AD NUMBER

AD231936

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to DoD only; Administrative/Operational Use; 10 NOV 1959. Other requests shall be referred to Office of Naval Research, 875 North Randolph Street, Arlington, VA 22203. Pre-dates formal DoD distribution statements. Treat as DoD only.

AUTHORITY
ONR ltr dtd 15 Jun 1977

THIS PAGE IS UNCLASSIFIED
THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.
Minimum Variance Unbiased Estimates

Generalization of Thompson's Distribution

Random Orthonormal Bases

By

Andre G. Laurent

TECHNICAL REPORT NO. 5

November 10, 1959

CONTRACT NONR - 2575(00)
(NR-042-201)
for
Office of Naval Research

REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR
ANY PURPOSE OF THE UNITED STATES GOVERNMENT

DEPARTMENT OF MATHEMATICS
WAYNE STATE UNIVERSITY
Detroit 2, Michigan
Minimum Variance Unbiased Estimates.

Generalization of Thompson's Distribution.

Random Orthonormal Bases.

by Andre G. Laurent

Department of Mathematics
Wayne State University

1.0 Let X_1, \ldots, X_N be a sample of N independent observations with a normal distribution $N(m, \sigma^2)$. In 1935, W. R. Thompson has obtained the probability distribution of an observation X_i chosen at random in the sample, when the mean m and the standard deviation σ are replaced by the corresponding sample characteristics \cite{1}; namely

$$\frac{(X_i - \bar{X})^2}{(N-1)S^2}$$

follows an incomplete beta distribution with parameters $1/2$ and $(N/2)-1$.

This result has been generalized in several directions, in \cite{2}; the distribution of a sample is given after its being centered and studentized by means of the mean and standard deviation of an independent sample; the distribution of a subsample is derived when m and σ are replaced by the corresponding sample characteristics, and the conditional distribution of a subsample is obtained given \bar{X} and S.

Further generalizations have been presented in \cite{3} where the results just mentioned are extended to the case of the multivariate normal distribution. Applications to Bombing Theory were proposed in \cite{4}.
Let \((\xi) = (\xi_1, \ldots, \xi_k)\) with \(\xi_1 = (X_1, \ldots, X_i, \ldots, X_p)\) be a subset of observations from a set of \(N\) independent observations \((X) = (X_1, \ldots, X_j, \ldots, X_N) = (X_j)\) with the same \(p\)-variate normal distribution \(N(m, \Sigma)\); let \(m^*\) and \(S\) be the vector mean and covariance matrix of the subset \((\xi)\). The distribution of \(\xi\) given \(m^*\) and \(S\) for \(k < N-p\) is

\[
\Phi(\xi \mid m^*, S) = c \cdot \left| I - \frac{k}{N(k-k)} S^{-1} S_* \right|^{(N-k-p-2)/2} \frac{1}{S/2}
\]

in the domain where the determinants are positive, with

\[
S_* = (m_* - m^*)'(m_* - m^*)
\]

and

\[
c = \prod_{i=1}^{N-p} \left[(N-k) S_{ij} \right]^{(N-k-i)/2} \left[(N-k-p) S_{ij} \right]^{(N-k-p-2)/2}
\]

This result was given in [3].

2.1 In view of the completeness of \(m^*S\), it results from Blackwell's theorem that

\[
\int \ldots \int \psi(\xi) \Phi(\xi \mid m^*, S) d\xi
\]

will provide a uniformly minimum variance unbiased estimate of \(E[\psi(\xi)]\) if it exists.

As a special application, if

\[
g(A, m, \xi) = \int_A \ldots \int_N(m, \xi) dX,
\]

a minimum variance unbiased estimate of \(g(A, m, \xi)\) will be given by

\[
\int_A \ldots \int \Phi(\xi \mid m^*, S) d\xi \text{ with } k = 1,
\]

since an unbiased estimate of \(g(A, m, \xi)\) is provided by the characteristic function \(1_A(\xi)\) of the set \(A\) whose conditional expected value is given by the integral above. Further, in view of the fact that summation keeps unbiasedness, the minimum variance unbiased estimate of the density \(N(m, \xi)\) is \(\Phi(\xi \mid m^*S)\).
The already established results for the univariate distribution can be obtained by considering it as a special case of the multivariate situation.

2.2 The conditional probability distribution of \(m^*, S \) given \(m^*, S \) is obtained by writing the joint distribution of the mean \(m_n^* \) and covariance matrix \(S_n \) of a sample of size \(n = N-k \) and of \(m^*_n \) and \(S_n \), then performing the change of variable

\[
m^*_n = Nm^*/n - km^*_n/n
\]

\[
S_n = NS/n - kS^*_n/n - S^*_kl/n^2
\]

subsequently dividing by the distribution of \(S \).

\(m^*_n \) is \(\mathcal{N}(m, \frac{S}{n}) \) distributed, \(S_n \) is \(\mathcal{W}(\frac{S}{n}, n-1) \) distributed, the Jacobian of the change of variables is

\[
\frac{D(m^*_n, S_n)}{D(m^*, S)} = \frac{(n/n)^{p+3}(p+3)/2}{D(m^*, S)}
\]

\(m^* \) is \(\mathcal{N}(m, \frac{S}{n}) \) distributed, \(S \) is \(\mathcal{W}(\frac{S}{n}, n-1) \) distributed.

After grouping terms, one obtains for \(p \leq k \leq N-p \)

\[
f(m^*_n, S_n \mid m^*, S)dm^*_n dS_n = C \left| I - \frac{k}{N} S^{-1} S^* \right|^{-1} \left| S^{-1} S^* \right|^{-\frac{k-p-2}{2}} \left| S^{-1} S^* \right|^{-\frac{k-p-2}{2}} dS^*_n / \left| S^{-1} S^* \right|^{\frac{p+1}{2}}
\]

where

\[
C = \left[\frac{k}{(N-k)N^{k-1}} \right]^{p/2} \left[\prod_{j=0}^{p} \frac{(p+1)/4}{\Gamma[p/2]} \right] \frac{\Gamma[p]}{\Gamma[p/2] \Gamma[N-j/2] \Gamma[(k-j)/2]}
\]

in the domain where the determinants are positive.

2.3 In view of the completeness of \(m^*, S \), the kernel

\[
f(m^*_n, S_n \mid m^*, S)
\]

is of great interest.

If \(\Phi_n(m^*_n, S_n) \) is an unbiased estimate of a function \(g(m, \frac{S}{n}) \) of the parameters, then, as a consequence of the uniqueness of
minimum variance unbiased linear estimates in case of completeness
\[p_N(m^*, S) = \int \ldots \int p_K(m^*_\xi, S_\xi) p(m^*_\xi, S_\xi | m^*, S) dm^*_\xi dS_\xi \]
i.e. minimum variance unbiased linear estimates are a subclass of
the solutions of this integral equation which defines a multivariate
transformation.

3.0 In case X is normally distributed N(0, \sigma^2), univariate situa-
tion, or N(0, \Sigma), multivariate situation, other generalizations are
of interest.

3.1 In the univariate case, let X be a set of N observations
\[S_1 \ldots S_N \]
with probability distribution N(0, \sigma^2), the conditional
distribution of a subsample \(\xi \) of k items drawn from X at random,
given the moment of order two \(m_2(X) \) of the set X, is obtained by
writing the joint distribution of the moment of order two, \(m_2(X_n) \)
of a sample \(X_n \) of size \(n = N-k \) and of an independent sample \(\xi \) of
k items, performing the change of variables
\[m_2(X_n) = \left(\frac{n}{N} \right) m_2(X) - \left(\frac{k}{n} \right) m_2(\xi) \]
whose Jacobian is \(N/n \), then dividing by the distribution of \(m_2(X) \), one obtains with \(\xi = (X_1 \ldots X_k), k < N \)
\[f(\xi | m_2(X)) d\xi = \frac{\Gamma(N/2)}{\pi^{k/2} \Gamma[(N-k)/2]} \left[1 - \left(\frac{k}{N} \right) \frac{m_2(\xi)}{m_2(X)} \right]^{(N-k-2)/2} \frac{d\xi}{[Nm_2(X)]^{k/2}} \]
in the domain where the bracket is positive.
if \(\xi = \xi / \sqrt{m_2(X)} \), one obtains
\[
\frac{1}{\pi^{N/2}} \int_{-(N-k)/2}^{(N/2)} \frac{1}{\sqrt{N}} \left(1 - \frac{z^2}{N} \right)^{(N-k-2)/2} \left(\frac{z}{\sqrt{N}} \right)^{k/2} (dz) \\
\Rightarrow \text{i.e. the distribution of a subsample normalized by } \sqrt{m_2}(X) \text{ is dependent from } m_2^i.
\]

Also, in case \(k = N-1 \), \(u = \frac{t}{\sqrt{N}m_2}(X) \), \(u_1 \ldots u_{N-1} \) are \(N-1 \) independent coordinates of a \(N \) dimensional unit vector, and one has
\[
\left[\frac{\Gamma(N/2)}{\pi^{N/2}} \right] (1 - uu') \, du \quad uu' \leq 1.
\]
The distribution of any coordinate \(u_i \) being
\[
\frac{1}{3} \frac{1}{\left(\frac{N-1}{2} \right)} \frac{(N-3)/2}{(1-u_i^2)} \, du_i \quad u_i^2 \leq 1
\]
(if \(N = 3 \) one obtains a rectangular distribution).

