NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
TECHNICAL RESEARCH REPORT
INVESTIGATION OF AgO PRIMARY BATTERIES

SEVENTH QUARTERLY PROGRESS REPORT
REPORT NO. E-11-61
1 JANUARY 1961 to 31 MARCH 1961

SIGNAL CORPS CONTRACT NO. DA-36-039-SC-78319
PROJECT NO. 3G18-03-001
U. S. ARMY SIGNAL RESEARCH & DEVELOPMENT LABORATORY
FORT MONMOUTH, NEW JERSEY

MISSILE BATTERY DIVISION
THE ELECTRIC STORAGE BATTERY COMPANY
RALEIGH, NORTH CAROLINA
INVESTIGATION OF AgO PRIMARY BATTERIES

SEVENTH QUARTERLY PROGRESS REPORT

Report No. E-11-61

Covering the Period

1 January 1961 to 31 March 1961

dated

May 8, 1961

Missile Battery Division

of

The Electric Storage Battery Company

Signal Corps Contract No. DA-36-039-SC-78319

Project No. 3G18-03-001

Research and Development Work on a Non-Reserve

AgO Primary Cell

Signal Corps Technical Requirement No. SCL-6284

Prepared by: G. M. Wylie
Project Engineer

Reviewed by: A. M. Chreitzberg
Manager, Advanced Design

Approved by: L. C. Moore
Manager of Engineering
TABLE OF CONTENTS

I. PURPOSE.. 1

II. ABSTRACT.. 2

III. CONFERENCES... 3

IV. FACTUAL DATA... 4-11

 PHASE A - Evaluation of Cell Components.......................... 4-9
 PHASE C - Leakproof Construction................................. 10
 PHASE D - Low Temperature Investigation...................... 10
 PHASE E - Cell Evaluation.. 11

V. CONCLUSIONS... 12

VI. TENTATIVE PROGRAM FOR EIGHTH QUARTER......................... 13

VII. DISTRIBUTION OF HOURS DURING SEVENTH QUARTER.............. 14

VIII. REFERENCES... 15

IX. FIGURES AND TABLES

 Figure 1 - Polypor WA on Saran After 10 Days
 in a Cell at 160°F.. 16

 Figure 2 - Internal Pressure Vs Time for S.P. 19 Cell.............. 17

 Figure 3 - S.P. 19 Cell Used to Obtain Pressure Date................ 18

 Figure 4 - S.P. 19 Cell.. 19

 Figure 5 - Typical Discharge Curves for S.P. 19 Cell.............. 20

 Figure 6 - Energy Density Vs Discharge Rate for S.P. 19 Cell.. 21

 Table I - Positive Electrodes.. 5

 Table II - Negative Electrodes.. 6
Table III - Charging Schedules 7
Table IV - Separator Systems 9
I. PURPOSE

It is the purpose of this research and development contract to study nonreserve type primary cells utilizing the zinc-silver oxide electrochemical system. The investigation is primarily designed to lead to a better understanding of the basic factors governing the electrochemical performance of this system.

The work will be divided as follows:

Phase A - A determination will be made of cell components to produce optimum power and shelf life.

Phase B - An attempt to improve voltage regulation will be made by reducing or eliminating the initial AgO voltage plateau on low rate discharges.

Phase C - A cell container will be developed that will be leakproof, be light in weight, and contain an activated cell at 160°F.

Phase D - An investigation will be made to determine limiting factors on low temperature discharge and to develop methods of improving cell performance at low temperature.

Phase E - A design will be made in the cell container developed in Phase "C" in an attempt to optimize all variables and a series of tests will be made to determine the cell discharge characteristics and shelf life capabilities.
II. ABSTRACT

Non-reserve primary Zn/KOH/AgO cells were assembled and tested in an ESB type 5-15 size cell to evaluate positive electrodes, negative electrodes, and separator systems.

