NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
SUPPORTS OF A CONVEX FUNCTION

by

E. Eisenberg

OPERATIONS RESEARCH CENTER

INSTITUTE OF ENGINEERING RESEARCH

UNIVERSITY OF CALIFORNIA - BERKELEY
SUPPORTS OF A CONVEX FUNCTION

by

E. Eisenberg
Operations Research Center
University of California, Berkeley

22 May 1961

This research was supported in part by the Office of Naval Research under contract Nonr-222(83) with the University of California. Reproduction in whole or in part, is permitted for any purpose of the United States Government.
Let C be a real, symmetric, $m \times m$, positive-semi-definite matrix. Let $R^m = \{(x_1, \ldots, x_m) \mid x_i \text{ is a real number, } i = 1, \ldots, m\}$, and let $K \subset R^m$ be a polyhedral convex cone, i.e., there exists a real $m \times n$ matrix A such that $K = \{x \in R^m \text{ and } xA \leq 0\}$. Consider the function $\psi: K \to R$ defined by $\psi(x) = (x^TCx)^{1/2}$ for all $x \in K$. We wish to characterize the set, U, of all supports of ψ, where

\begin{equation}
U = R^m \cap \left\{ u \mid x \in K \implies u^Tx \leq (x^TCx)^{1/2} \right\}.
\end{equation}

Let $R^+_n = R^n \cap \{\pi \mid \pi \geq 0\}$ and consider the set

\begin{equation}
V = \left\{ v \mid \exists x \in R^m, \pi \in R^+_n \right. \\
\left. \quad \text{and } v = \pi A^T + xC, \ xC^T \leq 1, \ xA \leq 0 \right\}.
\end{equation}

We shall demonstrate:

THEOREM:

$U = V$.

We first show:

LEMMA 1

\[x, y \in R^m \implies (x^TCy)^2 \leq (x^TCx)(y^TCy)\,.

Proof: If $x, y \in R^m$ consider the polynomial $p(\lambda) = \lambda^2 x^TCx + 2\lambda x^TCy + y^TCy = (x + \lambda y)^TC(x + \lambda y)^T$. Since C is positive-semi-definite, $p(\lambda) \geq 0$ for all real numbers λ, and thus the discriminant of p is non-positive, i.e.,
\[4(xCy^T)^2 - 4(xCx^T)(yCy^T) \leq 0. \]

q.e.d.

As an immediate application of Lemma 1 we show:

LEMMA 2

\[V \subseteq U \]

Proof: Let \(v \in V \), then there exist \(x \in \mathbb{R}^m, \pi \in \mathbb{R}^n_+ \) such that \(v = \pi A^T + xC \), \(xCx^T \leq 1 \). Now if \(y \in \mathbb{R}^m, yA \leq 0 \), then \(vy^T = yAx^T + xCy^T \) and \(vy^T \leq xCy^T \), because \(yA \leq 0, \pi^T \geq 0 \) and \(yAx^T \leq 0 \). Thus, \(vy^T \leq (xCx^T)^{\frac{1}{2}} (yCy^T)^{\frac{1}{2}} \), by Lemma 1, and \(vy^T \leq (yCy^T)^{\frac{1}{2}} \), because \(xCx^T \leq 1 \). Thus, \(v \in U \).

q.e.d.

From the fact that \(C \) is positive-semi-definite, it follows that:

LEMMA 3

The set \(V \) is convex.

Proof: If \(x_k \in \mathbb{R}^m, \pi_k \in \mathbb{R}^n_+ \), \(x_kA \leq 0 \), \(u_k = \pi_k A^T + x_kC, x_kCx_k^T \leq 1, \lambda_k \in \mathbb{R}^+ \) for \(k = 1, 2 \) and \(\lambda_1 + \lambda_2 = 1 \), then:

\[
\lambda_1 u_1 + \lambda_2 u_2 = (\lambda_1 \pi_1 + \lambda_2 \pi_2)A^T + (\lambda_1 x_1 + \lambda_2 x_2)C, (\lambda_1 x_1 + \lambda_2 x_2)A \leq 0, \lambda_1 x_1 + \lambda_2 x_2 \in \mathbb{R}^m, \lambda_1 \pi_1 + \lambda_2 \pi_2 \in \mathbb{R}^n_+ ,
\]

and

\[
(\lambda_1 x_1 + \lambda_2 x_2)C(\lambda_1 x_1 + \lambda_2 x_2)^T - 1 \leq (\lambda_1 x_1 + \lambda_2 x_2)C(\lambda_1 x_1 + \lambda_2 x_2)^T - \lambda_1 x_1 Cx_1^T - \lambda_2 x_2 Cx_2^T -
\]

\[
= -\lambda_1 \lambda_2 \left[x_1 Cx_1^T - 2x_1 Cx_2^T + x_2 Cx_2^T \right] =
\]

\[
= -\lambda_1 \lambda_2 (x_1 - x_2)C(x_1 - x_2)^T \leq 0, \text{ because } C \text{ is positive-semi-definite.}
\]
Lemma 4

The set V is closed.

Proof: Let $\{w_k\}$ be a sequence with $w_k \in \mathbb{R}^m$, $k = 1, 2, \ldots$. We define the (pseudo) norm of w_k, denoted $\|w_k\|$, to be the smallest non-negative integer p such that there exists a k_0 and for all $k \geq k_0$, x_k has at most p nonzero components. Now, suppose u is in the closure of V, i.e., there exist sequences $\{u_k\}$, $\{v_k\}$ and $\{x_k\}$ such that

$$\begin{align*}
\pi_k \in \mathbb{R}^n, \quad x_k \in \mathbb{R}^m, \quad u_k = \pi_k A^T + x_k C \\
x_k A \leq 0 \quad \text{and} \quad y_k C x_k^T \leq 1,
\end{align*}$$

$k = 1, 2, \ldots$

and $\{u_k\}$ converges to u.