Clearly, the quantity \(v = \sqrt{N-1} u_i / \sqrt{1-u_i^2} \) is Student distributed with \(N-1 \) degrees of freedom.

\(u_i \) is the cosine of the angle \(\psi_i \) of the unit vector with any direction, \(u_i = \cos \psi_i \) and \(v = \sqrt{n-1} \cos \psi_i \).

3.2

This result can be slightly generalized to the case of a spherical distribution.

Let \(X = (X_1, \ldots, X_n) \) have probability distribution \(f(X)dx \), let \(R^2 = XX' \), let \(f(X)dx \) be spherical, i.e. \(f(X) = h(XX') \), then \(R^2 \) is a sufficient statistic for \(f(X)dx \)
\[
f(X)dx = h(R^2)dx = h(R^2)R^{n-1}dRd\Sigma_{n,1} \quad (\Sigma_{n,1} = \text{the area of the unit sphere in the } n \text{ dimensional space}); \text{ integrating out } d\Sigma_{n,1}, \text{ one obtains } \Sigma_{n,1} h(R^2)R^{n-1}dR \text{ as the probability distribution of } R, \text{ a well known result.}
More explicitly, using polar coordinates

\[X_1 = R \cos \psi \]

\[X_{n-1} = R \sin \psi_1 \sin \psi_2 \cdots \sin \psi_{n-2} \cos \psi_{n-1} \]

\[X_n = R \sin \psi_1 \cdots \sin \psi_{n-2} \sin \psi_{n-1} \]

\(\psi_i \) in \((0, \pi)\) if \(i < n-1\), \(\psi_i\) in \((0, 2\pi)\) if \(i = n-1\)

\[dX = JdR \prod_{i=1}^{n-1} d\psi_i \]

where

\[J = [D(x)/D(R, \psi)] = R^{n-1} \sin^{n-2} \psi_1 \cdots \sin \psi_{n-2} \]

and

\[\sum_{n_i} \frac{\sin^{n-2} \psi_1 \cdots \sin \psi_{n-2} d\psi_1 \cdots d\psi_{n-1}}{dX_1 \cdots dX_{n-1}/|X_n| R^{n-2}} = JdR/R^{n-1} \]

hence, the conditional distribution of \(X \) given \(R^2 \) is

\[\frac{d \sum_{n_i}}{\sum_{n_i}} = \frac{\Gamma((n/2))}{\pi^{n/2}} \frac{\sin^{n-2} \psi_1 \cdots \sin \psi_{n-2} d\psi_1 \cdots d\psi_{n-1}}{2 \pi} \]

it is the distribution of the independent polar coordinates of a unit vector equidistributed on the unit sphere. In terms of the \(X_i \)'s and \(u_i \)'s, this gives (taking into account both signs of \(X_n \)),

\[\frac{\Gamma((n/2))}{\pi^{n/2}} \frac{dX_1 \cdots dX_{n-1}}{|X_n| R^{n-2}} = \frac{\Gamma((n/2))}{\pi^{n/2}} (I - uu^t)^{-1/2} du \]

Consequently the distribution of any subsample is the one given in paragraph 3.1.

This shows that "Thompson's distribution depends only on the sphericity of the universe. If we consider a random unit vector, with fixed origin, "chosen at random" in the \(n \) space i.e., with a probability distribution invariant under the rotation group, we see that we can construct such a vector by normalizing a vector whose distribution is spherical."
Let us consider a set \((X)\) of independent \(N\) observations of a \(p\)-dimensional vector with distribution \(N(\mu, \Sigma)\), \((X) = (X_1, \ldots, X_N) = (X_1^T, \ldots, X_N^T)\), \(X^j = (X_1^j, \ldots, X_N^j)\).

Let \((\xi)\) be a subset of \(K\) observations. Let \(S\) and \(S^*_n\) be the maximum likelihood estimates of \(\bar{\xi}\) obtained respectively with \((X)\) and \((\xi)\). The distribution of \((\bar{S})\) given the sufficient statistic \(S\), is obtained by writing the joint distribution of \((\bar{S})\) and the maximum likelihood estimate \(S_n\) of \(\bar{\xi}\) obtained with a sample of \(n = N-k\) observations, making the change of variables

\[
S_n = (N/n) S - (k/n)S^*_n
\]

and dividing by the distribution of \(S\). One obtains

\[
\frac{1}{C} \left| \frac{(N-k-p-1)/2}{(N-k-p-1)/2} \right| ^{k/2} d\bar{S} / |S|^{k/2}
\]

with

\[
C = \frac{\prod_{j=1}^{k} \left(\frac{(N-k-1-j)/2}{(N-k-1-j)/2} \right) \left(\frac{p}{N} \right)^{pk/2}}{\prod_{j=1}^{k} \left(\frac{(N-p-k-1-j)/2}{(N-p-k-1-j)/2} \right) ^{k/2}}
\]

valid for \(p \leq N-k\), in the domain where the determinants are positive.

Now \(kS = \xi' = \xi'_1 + \cdots + \xi'_K\)

so that

\[
\left| I - \frac{(k/N)S^{-1}S^*_n}{S^*_n} \right| = \left| I - \frac{(S^{-1}/N) \sum_{j=1}^{k} \xi'_j \xi_j}{S^*_n} \right| = \left| NS^{-1} \right| \sum_{j=1}^{k} \xi'_j \xi_j
\]

there exists a unique triangular matrix \(T\) with positive diagonal such that \(NS = X'X = T T'\) then

\[
\left| I - \frac{(k/N)S^{-1}S^*_n}{S^*_n} \right| = \left| T^{-1} \right| \left| S - \sum \xi'_j \xi_j \right| = \left| T^{-1} \right| \left| \sum \xi'_j \xi_j \right| = \left| \sum \eta'_j \eta_j \right|
\]

if \(\eta'_j = T^{-1} \xi'_j\), \(\eta_j = \xi_j T'\), then

\[
\left| \sum \eta'_j \eta_j \right|
\]
Now, it is known that
\[
I - \sum \gamma_j \gamma_j = \begin{bmatrix} \theta_{i\ell} - \gamma_i \gamma \end{bmatrix}
\]
so that
\[
I - (k/N)S^{-1} S_x = \begin{bmatrix} \theta_{i\ell} - \xi_i T_{ri}^{-1} T_{ri}^{-1} \xi_i' \end{bmatrix} = \begin{bmatrix} \theta_{i\ell} - \xi_i (S^{-1}/N) \xi_i' \end{bmatrix}
\]
\[
\int (\xi | S) d\xi = c. \begin{bmatrix} \theta_{i\ell} - \xi_i (S^{-1}/N) \xi_i' \end{bmatrix} (N-k-p-1)/2 \int d\xi / \begin{bmatrix} s \end{bmatrix}^{k/2}
\]
One can also work with the variables γ making the transformation
$\gamma = \xi T_{ri}^{-1}$, one obtains for the distribution of γ,
\[
C_1 \left| I - \gamma' \gamma \right| (N-k-p-1)/2 \int d\gamma
\]
since the Jacobian $D(\xi)/D(\gamma) = \begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} s \end{bmatrix}^{k/2}$,
$\gamma = \xi T_{ri}^{-1}$
is a procedure of studentization of the set ξ and generalizes the studentization by
\[R = \sqrt{\text{Nm}_2(X)} \] in the univariate case to the multivariate case.

In some problems the following remark is of interest.

Consider the orthogonal matrix 0 that diagonalizes (S^{-1}/N) into
Λ^{-1} say, then premultiplying and postmultiplying by 0^{-1} and 0 we have
\[
I - (k/N)S^{-1} S_x = I - \Lambda^{-1} \sum_{j=1}^{k} \xi_j \xi_j' 0 = I - \Lambda^{-1} \sum_{j=1}^{k} \xi_j \xi_j' 0
\]
where u_i is the vector of the coordinate of ξ_i w.r.t. to the system of coordinates constituted by the eigen vectors of (S^{-1}/N) i.e. of NS, (which is almost surely of rank p).

One can consider the normalization of these coordinates by
the roots $\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_p}$ of $\Lambda^{1/2}$, we get, in terms of the new variables V
and the corresponding normalization is

\[v = \frac{1}{2} S^{-1/2} \]

according to the usual definition of \(S^{1/2} \) (see, for instance, [13]).