Using the most efficient positive and negative electrodes tested to date and the separator system giving the best 160°F. charged stand, sealed cells were assembled and tested in an ESB type S-7.5 cell container. New cells gave the following discharge results:

<table>
<thead>
<tr>
<th>Discharge Rate (Hours)</th>
<th>Watt-Hours Per Pound</th>
<th>Watt-Hours Per in.³</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>75</td>
<td>6.35</td>
</tr>
<tr>
<td>25</td>
<td>78</td>
<td>6.5</td>
</tr>
<tr>
<td>100</td>
<td>84</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Experimental type 5-15 cells employing a variety of separator systems were stored at 160°F. for up to six weeks and then discharged at the 1.5 ampere continuous rate. With the best separator system tested, the capacity retention after six weeks storage at 160°F. was 50%.
III. CONFERENCES

On January 17, 1961, Messrs. A. M. Chreitzberg and G. M. Wylie of the Missile Battery Division, and Dr. Paul Ruetschi of the Carl F. Norberg Research Center visited the U. S. Army Signal Research and Development Laboratory, Fort Monmouth, New Jersey, to discuss the progress made during the sixth quarter of the contract and to outline work for the seventh quarter. Representing the Signal Corps were Messrs. C. Clark, J. Hovendon, C. Nordell, and C. Trigg.

On March 29, 1961, Messrs. J. Hovendon and C. Nordell of the U. S. Army Signal Research and Development Laboratory, and R. F. Amlie of the Carl F. Norberg Research Center visited the Missile Battery Division to discuss the progress made during the seventh quarter of the contract. Representing the Missile Battery Division were Messrs. L. C. Moore, A. M. Chreitzberg, G. S. Hartman and G. M. Wylie.
IV. FACTUAL DATA

PHASE A - EVALUATION OF CELL COMPONENTS

1. Evaluation of Positive and Negative Electrodes. - During the seventh quarter, positive and negative plates were manufactured by several techniques and charged on various schedules. The plates were discharged in a 5-15 type cell at the 1.5 ampere continuous rate in test electrolytes. The separator system was composed of one layer of 0.001 inch non-woven fibrous dynel mat, one layer of Polypor WA on 0.005 inch nylon, and two layers of 300 PUD-O cellophane (order listed is moving from positive plate to negative plate). Details of construction were given in Paragraph IV, B of the Fifth Quarter Report.

Table I lists the construction of the positive electrodes tested, the charging schedules used, test electrolyte, and the range of percentage efficiencies observed by discharging a sample of at least three cells containing the electrodes. Table II gives the results of similar tests performed on negative electrodes. Table III gives charging schedules used in charging both the negative and the positive electrodes. Electrodes tested earlier in the contract are included in these tables for comparison.
TABLE I
POSITIVE ELECTRODES

<table>
<thead>
<tr>
<th>Positive Electrode (Number)</th>
<th>Construction</th>
<th>Charging Schedule (Number)</th>
<th>Electrolyte</th>
<th>Positive Efficiency (Percent)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D.P. #1</td>
<td>1</td>
<td>40% KOH + ZnO</td>
<td>80-81</td>
<td>Possible choice for final design.</td>
</tr>
<tr>
<td>2</td>
<td>AgO + 2%</td>
<td>None</td>
<td>40% KOH + ZnO</td>
<td>80-81</td>
<td>Very fragile plate. Difficult to manufacture.</td>
</tr>
<tr>
<td>3</td>
<td>D.P. #1</td>
<td>2</td>
<td>40% KOH + ZnO</td>
<td>83-85</td>
<td>Voltage level and regulation unacceptable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40% NaOH + ZnO</td>
<td>83-86</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D.P. #1</td>
<td>3</td>
<td>40% KOH + ZnO</td>
<td>76-78</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pressed Ag</td>
<td>1</td>
<td>40% KOH + ZnO</td>
<td>67-68</td>
<td>Density = 61 gm./cu. in</td>
</tr>
<tr>
<td>6</td>
<td>Pressed Ag</td>
<td>1</td>
<td>40% KOH + ZnO</td>
<td>75-77</td>
<td>Density = 78 gm./cu. in</td>
</tr>
<tr>
<td>7</td>
<td>D.P. #1 + Conductive Matrix</td>
<td>1</td>
<td>40% KOH + ZnO</td>
<td>80-81</td>
<td>Possible choice for final design.</td>
</tr>
<tr>
<td>8</td>
<td>D.P. #1</td>
<td>7</td>
<td>40% KOH + ZnO</td>
<td>75-78</td>
<td></td>
</tr>
</tbody>
</table>

