K_1 = \mathbb{R}^{m+n+1} \cap \left\{ (\bar{x}, \bar{y}, \lambda) \mid \exists s \in S, t \in T, x \in \mathbb{R}^m_+, y \in \mathbb{R}^n_+ \text{ and } x \geq t - Ay, \bar{y} \leq s - xA, \lambda \leq \phi(x) - \psi(y) \right\},
\]
\[K_2 = \mathbb{R}^{n+1} \cap \left\{ (y, \lambda) \mid \exists s \in S, x \in \mathbb{R}^m_+, \text{ and } \bar{y} \leq s - xA, \lambda \leq \phi(x) \right\},
\]
\[K_3 = \mathbb{R}^{m+n} \cap \left\{ (x, \lambda) \mid \exists t \in T, y \in \mathbb{R}^n_+, \text{ and } \bar{x} \geq t - Ay, \lambda \geq \psi(y) \right\}.
\]
The sets K_1, K_2, and K_3 are readily seen to be convex (because ψ and $-\phi$ are convex); furthermore, if ϕ and ψ are linear then K_1, K_2 and K_3 are also closed sets. Of course any (or all) of K_1, K_2, K_3 may be closed without either ϕ or ψ being linear. Thus it is important to know the following:

Theorem 3.
If K_1 is closed and X, Y are both non-empty, then (2) holds.

Theorem 4.
If K_3 is closed and $\max_x \phi(x)$ exists, then (2) holds.

Theorem 5.
If K_2 is closed and $\min_y \psi(y)$ exists, then (2) holds.

Proof of Theorem 3: If the point $(\bar{x}, \bar{y}, \lambda) = 0$ is in K_1 then (2) obviously holds, suppose $0 \notin K_1$. Since K_1 is convex and closed, there exist (see [3]) $x_0 \in \mathbb{R}^m$, $y_0 \in \mathbb{R}^n$, $\lambda_0 \in \mathbb{R}$, $a \in \mathbb{R}$, such that:

$$0 < a \leq x_0 \bar{x} - y_0 \bar{y} - \lambda_0 \lambda, \quad \text{all } (\bar{x}, \bar{y}, \lambda) \in K_1.$$

Since S and T are non-empty (see Lemma 1), and since $(\bar{x}, \bar{y}, \lambda') \in K_1$ whenever there exist $(\bar{x}, \bar{y}, \lambda) \in K_1$ such that $\bar{x} \geq \bar{x}$, $\bar{y} \leq \bar{y}$ and $\lambda' \leq \lambda$, it follows that $x_0 \geq 0$, $y_0 \geq 0$, and $\lambda_0 \geq 0$. Also,

$$0 < a \leq x_0 (t - Ay) - (s - xA)y_0 - \lambda_0 [\phi(x) - \psi(y)],$$

all $(s, t, x, y) \in S \times T \times \mathbb{R}_+^m \times \mathbb{R}_+^n$.

From the homogeneity of ϕ and ψ and Lemma 1 it then follows that:

$$0 < a \leq \phi(x_0) - \psi(y_0)$$

$$x_0 Ay \leq \lambda_0 \psi(y) \quad \text{all } y \in \mathbb{R}_+^n$$

$$xAy_0 \geq \lambda_0 \phi(x) \quad \text{all } x \in \mathbb{R}_+^m.$$
Thus, \(\lambda_0 \psi(y_0) \geq x_0 Ay_0 \geq \lambda_0 \phi(x_0) \geq \lambda_0 a + \lambda_0 \psi(y_0) \), and \(\lambda_0 = 0 \). But then \(x_0 A \leq 0 \) and \(Ay_0 \geq 0 \). Now \(X, Y \) we assumed non-empty, let \(x \in X \) \(y \in Y \). For any \(\lambda \in R_+ \), we then have:

\[
\phi(x) + \lambda \phi(x_0) \leq \phi(x + \lambda x_0) \leq (x + \lambda x_0)Ay \leq (x + \lambda x_0)A(y + \lambda y_0) \leq xA(y + \lambda y_0) \leq \psi(y + \lambda y_0) \leq \psi(y) + \lambda \psi(y_0).
\]

Thus, \(\psi(y) - \phi(x) \geq \lambda [\phi(x_0) - \psi(y_0)] \geq \lambda a \) for all \(\lambda \in R_+ \) which contradicts \(a > 0 \). Thus \(0 \in K_1 \) and (2) holds.