3.5

The conditional distribution of \(S \) given \(S \) is obtained by writing the joint distribution of \(S \) and \(S_n \), making the change of variables indicated in 3.4 and dividing by the distribution of \(S \), one obtains

\[
\frac{f(S | S)}{S^{(p+1)/2}} = C \left| I - \frac{k}{N} S \right|^{(N-k-p-1)/2} \left| S \right|^{(k-p-1)/2}
\]

with

\[
C = \left(\frac{k}{N} \right)^{p^2/2} \frac{1}{(p+1)!^{N-k-p-1}} \frac{\prod_{j=1}^{p} \Gamma[(N+1-j)/2]}{\prod_{j=1}^{p} \Gamma[(k-j)/2] \prod_{j=1}^{p} \Gamma[(N-k-j)/2]}
\]

\(p \leq k \leq N-p \), in the domain where the determinants are positive.

In terms of \(\eta \) one obtains

\[
C \left| I - \eta \eta \right|^{(N-k-p-1)/2} \left| \eta \right|^{(k-p-1)/2}
\]

since the Jacobian of the transformations from \(S \) to \(\eta \) is \(|T|^{-p^2} = |S|^{(p-1)/2} \). This is a generalization of the incomplete beta distribution.

3.6

The results in 3.4 and 3.5 can be generalized to the case of a probability distribution which depends on the set \(X \) through

\[
X = NS, \text{ i.e.,} \quad f(X)dX = h(X)dX
\]
Then $X'X$ is a sufficient statistic for the distribution. It has been shown by Hsu that the probability distribution of $X'X = NS$, under such circumstances, is

$$g(X'X)dx'x = \frac{\pi^{np/2} - (p-1)/4}{\prod_{j=1}^{p} p(N-j+1)/2} \left| X'X \right|^{(N-p-1)/2} h(X'X)dx'x \quad [9]$$

It is well known that there exists a unique triangular matrix T with positive diagonal such that $X'X = TT'$ and that the transformation $X = YT'$ defines the so-called "rectangular coordinates" T [8]. To a considerable extent, what follows overlaps the theory of rectangular coordinates, though the approach is somewhat different.

3.6.1 The vectors $(X_1, \ldots, X_j, \ldots X_p)$, span a space that is almost surely p-dimensional. We want to construct an orthonormal basis $(Y_1, \ldots, Y_j, \ldots Y_p)$ in that space. This can be done by use of the Schmidt's orthogonalization process, starting with X_1.

$$(X_1, \ldots, X_j, \ldots X_p) = U(Y_1, \ldots, Y_j, \ldots Y_p)$$

where U is an upper triangular operator (i.e., in the system (Y_1, \ldots, Y_p), u is represented by an upper triangular matrix with positive diagonal.)

Now $X'X = NS = ((X_iX_j)) = ((UY_iUY_j)) = ((Y_iU'UY_j))$ i.e., the i,j element of $U'U$ matrix of $U'U$ with respect to (Y_1, \ldots, Y_p) is the i,j element of NS that is $U'U = TT'$ and from the uniqueness of the factorization $U = T'$; consequently $X = YT'$

Y has orthogonal columns and $Y'Y = I_p$.

$$X_j = \sum_{i=1}^{p} t_{ij} Y_i + \ldots + t_{jj} Y_j$$
X involves np free random variables, Y, np-p(p+1)/2 as orthogonal and T, p(p+1)/2 as triangular.

Y = X T^{-1} is a random orthonormal basis.

Now

\[f(X)dx = h(x^*x) \prod_j dx^j \]

Let us study

\[\prod_j dx^j \ldots dx^j_N = \prod_j dx^j \]

One has \(X^j = (t^j_1 Y^1 + \ldots + t^j_{j-1} Y^j_{j-1}) + t^j_j Y^j \)

Consider the \(j-1 \) dimensional space spanned by \(Y^1, \ldots, Y^j \) and complete that basis by an orthonormal basis in the \(N-j+1 \) dimensional complementary space; \(t^j_j Y^j \) is the projection of \(X^j \) in that space where its coordinates are \(X^j_1, \ldots, X^j_N \) say. In the new \(N \) dimensional basis \(X^j \) has coordinates \(t^j_1, \ldots, t^j_{j-1} X^j_{j-1} X^j_N \) and since one passes from the old basis to the new basis by a rotation one has

\[dx^j = dt^j_1 \ldots dt^j_{j-1} dx^j_{j-1} \ldots dx^j_N \]

Using polar coordinates in the \(N-j+1 \) complementary space we have

\[dx^j_{j-1} \ldots dx^j_N = t^{N-j}_{j} jt^{j} dt^{j} d \sum_{N-j+1} \]

where \(d \sum_{N-j+1} \) denotes the elementary area of the unit sphere in the \(N-j+1 \) dimensional space.

Therefore,

\[dX = dt^* \prod_j t^j_{j} d \sum_{N-j+1} \]

and since \(dt^* = 2^{-p} \prod_j t^j_{j} dt^{j} dX^j \) and \(\prod_j t^j_{j} = |T| \), one has

\[dX = 2^{-p} |X^*X|^{(N-p-1)/2} \prod_j d \sum_{N-j+1} dx^j_{j} \]
\[d \sum_{N-j+1} \] symbolizes a differential expression involving \(N-j \) angles functionally independent [i.e. \(Np-p(p+1) \) variables for all \(j \) from 1 to \(p \)].

\[f(X)dx = h(X^tX)^{2-p} x^tX^{(N-p-1)/2} \prod_j d \sum_{N-j+1} dX^tX \]

Integrating the angles out, one obtains \(g(X^tX) dX^tX \), mentioned above, so that the conditional distribution of \(X \) given \(X^tX \) is

\[f(X|X^tX)dx = \prod_j d \sum_{N-j+1} \]

when expressed in function of the angular coordinates of the polar systems of coordinates.

\[d \sum_{N-j+1} \]

\[\sum_{N-j+1} \]

is the distribution of a unit vector \(Y^j \) equidistributed on the unit sphere of the \(N-j+1 \) dimensional space.

The distribution of \(X \) given \(X^tX \) is independent from the nature of \(f \), therefore, all the results of 3.4 and 3.5 are valid without the assumption of normality, it is enough that \(f(X) = h(X^tX) \).

Making the change of variables \(X = YT \) and integrating out \(T \), we obtain the distribution above, (since \(T \) and \(X^tX \) are equivalent as sufficient statistics), i.e. the \(Y \) have the distribution

\[\prod_j d \sum_{N-j+1} \sum_{N-j+1} \]

more specifically, the random basis \((Y_1, ..., Y_p) \) is constituted with unit vectors \(Y^j \) that are uniformly distributed, given \(Y_1, ..., Y_{j-1} \), on the unit sphere of the \(N-j+1 \) dimensional space and the distribution of \(Y \) is the same as that of \(X \) given \(X^tX = 1 \).
\(Y = X^{*+1} \) can be considered as a studentization or normalization of \(X \) generalizing the normalization by \(\sqrt{\text{Nm}_2(X)} \) in the univariate situation. One can write

\[
\prod_j \frac{d\sum_{N-j+1}}{\sum_{N-j+1}} = \prod_j \frac{\Gamma[(N-j+1)/2]d\sum_{N-j+1}}{2^p \prod_{N-p-(p+1)/4}}
\]

\(Y_j \) has coordinates \(Y_j^{\star \star} \ldots Y_N^{\star \star} \) with respect to any orthonormal basis spanning the \(N-J+1 \) space it belongs to, and the distribution of those is

\[
\prod_j \frac{[(N-j+1)/2]dY_j^{\star \star} \ldots dY_N^{\star \star}}{(N-j+1)/2 \left[1-(Y_j^{\star \star 2} + \ldots + Y_N^{\star \star 2})\right]^{1/2}}
\]

\[
= \frac{2\prod_j [(N-j+1)/2]dY_j^{\star \star} \ldots dY_N^{\star \star}}{(N-j+1)/2 \left|Y_N^\star\right|}
\]

(\(Y_j^\star \) can take two values when the other dependent coordinates of \(Y_j^N \) are fixed.)