*Output in A.H. to 1.1 volts X 100
0.4968 AH/gm Ag X weight Ag
<table>
<thead>
<tr>
<th>Negative Electrode (Number)</th>
<th>Construction</th>
<th>Charging Schedule (Number)</th>
<th>Electrolyte</th>
<th>Negative Efficiency (Percent)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressed Ray-O-Vac Material</td>
<td>None-Primary</td>
<td>40% KOH + ZnO</td>
<td>54-56</td>
<td>Very fragile plate. Difficult to manufacture.</td>
</tr>
<tr>
<td>2</td>
<td>Pressed Ray-O-Vac material + 1% Solka-Floc.</td>
<td>None-Primary</td>
<td>40% KOH + ZnO</td>
<td>67</td>
<td>Very fragile plate. Difficult to manufacture.</td>
</tr>
<tr>
<td>3</td>
<td>Pressed ESB Mix C</td>
<td>4</td>
<td>40% KOH + ZnO</td>
<td>66-69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40% NaOH +ZnO</td>
<td>67-68</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40% KOH</td>
<td>66-69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30% KOH</td>
<td>67-68</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D.P. Negative</td>
<td>5</td>
<td>40% KOH + ZnO</td>
<td>47-49</td>
<td>Difficult to Manufacture.</td>
</tr>
<tr>
<td>5</td>
<td>Pressed ESB Mix C</td>
<td>5</td>
<td>40% KOH + ZnO</td>
<td>60-63</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pressed ESB Mix C</td>
<td>6</td>
<td>40% KOH + ZnO</td>
<td>66-70</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ESB Mix C + 1% Graphite</td>
<td>6</td>
<td>40% KOH + ZnO</td>
<td>62-74</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Plated Zn +HgO</td>
<td>None-Primary</td>
<td>40% KOH + ZnO</td>
<td>55</td>
<td>Difficult to manufacture. Fragile plate.</td>
</tr>
<tr>
<td>9</td>
<td>Pressed Merck Reagent Zn +HgO</td>
<td>None-Primary</td>
<td>40% KOH + ZnO</td>
<td>50-60</td>
<td>Fragile plate.</td>
</tr>
<tr>
<td>10</td>
<td>Pressed ESB Mix C</td>
<td>4</td>
<td>40% KOH + ZnO</td>
<td>74-76</td>
<td>These plates were half as thick as others tested.</td>
</tr>
<tr>
<td>11</td>
<td>Pressed ESB Mix C + 0.5 Solka-Floc</td>
<td>6</td>
<td>40% KOH + ZnO</td>
<td>73-78</td>
<td>Choice for final design.</td>
</tr>
<tr>
<td>Schedule (No.)</td>
<td>Charging Rate (ma/in²)</td>
<td>Input Capacity</td>
<td>Electrolyte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>175</td>
<td>40% KOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>52 1/2</td>
<td>40% KOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-35</td>
<td>-2 1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>52 1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-35</td>
<td>-2 1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>26 1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-18</td>
<td>-1 1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>26 1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-18</td>
<td>-1 1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>13 1/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-9</td>
<td>- 5/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>13 1/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-9</td>
<td>- 5/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 175</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>35 to 2 volts vs Zn/ZnO</td>
<td></td>
<td>40% KOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 to 2 volts vs Zn/ZnO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>200</td>
<td>5% KOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>155</td>
<td>100</td>
<td>5% KOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>155</td>
<td>100</td>
<td>5% KOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Same as Schedule Number 1 except at 130°F.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*3 approximately equally spaced one hour current reversals.
To date, positive electrode Number 3 is the most efficient tested; however, the charging schedule for this electrode is long and expensive, and it is felt electrodes Numbers 1 and 7 are the best choice for use in the final design. The final decision between these two electrodes will be delayed until tests are completed to compare their capacity loss rates during 160°F. storage.