Proof of Theorems 4 and 5: We prove Theorem 4, the proof of Theorem 5 is analogous. By hypothesis \(X \) is non-empty and \(\phi \) is bounded above on \(X \), let:

\[
M = \sup_{x \in X} \phi(x)
\]

If \((x, \lambda) = (0, M) \) is in \(K_3 \) then, trivially, (2) holds. We show that the contrary assumption leads to a contradiction. If \((0, M) \notin K_3 \) then, as in the proof of Theorem 4, it follows from the various properties of \(K_3 \) that there exist \(x_0 \in R_+^m, \lambda_0 \in R_+^m \) and \(a \in R \) such that:

\[
\lambda_0 M < a \leq x_0(t - Ay) + \lambda_0 \psi(y), \quad \text{all } (t, y) \ T \times R^n_+
\]

Hence, as before,

\[
x_0 Ay \leq \lambda_0 \psi(y), \quad \text{all } y \in R^n_+
\]

and \(\phi(x_0) > \lambda_0 M \).

-8-
If λ_0 is positive then $x = \lambda^{-1} x_0 \epsilon X$ and $\varphi(x) > M$, contradicting the definition of M. Thus $\lambda_0 = 0$, and $x_0 A \leq 0$, $\phi(x_0) > 0$; the last contradicts the fact that X is non-empty and that ϕ is bounded above on X.

q.e.d.

As a final result we demonstrate that if ϕ and ψ are both linear (homogeneous) then K_1 is closed. That K_2 and K_3 are closed, under the same linearity hypothesis, follows in a similar manner.

Suppose $\phi(x) = bx$, $\psi(y) = ay$ ($b \in \mathbb{R}^m$, $a \in \mathbb{R}^n$), first note that in this case:

$S = \{s \mid s \in \mathbb{R}^n \text{ and } s \leq a\}$

$T = \{t \mid t \in \mathbb{R}^m \text{ and } t \geq b\}$.

Next, suppose we have a sequence $(\bar{x}_k, \bar{y}_k, \lambda_k) \in K_1$ ($k = 1, 2, \ldots$) which converges to $(\bar{x}, \bar{y}, \lambda) \in \mathbb{R}^{m+n+1}$. Thus there exist $(s_k, t_k, x_k, y_k) \in S \times T \times \mathbb{R}_+^m \times \mathbb{R}_+^n$ such that:

$\bar{x}_k \geq t_k - Ay_k \geq b - Ay_k$

(9) $\bar{y}_k \leq s_k - x_k A \leq a - x_k A \quad k = 1, 2, \ldots$

$\lambda_k \leq bx_k - ay_k$

and

(10) $\bar{x}_k \rightarrow \bar{x}$, $\bar{y}_k \rightarrow \bar{y}$, $\lambda_k \rightarrow \lambda$.

Now, suppose $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, $a \in \mathbb{R}_+$ are such that $Ay - ab \geq 0$, $xA - aa \leq 0$. From (9) it then follows that for each k we have:

$x \bar{x}_k \geq bx - xAy_k \geq bx - aay_k \geq bx - abx_k + a\lambda_k \geq$

$\geq bx + a\lambda_k - x_k Ay \geq bx + a\lambda_k + \bar{y}_k y - ay$.
i.e., \(x(\bar{x}_k - b) + y(a - \bar{y}_k) - a\lambda_k \geq 0, \quad k = 1, 2, \ldots \) and, by (10),
\[
x(\bar{x} - b) + y(a - \bar{y}) - a\lambda \geq 0.
\]