3.6.2 To obtain the distribution of \(X \) given \(X'X \) as an explicit function of the \(X_j^i \) or the \(Y_j^1 \), one ought to pass from the \(Y^\star \) to the \(Y \), choosing \(Np-p(p+1) \) functionally independent \(Y_j^1 \), then, if needed, come back to \(X \), through \(X = YT \); only \(NP-p(p+1)/2 \) \(X_j^i \) are functionally independent, given \(X'X \). As a matter of fact, only \(N-J \) coordinates of \(X_j \) are independent, given \(X'X \); this, in view of the fact that \(T \) is triangular and that only \(N-J \) coordinates of \(Y_j \) are independent. This shows that it is possible to get the
distribution of a subsample of \(k \) observations \(\xi \), given \(X'X \), only if the minimum of \(N-j \), namely \(N-p \), is at most equal to \(k \). As an explicit function of the independent \(Y_i^j \) (that we will denote as \(Y^* \)) the probability distribution of \(Y \), i.e. of \(Y^* \) is

\[
\frac{2^p D(\sum N_i \ldots, \sum N-p+1)}{D(\hat{Y}^*)} \prod \frac{dY_i^j}{\sum N-j+1}
\]

To obtain the Jacobian, one can refer to [10] where it is shown that the Jacobian \(D(X)/D(T,Y^*) \) of the change of variables \(X = YT \) is given by

\[
\frac{D(X)}{D(T,Y^*)} = \frac{D(X,Y^*)}{D(T,Y)} \cdot \frac{D(Y^*)}{D(Y^{**})}
\]

(where \(Y^{**} \) denotes the set of dependent \(Y_i^j \))

Now, \(\frac{D(X,Y^*)}{D(T,Y)} = 2^p \frac{\prod_{i=1}^{N-p+1} t_i}{\prod_{i=1}^{N-j+1} t_i} \) see [10]

and \(\frac{D(T)}{D(X'X)} = 2^{-p} \frac{\prod_{i=1}^{N-p+1} t_i}{\prod_{i=1}^{N-j+1} t_i} \)

so that

\[
\int (X^*) dX = h(X^*) \left| X^\prime X \right|^{(N-p-1)/2} dX^\prime X \frac{D(Y^{**})}{D(Y^*)} dY^*
\]

\[
\frac{D(\sum N_i \ldots, \sum N-p+1)}{D(\hat{Y}^* \ldots, D(\sum N-j+1)} = \frac{D(Y^{**})}{D(Y^*)}
\]

the distribution of \(Y^{**} \) is
where the general element of Y^*Y is $\sum_{i=1}^{N} Y_h Y_j$ and of Y^{**} is Y_{N-k+1}^ℓ for $k \leq \ell$ and 0 for $k > \ell$.

3.6.3 In case $N = p$, one can also use Cayley’s parametric representation of Y.

If $\begin{vmatrix} I+Y \end{vmatrix} \neq 0$, i.e., if Y is non-exceptional, then there exists a skew-symmetric matrix S such that

$$Y = (I+S)^{-1}(I-S) = (I-S)/(I+S)$$

$$S = (Y-I)(I+Y)^{-1} = (I+Y)^{-1}(I-Y) = (I-Y)/(I+Y),$$

S non-exceptional since skew symmetric.

If $\begin{vmatrix} I+Y \end{vmatrix} = 0$, i.e., if Y is exceptional, then it is known that if one defines a sequence $\{J_r\}$ of diagonal matrices

$$(\pm 1, \ldots, \pm 1)$$

$J_1 = (1, \ldots, 1)$

$J_2 = (-1, 1, \ldots, 1)$

$J_3 = (-1, -1, 1, \ldots, 1)$

in such a way that J_r differs from J_{r-1} by changing the sign of only one diagonal element and if M_r is that set of matrices Y such that

$$\begin{vmatrix} Y+I \end{vmatrix} = 0$$

$$\begin{vmatrix} J_2Y+I \end{vmatrix} = 0$$

$$\begin{vmatrix} J_{r-1}Y+I \end{vmatrix} = 0$$

$$\begin{vmatrix} J_rY+I \end{vmatrix} = 0$$

the set of exceptional matrices is $\bigcup_{r>1} M_r$ and Cayley’s represen-
A formulation for such a matrix is
\[Y = \begin{pmatrix} I - S \end{pmatrix} / (I + S), \quad S = (I - J_r Y) / (I + J_r Y) \]
for some \(r > 1 \).

Let us, then, partition the space of \(X \) into the sets \(X^* \) and \(X^{**} \) such that, respectively,
\[X^* = Y^* T^*, \quad Y^* \text{ non-exceptional} \]
and \(X^{**} = Y^{**} T^{**}, \quad Y^{**} \text{ exceptional} \),
one has
\[\frac{p}{p} (X^*) dX^* = h(X^{**} X^*) dX^{**} \]
Let us make the change of variables
\[X^* = \left[(I - S^*) / (I + S^*) \right] T^* \]
whose Jacobian, after Hsu [11] is
\[D(X^*) / D(Y^* S^*) = \prod_{i=1}^{p-1} 2^{p(p-1)/2} \left| I + S^* \right|^{-(p-1)} \]
then
\[dX^* = 2^{-p} p^{p-1} / 2 \left| X^* X^* \right|^{-(p-1)} dX^{**} \]
hence, the distribution of \(S^* \) given \(X^* X^* \) is independent from \(X^{**} \), and given by
\[K dS^* / \left| I + S^* \right|^{p-1} \quad \text{with } K = \int_{M_1} dS^* / \left| I + S^* \right|^{p-1} \]
\(K \) is given in [12] as \(2^{-p} (p-2)(p-1)/2 \prod_{i=1}^{p-1} K^{p-1} / K^{(p-1)/2} \)

In case \(Y \) is exceptional, one makes the transformation
\[X^{**} = J_r \left[(I - S^{**}) / I + S^{**} \right] T^{**} \text{ when } Y^{**} \in M_r \]
It results from [12] that \(M_2 \) has same measure as \(M_1 \) and \(M_r \) has
measure zero if \(r > 2 \). Considering only the set \(M_2 \) we will have
\[dX^{**} = 2^{-p} p^{p-1} / 2 \left| X^{**} X^{**} \right|^{-(p-1)} dX^{**} \]
and the distribution of \(S^{**} \) given \(X^{**} X^{**} \) is the same as that of \(S^* \) given \(X^* X^* \).
Given the proper definition of $S=S^*$ on M_1, $S=S^{**}$ on M_2 we will have:

$$\rho(X)dx = 2^{-p_p(p+1)/2} h(X'X)(X'X)^{-1/2} \sqrt{I+S}^{-(p-1)} dx' xds$$

and given $X'X$, S has distribution

$$[(2^{p+1/2})/(\prod_{p-j+1}^{p-j+1})] ds/\sqrt{I+S}^{p-1} \text{ i.e.}$$

$$\sum_{p=1}^{p+1} [((p-j+1)/2)2^{(p-1)(p-2)/2-1} \sqrt{I+S}^{-(p-1)} ds$$

3.7 Consider the space defined by all X given $X'X$, if G is a group operating transitively on $X|X'X$, there exists at most one probability measure on that space that is invariant under G.

If we consider the group G of orthogonal matrices $O_{n,n}$ operating on X, $X'=OX$, it is geometrically obvious that G operates transitively on $X|X'X$, on the other hand, it is straightforward that the conditional distribution of X given $X'X$ is invariant under G since $(OX)'(OX) = X'X$, therefore it is the unique distribution on $X|X'X$ invariant under G.

Suppose now we want to "pick at random" a p dimensional orthonormal basis in the N dimensional space; by this is meant choosing X such that $X'X = I$ and that the probability distribution of X be invariant under the orthogonal group; it suffices to take X with probability distribution $\rho(X)dx = g(X'X)dx$ and normalize by $X = YT'$, Y will be the basis desired. To construct such a basis, one can take X_1, \ldots, X_p and use the Schmidt's orthogonalization process. Alternatively, one sees that one can choose at random a unit vector Y_1 in the N dimensional space, then a random unit vector Y_2 in the space complement to Y_1, and so on; at the jth step, one takes a random unit vector Y_j in the space complement to that spanned by $Y_1 \ldots Y_{j-1}$. By random unit vector is meant a vector that is equidistributed on the unit sphere of the $N-j+1$ dimensional space.
3.8 From 3.5 we see that, in case \(f(x)dx = h(x^TX)dx \), a minimum variance unbiased estimate of a function of the parameters, if it exists and except for a condition of completeness on \(S \), will have to be found among the solutions of the integral equation

\[
\Psi_N(S) = \int \ldots \int \varphi_K(S) \frac{f(S)}{S} ds
\]

4.0 Further generalizations of Thompson's distributions can be tried in several directions.

4.1 One can try to obtain the conditional distribution of a sub-sample \(\xi \) of a sample \(X \) with probability distribution \(f(x)dx \), given the mean \(\bar{x} \) and the variance \(s^2 \) of the sample, in the general case, when \(f(x) \) is not spherical. This is possible when one has the probability distribution of the couple of statistics \(x, s^2 \) for a sample of any size; references [5], [6], [7] deal with the derivation of such a distribution.