Several attempts were made to test D.P. Number 2, but manufacturing problems resulted in the decision to terminate work on this electrode because the probable gain in efficiency was not large enough to justify the necessary work to solve the manufacturing problems.

To date, negative electrode Number 11 is the most efficient tested and will be used in the final design. It will be noted that the efficiency given for negative electrode Number 7 differs from that previously reported. After additional testing a large variation in efficiency was found from lot-to-lot of this electrode.

2. Evaluation of Separator Systems. - During the seventh quarter, 5-15 type cells employing a variety of separator systems were stored at 160°F. from two to six weeks. Table Number IV lists the separator systems tested and gives the results. Separator systems tested earlier in the contract are included for comparison.

It can be seen from Table IV that only cells containing both Synpor and cellophane were capable of standing reliably at 160°F., and that two layers of Synpor appear to give no better stand than one layer. It can also be seen that the addition of PMA 100-0 to a separator system of Synpor and cellophane does not appear to give better stand. It was found that separator systems containing Synpor did not need the dynel mat.

Figure 1 Shows a piece of Polypor WA on Saran after 10 days storage in a cell at 160°F.
<table>
<thead>
<tr>
<th>Separator System (Listed from Positive to Negative)</th>
<th>Time at 160°F. (Days)</th>
<th>No. of Cells</th>
<th>Capacity Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 layer .008" Synpor</td>
<td>14</td>
<td>3</td>
<td>75-77 70-83</td>
</tr>
<tr>
<td>2 layers 300 PUD-O Cellophane</td>
<td>29</td>
<td>3</td>
<td>50-53 50-56</td>
</tr>
<tr>
<td>2 layers .008" Synpor</td>
<td>3</td>
<td>9</td>
<td>Shorted</td>
</tr>
<tr>
<td>2 layers .008" Synpor</td>
<td>14</td>
<td>3</td>
<td>69-71 53-70</td>
</tr>
<tr>
<td>2 layers 300 PUD-O Cellophane</td>
<td>28</td>
<td>3</td>
<td>52 60</td>
</tr>
<tr>
<td>2 layers .008" Synpor</td>
<td>42</td>
<td>2</td>
<td>50 50</td>
</tr>
<tr>
<td>2 layers .008" Synpor</td>
<td>28</td>
<td>1</td>
<td>Shorted</td>
</tr>
<tr>
<td>1 layer .008" Synpor and 1 layer 100-0 PMA</td>
<td>10</td>
<td>9</td>
<td>Shorted</td>
</tr>
<tr>
<td>1 layer .008" Synpor and 2 layers 100-0 PMA</td>
<td>14</td>
<td>3</td>
<td>60-68 65-68</td>
</tr>
<tr>
<td>2 layers 100-0 PMA</td>
<td>24</td>
<td>3</td>
<td>64-65 57</td>
</tr>
<tr>
<td>2 layers 300 PUD-O Cellophane</td>
<td>42</td>
<td>2</td>
<td>46-48 0-45*</td>
</tr>
<tr>
<td>Polypor WA on Saran and 2 layers 300 PUD-O Cellophane</td>
<td>8-10</td>
<td>2</td>
<td>Shorted</td>
</tr>
<tr>
<td>1 layer EM 309 Dynel and 1 layer Polypor WA on 005" Nylon and 2 layers 300 PUD-O Cellophane</td>
<td>4.7</td>
<td>12</td>
<td>Shorted</td>
</tr>
<tr>
<td>1 layer EM 309 Dynel and 1 layer 0.009" Porothene and 2 layers 300 PUD-O Cellophane</td>
<td>6.8</td>
<td>3</td>
<td>Shorted 78</td>
</tr>
<tr>
<td>1 layer 309 Dynel and 1 layer 0.007" PMA 100-0 and 2 layers 300 PUD-O Cellophane</td>
<td>7-10</td>
<td>3</td>
<td>Shorted</td>
</tr>
<tr>
<td>1 layer EM 309 Dynel and 2 layers 300 PUD-O Cellophane</td>
<td>14</td>
<td>1</td>
<td>83</td>
</tr>
<tr>
<td>1 layer EM 309 Dynel and 1 layer 0.008" Synpor and 2 layers 300 PUD-O Cellophane</td>
<td>14</td>
<td>3</td>
<td>77 81</td>
</tr>
<tr>
<td>1 layer EM 309 Dynel and 1 layer 0.008" Synpor and 2 layers 300 PUD-O Cellophane</td>
<td>29</td>
<td>3</td>
<td>52 58</td>
</tr>
</tbody>
</table>