Suppose the sequence $\{x_k\}$ is bounded, then we may assume, having taken an appropriate subsequence, that for some $x \in \mathbb{R}^m$, $\{x_k\} \rightarrow x$ and thus, by (3), $xA \leq 0$ and $xCx^T \leq 1$. Now, $yA \leq 0 \Rightarrow u_k y^T - x_k C y^T = \pi_k A^T y^T = yA \pi_k \leq 0$, all $k \Rightarrow uy^T - xCy^T \leq 0$. Thus the system,

$$\begin{align*}
y \in \mathbb{R}^m \\
yA \leq 0 \\
(u - xC)y^T > 0
\end{align*}$$

has no solution and by the usual feasibility theorem for linear inequalities (see e.g. (4) or (5)) the system:
\[\pi \in \mathbb{R}_+^n \]
\[\pi A^T = u - xC \]

has a solution, and thus \(u \in V \).

We have just demonstrated that if \(\{ x_k \} \) is bounded, then \(u \in V \).

Since \(|\{ x_k \}| + |\{ x_k A \}| \leq m+n \), it is always possible to choose \(\{ x_k \} \) and \(\{ \pi_k \} \) satisfying (3) and such that \(|\{ x_k \}| + |\{ x_k A \}| \) is minimal.

We shall show next that if \(\{ x_k \}, \{ \pi_k \} \) are so chosen, then \(\{ x_k \} \) is indeed bounded, thus completing the proof. Suppose then that \(\{ x_k \} \) is not bounded, i.e., \(|x_k| = (x_k x_k^T)^{1/2} \to \infty \), and we may assume that \(|x_k| > 0 \) for all \(k \). Let

\[z_k = \frac{x_k}{|x_k|}, \quad k = 1, 2, \ldots \]

then \(\{ z_k \} \) is bounded and we may assume that there is a \(z \in \mathbb{R}^m \) such that the \(z_k \) converge to \(z \) and \(|z| = 1 \). From (3) it follows that \(z_k A \leq 0 \) and \(z_k C z_k^T \leq \frac{1}{|x_k|^2} \) for all \(k \). Thus, \(zA \leq 0 \) and \(zCz^T \leq 0 \). But then, from Lemma 1, \(zCy^T = 0 \) for all \(y \in \mathbb{R}^m \), and \(zC = 0 \). Summarizing:

\[z \in \mathbb{R}^m, zA \leq 0, zC = 0. \]

Note that if \(z \) has a nonzero component, then infinitely many \(x_k \)'s must have the same component nonzero, this follows from the fact that \(z \) is the limit of \(\frac{x_k}{|x_k|} \). As a consequence, if \(\{ \lambda_k \} \) is any sequence of real numbers, then \(\left| \left\{ x_k + \lambda_k z \right\} \right| \leq \left| \left\{ x_k \right\} \right| \). If \(zA \neq 0 \), and \(a^j, j = 1, \ldots, n, \)
denotes the \(j \)-th column of \(A \), let
\[
\lambda_k = \max_j - \frac{x_k a^j}{z a^j} \quad \text{subject to} \quad z a^j < 0
\]
Then we may replace, in (3), \(x_k \) by \(x_k + \lambda_k z \) because \(\lambda_k z a^j + x_k a^j \leq 0 \) for all \(j \), and \((x_k + \lambda_k z)A \leq 0 \). Also \(zC = 0 \) and thus \((x_k + \lambda_k z)C = x_k C \),
\[
(x_k + \lambda_k z)C(x_k + \lambda_k z)^T = x_k C x_k^T \leq 1.
\]
However each \((x_k + \lambda_k z)A \) has at least one more zero component than \(x_k A \), contradicting the minimality of \(I \).

Lastly, we show:

Lemma 5

\[U \subset V \]

Proof: Suppose \(u \notin V \). By Lemma 3 and 4, \(V \) is a closed convex set, hence there is a hyperplane which separates \(u \) strongly from \(V \) (see [4]). Thus there exist \(x \in \mathbb{R}^m \) and \(a \in \mathbb{R} \) such that
\[
ux^T > a \geq vx^T \quad \text{all} \quad v \in V.
\]
Now, if \(\pi \in \mathbb{R}_+^n \) then \(\mathbf{v} = \pi A^T \) is in \(\mathbf{V} \) (taking \(x = 0 \) in the definition of \(\mathbf{V} \)).

Thus \(xA^T = \pi A^T x \leq a \) for all \(\pi \in \mathbb{R}_+^n \), and \(xA \leq 0, \ x \in K \). Also \(\mathbf{v} = 0 \) is in \(\mathbf{V} \), so that \(a \geq 0 \). If \(u \in \mathbf{U} \) then \(0 \leq a < ux^T \leq (x^T x)^{1/2} \), thus \(x^T x > 0 \) and

\[
\mathbf{v} = \frac{x^T}{(x^T x)^{1/2}} \in \mathbf{V},
\]

consequently,

\[
(x^T x)^{1/2} > a \geq \frac{x^T}{(x^T x)^{1/2}} = (x^T x)^{1/2}
\]

a contradiction. Thus \(u \notin \mathbf{U} \). q.e.d.

Note: A direct application of Lemmas 2 and 5 yields the theorem stated at the beginning.
REFERENCES