In summary, then, the system:

\[
x \in \mathbb{R}^m, \quad y \in \mathbb{R}^n, \quad a \in \mathbb{R}_+
\]

\[
Ay - ab \geq 0, \quad xA - aa \leq 0
\]

\[
x(\bar{x} - b) + y(a - \bar{y}) - a\lambda < 0
\]

has no solution. It follows then from the ordinary feasibility theorem for linear inequalities (see e.g. [5]) that there is an \(x \in R^m_+ \) and \(y \in R^n_+ \) such that:

\[
(x, y) \begin{bmatrix}
A & 0 & -b \\
0 & -\Lambda^T & a
\end{bmatrix} \leq (a - \bar{y}, \bar{x} - b, -\lambda),
\]

i.e., \(xA \leq a - \bar{y}, \quad -Ay \leq \bar{x} - b \) and \(ay - bx \leq -\lambda \). But, as noted before, \(a \in S \) and \(b \in T \), thus \((\bar{x}, \bar{y}, \lambda) \in K_1 \) and \(K_1 \) is closed.
REFERENCES

BASIC DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS

Head, Logistics and Mathematical Statistics Branch
Office of Naval Research
Washington 25, D. C.

C. O., ONR Branch Office
Navy No. 100 F.P.O.
New York City, New York

ASTIA Document Service Center
Arlington Hall Station
Arlington 12, Virginia

Office of Technical Services
Department of Commerce
Washington 25, D. C.

Technical Information Officer
Naval Research Laboratory
Washington 25, D. C.

C. O., ONR Branch Office
346 Broadway, New York 13, N. Y.
Attn: J. Laderman

C. O., ONR Branch Office
1030 East Green Street
Pasadena 1, California
Attn: Dr. A. R. Laufer

Professor Russell Ackoff
Operations Research Group
Case Institute of Technology
Cleveland 6, Ohio

Professor Kenneth J. Arrow
Serra House
Stanford University
Stanford, California

Professor G. L. Bach
Carnegie Institute of Tech.
Planning and Control of
Industrial Operations
Schenley Park
Pittsburgh 13, Penn.

Professor A. Charnes
The Technological Institute
Northwestern University
Evanston, Illinois

Professor L. W. Cohen
Math. Dept., Univ. of Maryland
College Park, Maryland

Professor Donald Eckman
Director, Systems Research
Center, Case Inst. of Tech.
Cleveland, Ohio

Professor Lawrence E. Fouraker
Dept. of Economics, The
Pennsylvania State University
State College, Pennsylvania

Professor David Gale
Dept. of Math., Brown University
Providence 12, Rhode Island

Professor L. Hurwicz
School of Business Administration
University of Minnesota
Minneapolis 14, Minnesota

Professor James R. Jackson
Management Sciences Research
Project, Univ. of California
Los Angeles 24, California

Professor Samuel Karlin
Dept. of Math., Stanford Univ.
Stanford, California

Professor C. E. Lemke
Dept. of Mathematics
Rensselaer Polytechnic Institute
Troy, New York

Professor W. H. Marlow
Logistics Research Project
The Geo. Wash. University
707 - 22nd Street, N. W.
Washington 7, D. C.

Professor Oskar Morgenstern
Economics Research Project
Princeton University
92 A Nassau Street
Princeton, New Jersey

Professor R. Radner
Department of Economics
University of California
Berkeley, California

Professor Stanley Reiter
Department of Economics
Purdue University
Lafayette, Indiana

Mr. J. R. Simpson, Bureau
of Supplies and Accounts
(Code W31) Navy Department
Washington 25, D. C.

Professor A. W. Tucker
Dept. of Mathematics
Princeton University
Princeton, New Jersey

Professor J. Wolfowitz
Dept. of Mathematics
Lincoln Hall, Cornell Univ.
Ithaca 1, New York