One of these cells dried out on storage and the negative plates may have burned up.
PHASE C - LEAKPROOF CONSTRUCTION

Techniques already in use sealing uncharged cells were adapted to sealing charged cells during the seventh quarter. The method used to seal uncharged cells is to raise the electrolyte level above the top of the plates and cast an epoxy seal on top of the electrolyte. When this technique was tried on charged cells, it was found that the gas evolved from the plates formed bubble paths through the epoxy as it was setting up, resulting in a leaking cell. It was found that if the cell was allowed to stand for about two days, cell gassing decreased. It was also found that if the casting operation was delayed until just before the epoxy set up the length of time for bubbles to form in the epoxy is minimized. Using this technique, charged cells were successfully sealed. Figure 2 shows a curve of cell internal pressure vs time at various temperatures. The cell leaked pressure at 160°F, but did not leak electrolyte or form potassium carbonate at the leak. It was found that the leak was around the pressure gauge which was sealed into the cell. The cell used to obtain the pressure data is shown in Figure 3.

It was necessary to support the large sides of the cell during storage at temperatures above 104°F to prevent the polystyrene cell case from rupturing.

PHASE D - LOW TEMPERATURE INVESTIGATION

The following additives were tried in negative plates in an attempt to irrigate the plates and retard their polarization:

1. One percent Ceylon Graphite
2. Two percent Ceylon Graphite
3. Three percent Ceylon Graphite
4. One-quarter percent Solka-Floc
5. One-half percent Solka-Floc
6. Three Quarters percent Solka-Floc

None of the additives tested improved the low temperature discharge performance.

Dirkse (1) reported that concentrations of KOH saturated with ZnO between 24% to 36% do not freeze at -40°F. Electrolyte concentrations from 26 to 34% KOH + ZnO have been tested and no significant variation in low temperature performance was noted.

At the present time the only way known to improve low temperature performance is to decrease plate thickness and increase plate area; however, this solution is inconsistent with the requirements for good charged stand characteristics and high watt-hours per pound.
A cell design was made including the best cell components tested to date. The AgO positives employed in this test were positive electrode Number I (Table I) and the zinc negatives were negative electrode Number II (Table II).

The positive and negative plates measured 1 13/16 inches wide by 1 23/32 inches high (6.2 in²/plate, or 41 cm²/plate counting both surfaces). The positive plates were wrapped with one layer of 0.008 inch Synpor and two layers of 300 PUD-O cellophane (order listed is moving from positive plate to negative plate) by placing two positive plates end-to-end on the two separator sheets and rolling them together. This cell design contained four positive plates and five negative plates, with each of the two outside negative plates containing one-half (1/8 of the total) the quantity of negative mix contained in the inner negative plates. The cell design contained 48-52 grams of sintered silver (26 ampere hours theoretical capacity) and 44 to 46 grams of negative mix (30 ampere hours theoretical capacity). A volume of 15 to 16 cc of 40% KOH saturated with zinc oxide was added to bring the electrolyte level to about half way between the top of the plates and the top of the separators. The cell was then sealed by casting the top of the cell with epoxy. Figure 4 shows a completed cell.