One writes the joint distribution of \(\xi = (\xi_1 \ldots \xi_K) \) and of the variance and mean \(S_n^2, \bar{x}_n \) of an independent sample of size \(n = N-k \), (where \(N \) is the size of \(X \), makes the change of variables, (as shown in [2]),

\[
\bar{x}_n = \bar{x} N/(N-k) - \bar{\xi}/k/(N-k)
\]

\[
S_n^2 = S^2 N/(N-k) - (\bar{\xi} - \bar{x})^2/k^2(N-k)^2 - (\bar{\xi} - X)^2/(N-k)
\]

whose Jacobian is \((N/N-k)^2 \) and divides by the distribution of \(\bar{x}, S^2 \).

If \(\gamma_n(\bar{x}_n, S_n^2) \) is the probability density of \(\bar{x}_n, S_n^2 \) one has
\[\mathbf{f}(\xi | \mathbf{x}, \mathbf{s}^2) = \left(\frac{\mathbf{Y}_n(\mathbf{x}, \xi, \mathbf{s}^2_n)}{\mathbf{Y}_n(\mathbf{x}, \mathbf{s}^2)} \right) \left(\frac{\mathbf{s}^2_n(\mathbf{x}, \mathbf{s}^2_n, \xi, \mathbf{s}^2_n)}{(\mathbf{N}/\mathbf{N}-\mathbf{k})^2} \right) \mathbf{f}(\xi) d\xi \]

over the proper domain (namely \(\mathbf{s}^2_n > 0 \)) and the recurrence formula

\[\mathbf{Y}_n(\mathbf{x}, \mathbf{s}^2) = \int \cdots \int \mathbf{Y}_n(\mathbf{x}, \xi, \mathbf{s}^2_n, \mathbf{s}^2_n) \mathbf{f}(\xi)(\mathbf{N}/\mathbf{N}-\mathbf{k})^2 d\xi \]

where the summation is performed over the proper domain.

This formula may be useful when \(\mathbf{Y}_n \) can be obtained directly without too much difficulty for small \(\mathbf{n} \).

In case \(\mathbf{n}=2 \) one will perform the rotation

\[\mathbf{y}_1 = (\mathbf{x}_1-\mathbf{x}_2)/\sqrt{2} \]
\[\mathbf{y}_2 = (\mathbf{x}_1+\mathbf{x}_2)/\sqrt{2} = \sqrt{2}\mathbf{x} \]
\[\mathbf{x}_1 = (\mathbf{y}_1+\mathbf{y}_2)/\sqrt{2} \]
\[\mathbf{x}_2 = (\mathbf{y}_2-\mathbf{y}_1)/\sqrt{2} \]
\[\mathbf{x} = \mathbf{y}_2/\sqrt{2} \]
\[\mathbf{s}^2 = \mathbf{y}_1^2/2. \]

4.2 One can also be interested in the distribution of the studentized \(\xi \), namely \(t = (\xi - \bar{\mathbf{x}})/\mathbf{s}. \)

One writes the joint distribution of \(\mathbf{y} = (\xi_1, \ldots, \xi_k) \), and of \(\mathbf{s}^2_n, \mathbf{x}_n \), makes the change of variables \(t = (\xi - \mathbf{x}_n)/\mathbf{s}_n \) and integrates out \(\mathbf{x}_n, \mathbf{s}_n \); the density of \(t \) is

\[h(t) = \int \int \mathbf{Y}_n(\mathbf{x}_n, \mathbf{s}^2_n) \mathbf{f}(\mathbf{x}_n + \mathbf{t}s_n) \mathbf{s}_n^{\mathbf{k}} d\mathbf{x}_n d\mathbf{s}_n \]

then one makes the change of variables

\[t = (t + \mathbf{T}k/(\mathbf{N}-\mathbf{k})) \mathbf{S}/\mathbf{S}_n \]
\[= (t+\mathbf{T}k/(\mathbf{N}-\mathbf{k}))/\left[(\mathbf{N}/(\mathbf{N}-\mathbf{k})-\mathbf{T}k/(\mathbf{N}-\mathbf{k})^2-t^*t/(\mathbf{N}-\mathbf{k}) \right]^{1/2} \]
\[= [t + \mathbf{T}k/(\mathbf{N}-\mathbf{k})]/\left\{ (\mathbf{N}/(\mathbf{N}-\mathbf{k})-\mathbf{T}k/(\mathbf{N}-\mathbf{k})^2-\mathbf{S}_k/(\mathbf{N}+\mathbf{T}k/(\mathbf{N}-\mathbf{k})^2) \right\}^{1/2} \]
The Jacobian of the transformation is
\[
\frac{D(t)}{D(t')} = \left(\frac{(N-k)}{N} \right)^{(k-2)/2} \left\{ 1 - \left[\frac{T^2 k^2}{(N-k)} + t^* t' \right]/N \right\}^{-(k+2)/2} \\
= \left(\frac{(N-k)}{N} \right)^{(k-2)/2} \left[1 - \frac{T^2 k}{(N-k)} - S^2 k/N \right]^{-(k+2)/2}
\]

This can be shown as follows, let
\[
\ell = \left[I - t^* t - k^2 \frac{T^2}{(N-k)} \right] / (N-k) \\
\Phi = t + kT / (N-k)
\]
direct computations shows that
\[
\frac{D(t)}{D(t')} = \ell^{-3k/2} \left(\frac{(N-k)}{N} \right)^{-k} \left| \left(\frac{(N-k)}{N} \right) \Phi_{ij} + 1 \right| \ell + \Phi_{ij} \Phi_{ij}
\]
the determinant is that of the matrix
\[
\left(\frac{(N-k)}{N} \right) \ell \left(I + \frac{1}{(N-k)} \right) u^* u + \left[\frac{1}{(N-k)} \ell \right] \Psi^* \Psi
\]
where \(u \) is a row of one \(u = (1, \ldots, 1) \); it results from the identity
\[
\left| I + X_1 Y_1 + X_2 Y_2 \right| = \left| 1 + X_1' Y_1' \begin{array}{cc} X_2' & Y_2' \\ Y_1' & 1 + Y_2' X_2' \end{array} \right|
\]
that this determinant is
\[
\left(\frac{(N-k)}{N} \right)^k \ell^k \left[(1 + \Psi \Phi') (1 + k) - \frac{k^2 \Psi^2}{N-k} \right] \\
= (N-k)^{k-2} \ell^{k-1} N^k
\]
which gives the result above. Then, \(g(t) dt \) is easily obtained as
\[
g(t) = h(t) \frac{D(t)}{D(t')}
\]
In case \(k=1 \) this reduces to
Another line of generalization arises from the consideration of distributions admitting a sufficient statistic (scalar or vector). The problem is to find the conditional parameter free distribution of a subsample S of size k given the sufficient statistic obtained with a sample X of size N. Nothing very general can be said about this problem without making further assumptions.

In case the distribution of an individual observation belongs to Koopman's family, with one parameter) namely

$$\frac{P(X_i)dx_i}{P(X)} = \exp[g(\theta) + t(x_i)h(\theta) + \Psi(x_i)]dx_i, h_\theta \neq 0$$

a change of scale of the parameter in an interval where $h(\theta)$ is monotone gives

$$\frac{P(X_i)dx_i}{P(X)} = g(\theta) e^{t(X_i)\theta h(x_i)}$$

Then, it is well known that the characteristic function of the sufficient statistic $T(X) = \sum x_i t(x_i)$ is

$$\phi_{T(X)}(u) = [g(\theta)]^N/[g(\theta+iu)]^N$$

This is straightforward since

$$\int e^{iut(X)} \frac{P(X)}{P(X)} dX = g(\theta) = \int e^{t(x)\theta + \phi(x)} dx = g(\theta)/[g(\theta+iu)]$$
In any case, the probability distribution of $T(X)$ can be obtained by recurrence, using the classical convolution formulas. Under proper conditions of continuity and boundedness, \cite{14} and with obvious notations,

$$p_{n+k}(T_{n+k}) = \int p_k(T_{n+k} - T_k)p_n(T_n)dT_n$$

$$= \int p_n(T_{n+k} - T_k)p_k(T_k)dT_k$$

To obtain the distribution of a subsample ξ of size k given the sufficient statistic $T(X)$ of a sample X of size N, one gets the distribution of $T(\xi_1) \ldots T(\xi_k)$ given $T(X)$ and comes back to the original variable ξ. The characteristic function of $T(\xi_1) \ldots T(\xi_k)$ is $[g(\theta)]^k \prod_j g(\theta + iv_j)$, that of $T_{n-k} = T(X) - T(\xi)$ is $[\psi(\theta)/\psi(\theta + iv)]^{N-k}$ that of $T(\xi_1) \ldots T(\xi_k), T_{n-k}$ is $[g(\theta)]^N/[\psi(\theta + iv)]^{N-k} \prod_j g(\theta + iv_j)$, hence the characteristic function of $T(\xi_1) \ldots T(\xi_k), T(X)$ is

$$[g(\theta)]^N/[g(\theta + iv)]^{N-k} \prod_j g(\theta + iv_j)$$

since $E[e^{u_i T(\xi_1) + \cdots + u_k T(\xi_k) + v T(X)}]$

$$= E[e^{(u_i + v)T(\xi_1) + \cdots + (u_k + v)T(\xi_k) + v T_{n-k}}]$$
from which one gets the characteristic function of \(T(\xi_1, \ldots, \xi_k) \) given \(T(X) \) whose characteristic function is

\[
[g(\theta)/g(\theta+iv)]^N
\]