Three cells of this design were discharged at each of the following rates: 5 hour rate, 13 hour rate and 60 hour rate. A family of discharge curves for these cells is shown in Figure 5. The weight of a completed cell of this design was 163 grams. A curve of energy densities vs discharge rate is given in Figure 6.
V. CONCLUSIONS

1. The most satisfactory separator system for 160°F. charged storage tested to date is:

 1 layer 0.008" Synpor
 2 layers 300 PUD-O Cellophane

2. Experimental multi-plate sealed cells in an ESB S-7.5 size container gave 19.6 ampere-hours at the five to 100 hour discharge rates. The energy output for these cells was 75-watt-hours per pound and 6.25 watt-hours per cubic inch at the five hour discharge rate to 84 watt-hours per pound and seven watt-hours per cubic inch at the 100 hour rate.

3. The capacity retention of cells employing the separator system from 1 above after four weeks storage at 160°F. was 52%.
VI. TENTATIVE PROGRAM FOR EIGHTH QUARTER

PHASE A

During the eighth quarter 160°F. storage test will be conducted with positive electrodes made from D.P. Number 1 with conductive matrix.

PHASE B

The positive plates for test cells will be treated in 40% KOH at 150°F. for varying length of time. It is believed this treatment will form a layer of Ag₂O on the surface of AgO in the positive electrodes and eliminate the initial voltage plateau with little loss in capacity.

PHASE E

A final selection of cell components will be made and three cells will be assembled and tested at the five hour and 30 hour rates at each of the following temperatures:

- 130°F.
- 113°F
- 70°F
- 42°F
- 0°F
- -40°F

Three cells will be subjected to Shock 1 and Vibration Test 1 requirements of MIL-B-18 and subsequently discharged at 70°F. at the five hour rate.
VII. DISTRIBUTION OF HOURS DURING SEVENTH QUARTER

<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. M. Chreitzberg</td>
<td>Manager, Advanced Design</td>
<td>21</td>
</tr>
<tr>
<td>G. M. Wylie</td>
<td>Project Engineer</td>
<td>157</td>
</tr>
<tr>
<td>A. Alexander</td>
<td>Engineering Technician</td>
<td>308.5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>486.5</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td></td>
</tr>
</tbody>
</table>
VIII. REFERENCES

INTERNAL PRESSURE VS. TIME FOR SP-19 CELL

Figure 2
SP-19 CELL USED TO OBTAIN PRESSURE DATA

FIGURE 3
SP-19 CELL

FIGURE 4
TYPICAL DISCHARGE CURVES FOR SP-19 CELL

Figure 5
ENERGY DENSITY VS. DISCHARGE RATE FOR SP-19 CELL

Figure 6
<table>
<thead>
<tr>
<th>AD Accession No.</th>
<th>Unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missile Battery Division of The Electric Storage Battery Company, Raleigh, N. C.</td>
<td></td>
</tr>
</tbody>
</table>

INVESTIGATION OF Ag/C PRIMARY BATTERIES, G. M. Wylie

Seventh Quarterly Progress Report, 1 Jan. to 31 Mar., 1961

Illustrations - Graphs, 21 pp.
Signal Corps Contract DA-36-039-SC-78319
DA Proj. No. 3015-03-001, Unclassified Report

Experimental Zn/KOH/Ag sealed flat plate cells
delivered 75 watt-hours per pound and 6.25 watt-hours per cubic inch at the five hour rate and 3.5 watt-hours per pound and 7 watt-hours per cubic inch at the 100 hour rate. Experimental unsealed cells retained 46 to 50% of their new capacity after six weeks storage at 160°F. No improvement in cell performance was obtained at -30°F.
EXTERNAL DISTRIBUTION LIST
SEVENTH QUARTERLY REPORT
DA-36-039 SC-78319

OASD (R&E, Rm 3E-1065)
The Pentagon
Washington 25, D. C.
ATTN: Technical Library (1)

Chief of Research and Development
OCS, Dept. of the Army
Washington 25, D. C. (1)

Chief Signal Officer
Department of the Army
Washington 25, D. C.
ATTN: SIGRD (1)