The result is

\[
\psi(u_1, \ldots, u_k)_{T(\xi_1, \ldots, \xi_k) | T(X)} = \frac{\int e^{-iN T(X)} [g(\theta+iv)]^k-N \prod_{j=1}^k (g[i(u_j+v)])^{-1} dv}{\int e^{-iN T(X)} [g(\theta+iv)]^{-N} dv}
\]

It is always possible to obtain the probability distribution of \(\xi \) given \(T(X) \) by writing the joint probability distribution of \(T(\xi_1, \ldots, \xi_k) \) and \(T_{N-k} = T(X) - T(\xi) \), making the change of variables \(T_{N-k} = T(X) - T(\xi) \) and dividing by the distribution of \(T(X) \). To obtain the distribution of \(T(\xi) \) given \(T(X) \) one writes the joint distribution of \(T(\xi) \) and \(T_{N-k} \), makes the change of variables \(T_{N-k} = T(X) - T(\xi) \) and divides by the distribution of \(T(X) \). If \(T = T(X) \) is complete and if \(\{\psi_n(T_n)\} \) is a sequence of unbiased estimates of a function \(g(\theta) \) of the parameter \(\theta \), then

\[
\psi_n(T) = \int \psi_k[T(\xi)] \frac{\rho(T(\xi))}{\int T(\xi) \rho(T(\xi))} dT(\xi)
\]

i.e., minimum variance unbiased estimates are to be found among the solutions of the integral equation above. Also,

\[
\int \ldots \int \psi(\xi) \frac{\rho(\xi)}{\rho(T)} d\xi
\]

will be an unbiased minimum variance estimate of \(E[\psi(\xi)] \) if it exists.
Since the characteristic function $I_A(X_1)$ of a set A is an unbiased estimate of
\[
\int_A \tilde{f}(X_1)dX_1
\]
the best estimate of this measure will be given by
\[
\int_A \tilde{f}(\xi_1 \mid T)d\xi_1
\]
and consequently the best estimate of $f(X_1)$ by $f(\xi_1 \mid T)$. The discrete case can be treated in a similar way.

4.4 In this paragraph, the straightforward technique mentioned above is applied to several important distributions.

a) Poisson's distribution.

In case
\[
P(X_1) = e^{-m_1 X_1}/X_1!
\]
$X_1 + \ldots + X_N = \bar{X}$ is a sufficient statistic, Poisson distributed and it is complete, one obtains
\[
P(\xi \mid \bar{X}) = \frac{(N\bar{X})^k}{k!} \frac{e^{-N\bar{X}}}{\prod_{i=1}^{k} \xi_i!} \frac{1}{\prod_{i=k+1}^{N} \xi_i!}
\]
on the domain $N\bar{X} - k \bar{\xi} > 0$

In case $k=N$, one obtains the well known result
\[
P(\xi \mid \bar{X}) = \frac{(N\bar{X})^k}{k!} \frac{e^{-N\bar{X}}}{\prod_{i=1}^{k} \xi_i!}
\]
the best estimate of $P(X_i \leq X)$ is
\[P(x_1 \leq x) = \sum_{i=1}^{N_X} \left[1 - \left(\frac{1}{N} \right) \frac{1}{(N-1)} \right] ^{N_X} \xi_1 ^{\left(\frac{N_X}{\xi_1} \right)}, x \leq N_X \]

also

\[P(\xi \mid X) = (k/N)^k \xi ^{\frac{N_X}{\xi}} \left[1 - (k/N) \right] ^{\frac{N_X}{\xi}}, N_X - k \xi \geq 0 \]

This is a Binomial distribution.

b) Gamma distribution \(\Gamma(a, h) \)

\[f(x_1) dx_1 = \left[a^h / \Gamma(h) \right] x_1 ^{h-1} e^{-ax_1} dx_1, \]

if \(h \) is known \(x \) is sufficient for \(a \), complete, and \(N_X \) is \(\Gamma(a, Nh) \) distributed, one obtains

\[f(\xi \mid X) d\xi = \frac{\Gamma[Nh]}{[\Gamma(h)]^k \Gamma[(N-k)h]} \prod_i \left(\frac{\xi_i / N_X}{\xi} \right) ^{h-1} \]

\[[1 - (\xi / Nh)(k/N)] ^{(N-k)h-1} d\xi / (N_X) ^k, \xi \leq N_X \]

i.e. the \(\xi_i / N_X \) are parameter free

the distribution of \(\xi \mid X \) is

\[f(\xi \mid X) d\xi = \frac{1}{B[kh, (N-k)h]} (\xi / N_X) ^{kh-1} \left(1 - \frac{\xi}{N_X} \right) ^{(N-k)h-1} d(k \xi / N_X) \]

i.e. \(k \xi / N_X \) is \(B[kh, (N-k)h] \) distributed.

The best estimate of \(P(X_1 \leq x) \) is, for \(x \leq N_X \),

\[\int_0^x \frac{1}{B[kh, (N-k)h]} (\xi / N_X) ^{h-1} \left(1 - \frac{\xi}{N_X} \right) ^{(N-k)h-1} d\xi / N_X \]

\[\xi_1 \leq N_X \]

b* In case \(h=1 \), \(\Gamma(a, h) \) is the exponential distribution, one obtains,

\[f(\xi \mid X) d\xi = \left[\Gamma(N) / \Gamma(N-k) \right] \cdot (1 - \frac{\xi}{N}) ^{N-k-1} d\xi / (N_X)^k \]
The best estimate of $P(X_i \leq x)$ is, for $n \leq N$,

$$
\int_0^x \left[\frac{1}{B(1,N-1)} \right] (1 - \frac{x}{N})^{N-2} d(\frac{x}{N}) \quad \frac{x}{N} \leq N
$$

b) The case of the so-called Weibull's distribution

$$
f_i(x_i)dx_i = \alpha x_i^{\alpha - 1} (px_i)^{\alpha} e^{-x_i^{\alpha}} dx_i
$$

for known α is not different from that of the exponential distribution except for a change of variable.

c) Binomial distribution

X_i is 0 with probability $1-p$ and 1 with probability p,

$X_1 = X_2 = \cdots = X_n$ is sufficient, complete and Binomial distributed.

$$
P(\xi \mid x^*) = \frac{\binom{N-k}{x^* - \xi}}{\binom{N}{x^*}}
$$

with $\xi^* = \xi_1 + \cdots + \xi_k$

$$
P(\xi^* \mid x^*) = \binom{k}{\xi^*} \binom{N-k}{x^* - \xi^*} \binom{N}{x^*}
$$

a hypergeometric distribution.

d) Multinomial distribution

$$
P(x^1, \ldots, x^m) = \frac{N!}{x^1! \cdots x^m!} p_1^{x^1} \cdots p_m^{x^m}, \quad x^1 + \cdots + x^m = N
$$

(x^1, \ldots, x^m) is a complete sufficient statistic X, $\xi = (\xi^1, \ldots, \xi^m)$
e) Rectangular distribution,
\[f(x_i)dx = \frac{dX_i}{\theta}, \quad 0 \leq x_i \leq \theta, \theta > 0 \]
The observations being ordered \(X(1) \leq \cdots \leq X(i) \leq \cdots \leq X(N) \),
\(X(N) \) is a sufficient and complete statistic.
One picks a set of \(k \) observations \(\xi(1) \cdots \xi(k) \).
The probability that
\[\xi(k) = X(N) \text{ is } k/N \text{ and that } \xi(k) \neq X(N) \text{ is } 1-(k/N). \]
\[f(\xi(k)|X(N))d\xi = k!(N-k)/N!d\xi/X(N) \quad 0 \leq \xi(k) \leq X_N \]
\[f(\xi(k)|X(N))d\xi = [(k(n-k))/N!(\xi(k)/X(N))^{k-1}]d\xi(k)/X(N) \quad 0 \leq \xi(k) \leq X_N \]

f) Epstein-Sobel's distribution
\[\rho(x_i)dx = e^{-\alpha(x_i-\theta)}dx_i, \quad x_i \geq \theta \]
\(X(1) \leq \cdots \leq X(i) \leq \cdots \leq X(N) \)
then \((X(1), \bar{X} - X(1)) \) is a sufficient and complete statistic.
The probability that \(\xi(1) = X(1) \) is \(k/N \) and that \(\xi(1) \neq X(1) \) is \(1-(k/N) \).
The distribution of \((X(1), \bar{X} - X(1) = Y) \) is
\[\frac{(\alpha N)^N}{\Gamma(N-1)} \gamma^{N-2}e^{-\alpha X(1) + Y - \theta}dX(1)dY \]
Considering \(\xi(1) \neq X(1) \), let \(X^* \) be the complementary sample of \(\xi \), then
\[X'(1) = X(1) \]

\[Y = \bar{X} - X'(1) = \frac{1}{\bar{N}}(N-k)X + k \frac{\bar{X}}{N} - X(1) = \frac{1}{N}[(N-k)/N]Y' + (k/N)(\bar{X} - X') \]

i.e. \[Y' = \frac{NY}{N-k} - (k/N)(\bar{X} - X') \]

the usual technique gives

\[\frac{\partial}{\partial \bar{X}} \frac{1}{N(k)X - X(1)}^k \]

in the domain where the quantity between brackets is positive.

\[\frac{d\bar{X}}{k(\bar{X})} \bigg| X'(1), \bar{X} - X'(1) = \frac{k(\bar{X} - X'(1))^{k-2}}{N\bar{X} - X(1)} \left[1 - \frac{k(\bar{X} - X'(1))}{N\bar{X} - X(1)} \right] \]

in the same domain.

The first formula is in agreement with a result by R. F. Tate, [15], p. 361, formula (7.8).

Log-Normal Distribution

Estimation Problems

by Andre G. Laurent
Department of Mathematics
Wayne State University

The use of the Log-Normal distribution has been rarely advocated in the literature devoted to industrial life testing and failure theory, though considerable emphasis has been put on that tool in papers dealing with sensitivity data and it has been widely used as a model in the field of biological assays. (Refer, however, to "The Exponential Distribution and Its Role in Life Testing", Technical Report No. 2, May, 1958, by B. Epstein).

A somewhat extensive exposition of the history of the Log-Normal distribution is given in [1].

A broad variety of realistic and "reasonable" hypotheses about the mechanism of failure leads to a Log-Normal distribution for the age of death or the intensity of the stimulus under which failure occurs. Among them, that class of hypotheses which involve random effects that are multiplicative instead of additive and lead to the use of the central limit theorem. For example, if failure is caused by an accumulation of infinitesimal random shocks whose effects are not independent but are sequentially proportional to the already accumulated total effect. This is a well known set up and a plausible model for failure data when an ageing process takes place.
Let \(X \) be Log-normal distributed, i.e. \(Y = \log X \) is \(N(m, \sigma^2) \) distributed. The moments of \(X \) are

\[
M_r(X) = e^{{r^2\sigma^2}/2} \mu^r
\]

whence the expected value and variance of \(X \)

\[
\mu_1 = \mu[X] = \sigma^2/2 \mu
\]

\[
\mu_2 = \text{var}[X] = e^{2\mu}(e^{\sigma^2}-1)
\]

while

\[
E[Y] = m, \text{ logarithmic mean}
\]

\[
\text{var}[Y] = \sigma^2, \text{ logarithmic variance}
\]

the minimum variance unbiased estimates of \(m \) and \(\sigma^2 \) being \(\overline{Y} \) and

\[
\left[n(n-1) \right] S_Y^2
\]

\(m \) and \(\sigma^2 \) are measures of central tendency and dispersion in the logarithmic scale, useful corresponding characteristics in the original scale of \(X \) are \(\mu = e^m \) that is the median of the distribution and

\[
\mu^2 = e^{\sigma^2} \text{ or } \mu^2 = e^{\sigma^2/2}
\]

"Naive" estimates of \(m \) and \(\sigma^2 \) are \(\overline{X} \) and \(S_X^2 \).

\[
\overline{Y} = \exp\left(\frac{1}{n} \sum \log \frac{X_i}{\mu}\right) = \left(\prod \frac{X_i}{\mu}\right)^{1/n}
\]

is the geometric mean of the \(X_i \)'s

These two estimates are not unbiased; since \(\overline{Y} \) is \(N(m, \sigma^2/n) \) \(\mathbb{E}(\overline{Y}) = e^m e^{\sigma^2/2} \) and since the generating function of \(S^2 \) is \((1-2\sigma^2/n)^{-(n-1)/2} \)

\[
\mathbb{E}[e^{S^2}] = (1-2\sigma^2/n)^{-(n-1)/2}
\]
We want to obtain estimates without bias.

1) \(e^{-\sigma^2/2n} = \sum_k \left((-1)^k / k! \right) [\sigma^{-2k} / (2n)^k] \)

also

\[
E[S_{2k}^2] = 2^k \frac{\Gamma'[k+(n-1)/2]}{\Gamma[(n-1)/2]} (\sigma^{-2k} / n^k)
\]

\[\gamma_y \left(\frac{n-1}{2} \right) \frac{\sigma^{-2k}}{\Gamma' \left(k+(n-1)/2 \right) 2^k} \]

\(\gamma_y \) is an unbiased estimate of \(\sigma^{-2k} \)

therefore

\[
\Gamma \left(\frac{(n-1)/2}{2} \right) \sum_k \left((-1)^k / k! \right) \frac{S_{2k}^2}{\Gamma'[k+(n-1)/2] 2^k}
\]

is an unbiased estimate of \(e^{-\sigma^2/2n} \) but this is

\[\gamma_y \left(\frac{n-3}{2} \right) \Gamma \left(\frac{(n-1)/2}{2} \right) \gamma_y \left(\frac{n-3}{2} \right) \]

where \(\gamma \) denotes the Bessel function of first kind of order \((n-3)/2 \).

Since \(\bar{Y} \) and \(S_Y \) are independent variables

\[
e \left[\gamma_y \left(\frac{2(n-3)/2}{S_Y (n-3)/2} \right) \Gamma \left(\frac{(n-1)/2}{2} \right) \right] \gamma \left(\frac{n-3}{2} \right) / 2 (S_Y)
\]

is an unbiased estimate of \(e^m = \gamma \); since \(\bar{Y} \) and \(S_Y \) are sufficient statistics, it is a minimum variance unbiased estimate of \(\mu \).

2) One has

\[
e^{\theta \sigma^{-2}} = \sum_k k^k / k! \sigma^{-2k}
\]

therefore

\[
\Gamma \left(\frac{(n-1)/2}{2} \right) \sum_k k^k / k! \left[n^k / 2^k \right] \frac{S_{2k}^2}{\Gamma'[k+(n-1)/2]} \]

is an unbiased estimate of \(e^{\theta \sigma^{-2}} \), now this is
\[
\Gamma \left[\frac{(n-1)/2}{2} \right] \frac{2^{(n-3)/2}}{(S_Y \sqrt{2hn})^{(n-3)/2}} I_{(n-3)/2} \left(\frac{S_Y \sqrt{2hn}}{(S_Y \sqrt{2hn})^{(n-3)/2}} \right)
\]

where \(\Gamma \) denotes the modified Bessel function of first kind of order \((n-3)/2 \).

Since \(S_Y \) is a sufficient statistic, the minimum variance unbiased estimate of \(\sigma^2 \) and \(\bar{e}_r^2/\sigma^2 \) are respectively

\[
\Gamma \left[\frac{(n-1)/2}{2} \right] \frac{2^{(n-3)/2}}{(S_Y \sqrt{2n})^{(n-3)/2}} I_{(n-3)/2} \left(\frac{S_Y \sqrt{2n}}{(S_Y \sqrt{2n})^{(n-3)/2}} \right) \quad \text{and} \quad \Gamma \left[\frac{(n-1)/2}{2} \right] \frac{2^{(n-3)/2}}{(S_Y \sqrt{n})^{(n-3)/2}} I_{(n-3)/2} \left(\frac{S_Y \sqrt{n}}{(S_Y \sqrt{n})^{(n-3)/2}} \right)
\]

As a by-product, one will obtain the minimum variance unbiased estimate of any moment \(M_r(x) \) of \(X \).