Director, U.S. Naval Research Lab.
Washington 25, D. C.
ATTN: Code 2027 (1)

Commanding Officer & Director
U.S. Navy Electronics Laboratory
San Diego 52, California (1)

Commander
Wright Air Development Division
Wright-Patterson Air Force Base, Ohio
ATTN: WCOSI-3 (2)

Commander, Air Force Command and Control
Development Division
United States Air Force
Bedford, Massachussetts
ATTN: CROTR (1)

Commander, Rome Air Development Center
Griffiss Air Force Base, New York
ATTN: RCOIL-2 (1)

Commanding General
U. S. Army Electronic Proving Ground
Fort Huachuca, Arizona (1)

Commander, Armed Services Technical Information
Agency
Arlington Hall Station
Arlington 12, Virginia
ATTN: TIPDR (11)

Commanding Officer
Diamond Ordnance Fuze Laboratories
Washington 25, D. C.
ATTN: Library, Rm. 211, Bldg. 92 (1)

Commanding Officer
U. S. Army Signal Materiel Support Agency
Fort Monmouth, New Jersey
ATTN: SIGRA/SL-ADJ (1)

Chief, U. S. Army Security Agency
Arlington Hall Station
Arlington 12, Virginia (2)

Deputy President
U. S. Army Security Agency Board
Arlington Hall Station
Arlington 12, Virginia (1)

Commanding Officer
U. S. Army Signal Research & Development Laboratory
Fort Monmouth, New Jersey
ATTN: SIGRA/SL-P (1)
ATTN: SIGRA/SL-PS (27)
ATTN: SIGRA/SL-LNE (1)
ATTN: SIGRA/SL-LNS (1)
ATTN: SIGRA/SL-LNR (1)
ATTN: Director of Research or Engineering (1)
ATTN: Tech. Document Center (1)
ATTN: SIGRA/SL-ADJ (1)
ATTN: Technical Information Division (FOR RETRANSMITTAL TO ACCREDITED BRITISH & CANADIAN GOVERNMENT REPRESENTATIVES) (3)

Mallory Battery Company
Division of P. R. Mallory Co., Inc.
60 Elm Street
North Tarrytown, New York
ATTN: Mr. Richard Clune (1)

Burgess Battery Company, Battery Division
Freeport, Illinois
Attn: Dr. J. J. Coleman (1)

Union Carbide Consumer Products Co.
Division of Union Carbide Corporation
270 Park Avenue
New York 17, New York
ATTN: Mr. R. L. Glover (1)

Cook Batteries
3850 Olive Street
Denver 7, Colorado
ATTN: Mr. F. R. Cook (1)
Sonotone Corporation
Elmsford
New York (1)

Gould-National Batteries, Inc.
2630 University Street
Minneapolis, Minnesota (1)
ATTN: Dr. H. Zahn

Gulton Industries, Inc.
212 Durham Avenue
Metuchen, New Jersey (1)

The Eagle-Picher Company
Post Office Box 920
Joplin, Missouri (1)
ATTN: Mr. A. P. Thompson

Yardney Laboratories, Inc.
40-46 Leonard Street
New York 13, New York (1)

Mr. L. E. Wells,
Vice-President of Engineering,
Exide Industrial Division,
Post Office Box 5723
Philadelphia 20, Pennsylvania (1)

Mr. A. J. Snyder,
Patent Attorney,
Corporate Division,
Post Office Box 8109
Philadelphia 2, Pennsylvania (1)

Dr. Ralph A. Schaeffer,
Carl F. Norberg Research Center,
Yardley, Pennsylvania (1)

Mr. Harry Mason,
Ray-O-Vac,
212 E. Washington Avenue,
Madison 10, Wisconsin (1)

Mr. G. S. Hartman,
Assistant General Manager
Raleigh, North Carolina (1)

Mr. L. C. Moore,
Manager of Engineering,
Raleigh, North Carolina (1)

Mr. W. H. Ashford, Jr.,
General Sales Manager,
Raleigh, North Carolina (1)