Since

\[E[e^{rT}] = e^{r^2 \sigma^2 /2n} \]

depends only on \(Y \), and we have an unbiased estimate of \(e^{h \sigma^2 /n} \) that depends only on \(S_Y \), making \(h = \frac{(n-1)r^2}{2n} \) we get a minimum variance unbiased estimate of \(M_r \) as

\[
e^{r^2 \Gamma \left[\frac{(n-1)/2}{2} \right] \frac{2^{(n-3)/2}}{(rS_Y \sqrt{n})^{(n-3)/2}} I_{(n-3)/2} \left(\frac{rS_Y \sqrt{n}}{(rS_Y \sqrt{n})^{(n-3)/2}} \right)}
\]

References

<table>
<thead>
<tr>
<th>Naval Activities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Head, Statistics Branch</td>
<td>2</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Commanding Office</td>
<td>2</td>
</tr>
<tr>
<td>Office of Naval Research Branch</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td></td>
</tr>
<tr>
<td>346 Broadway</td>
<td></td>
</tr>
<tr>
<td>New York 13, New York</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>2</td>
</tr>
<tr>
<td>Office of Naval Research Branch</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td></td>
</tr>
<tr>
<td>Navy No. 100</td>
<td></td>
</tr>
<tr>
<td>Fleet Post Office</td>
<td></td>
</tr>
<tr>
<td>New York, New York</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Information Center</td>
<td>6</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief of Naval Material</td>
<td>1</td>
</tr>
<tr>
<td>Code M533, Room 2236</td>
<td></td>
</tr>
<tr>
<td>Main Navy Building</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Craig A. Magwire</td>
<td></td>
</tr>
<tr>
<td>Department of Math. and Mech.</td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Monterey, California</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Mitchell L. Cotton</td>
<td></td>
</tr>
<tr>
<td>Department of Electronics</td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Monterey, California</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Ordnance (Ad3)</td>
<td>1</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Attn: A. Rothstein Code ReUg</td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Aeronautics</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Attn: Quality Control Div.</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>U.S. Naval Air Missile Test Ctr.</td>
<td></td>
</tr>
<tr>
<td>Point Mugu, California</td>
<td></td>
</tr>
<tr>
<td>Attn: Chief Scientist</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>U.S. Naval Air Development Ctr.</td>
<td></td>
</tr>
<tr>
<td>Johnsville, Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Mr. H. R. Thoman</td>
<td>1</td>
</tr>
<tr>
<td>Bureau of Aeronautics, AV-4422</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Room 2796, "W" Building</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Mr. Francis A. Thompson</td>
<td></td>
</tr>
<tr>
<td>Bureau of Aeronautics, AV-3102</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Room IW63, "W" Building</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Yards and Docks</td>
<td>1</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. "H" Molman, Code A-4428</td>
<td></td>
</tr>
<tr>
<td>Quality Control Division (Qcc)</td>
<td>1</td>
</tr>
<tr>
<td>Bureau of Ordnance</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Statistics Branch</td>
<td></td>
</tr>
<tr>
<td>Qc Division Qc5</td>
<td>1</td>
</tr>
<tr>
<td>Bureau of Ordnance</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Mr. R. E. "Wiley"</td>
<td></td>
</tr>
<tr>
<td>Materiels Branch</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>1</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Mr. R. E. "Wiley"</td>
<td></td>
</tr>
<tr>
<td>Materiels Branch</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Mr. Masao Yoshitsu</td>
<td>1</td>
</tr>
<tr>
<td>Naval Inspector of Ordnance</td>
<td></td>
</tr>
<tr>
<td>Naval Gun Factory</td>
<td></td>
</tr>
</tbody>
</table>
Miss Besse B. Day
Bureau of Ships, Code 310B
Department of the Navy
Washington 25, D.C.

Mr. A. Lieberman
Bureau of Ships, Code 3730
Department of the Navy
Washington 25, D.C.

Mr. A. S. Marthens
Bureau of Ships, Code 373A
Department of the Navy
Washington 25, D.C.

Mr. F. Brown
Bureau of Ships, Code 363B
Department of the Navy
Washington 25, D.C.

Mr. H. Weingarten
Bureau of Ships, Code 280
Department of the Navy
Washington 25, D.C.

Mr. F. R. DelPriore
U.S. Naval Engineering Experiment Station
Annapolis, Maryland

Captain B. L. Lubelsky, USN
Quality Evaluation Laboratory
U.S. Naval Ammunition Depot
Crane, Indiana

Commanding Officer
U.S. Navy Mine Defense Laboratory
Fenana City, Florida
Attn: Mr. J. Boyd

Commander
Materiel Laboratory
New York Naval Shipyard
Brooklyn, New York
Attn: A. Walner

Commanding Officer
U.S. Naval Radiological Defense Laboratory
San Francisco, California
Attn: Miss M. Sandomire

Dr. Julius Lieblein
Applied Mathematics Lab. Code 820
David Taylor Model Basin
Washington 7, D.C.

Mr. E. J. Nucci
Bureau of Ships, Code 819
Department of the Navy
Washington 25, D.C.

Office, Secretary of Defense
Inspection and Quality Control
Division
Office, Asst. Secretary of Defense
(S and L)
Washington 25, D.C.
Attn: Mr. Irving B. Altman

Inspection and Quality Control
Division
Office, Asst. Secretary of Defense
(S and L)
Washington 25, D.C.
Attn: Mr. John J. Riordan

Office, Asst. Secretary of Defense
Office of Guided Missiles
Office, Asst. Secretary of Defense
(R and E)
Washington 25, D.C.
Attn: Mr. R. H. DeWitt

Office, Asst. Secretary of Defense
Office, Asst. Secretary of Defense
(R and E)
Washington 25, D.C.
Attn: Mr. Carlton M. Beyer

Technical Library
Office, Asst. Secretary of Defense
(R and E)
Room 3E1065, the Pentagon
Washington 25, D.C.

Army Activities
Mr. Silas Williams, Jr.
Standards Branch
Procurement Division
OCS Logistics, U.S. Army
Washington 25, D.C.

Dr. L. S. Gephart
Office of Ordnance Research
Box CM, Duke Station
Durham, North Carolina

Air Force Activities
LTCOL W. C. Marcum
Air Research Development Command
Baltimore, Maryland
Mr. R. Riedenbender
Hq., Air Materiel Command (MCQFF)
"Wright-Fatterson Air Force Base
Ohio

Dr. J. A. Greenwood
Hq., U. S. Air Force, AFCIN-3BX2
"Washington 25, D.C.

Miscellaneous Government Agencies

ASTIA Documents Service Center
Knott Bldg.
Dayton 2, Ohio

Office of Technical Services
Department of Commerce
"Washington 25, D.C.

Mr. Leon Gilford, ADSS
U. S. Census Bureau
"Washington 25, D.C.

Dr. Joseph Daly
U. S. Census Bureau
"Washington 25, D.C.

Dr. Marvin Zelen
Statistical Eng'g Laboratory
National Bureau of Standards
"Washington 25, D.C.

Business Concerns

Mr. I. Belson
Mine Safety Appliances Co.
Gallery, Pennsylvania

Mr. John K. Borkman
"Whippany Laboratory
Bell Telephone Laboratories
"Whippany, New Jersey

Mr. W. H. Clatworthy
Bettis Plant
Westinghouse Electric Corp.
Box 1468
Falls Church 30, Virginia

Mr. H. F. Dodge
Bell Telephone Laboratories, Inc.
463 West Street
New York 14, New York

Mr. S. Wehner
ARINC Research Corporation
1700 K Street, N.W.
"Washington 6, D.C.

Dr. G. Kaskey
Remington Rand UNIVAC Div. of
Sperry Rand Corporation
1900 West Allegheny Avenue
Philadelphia, Pennsylvania

Dr. John F. Hofmann
Systems Laboratories Corp.
15016 Bentura Blvd.
Sherman Oaks, California

Mr. J. C. Duryea
Senior Components Engineer
Sperry Gyroscope Company
"Great Neck, New York

Universities

Professor Cyrus Derman
Dept. of Industrial Eng'g
Columbia University
"New York 27, New York

Professor Acheson J. Duncan
Dept. of Industrial Eng'g
The Johns Hopkins University
Baltimore 18, Maryland

Professor Eugene L. Grant
Civil Engineering Department
"Stanford University
"Stanford, California

Dr. Eugene Lukacs
Department of Mathematics
Catholic University
"Washington 17, D.C.

Professor E. G. Olds
Department of Mathematics
"Carnegie Institute of Technology
"Pittsburgh 13, Pennsylvania

Dr. Max A. Woodbury
Department of Mathematics
"College of Engineering
"New York University
New York 53, New York

Professor Ralph A. Bradley
Department of Mathematics
"Virginia Polytechnic Institute
"Blacksburg, Virginia

Professor Ellis Ott
Department of Mathematics
Rutgers University
"New Brunswick, New Jersey
Part II - Foreign Addresses

Professor Maurice H. Belz
University of Melbourne
Carlton N. 3
Vicet ria, AUSTRALIA

Professor Tosio Kitagawa
Mathematical Institute
Faculty of Science
Kyushu University
Fukuoka, JAFAN

Mr. Cesareo Villegas
Instituto de Matemática y Estadística
Av. J. Herrera y Revisig 565
Montevideo, URUGUAY

Mr. F. F. Wade, Statistician
Aluminum Company of Canada, Ltd.
Kingston, Ontario, CANADA

Professor D. A. S. Fraser
Department of Mathematics
University of Toronto
Toronto 5, CANADA