1. REPORT DATE (DD-MM-YYYY)
26-09-2018

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)
1-Jan-2018 - 30-Jun-2018

4. TITLE AND SUBTITLE
Final Report: Symposium EN6, Safer and More Energy-Dense Rechargeable Batteries, 2018 MRS Spring Meeting

5a. CONTRACT NUMBER
W911NF-17-1-0552

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
611102

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

Materials Research Society
506 Keystone Dr.
Warrendale, PA 15086-7573

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES)

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSOR/MONITOR'S ACRONYM(S)

ARO

11. SPONSOR/MONITOR'S REPORT NUMBER(S)
71932-CH-CF.2

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UU</td>
<td>UU</td>
<td>UU</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
UU

19a. NAME OF RESPONSIBLE PERSON

J. Ardie Dillen

19b. TELEPHONE NUMBER
724-779-2711
Major Goals: Rechargeable alkali-ion batteries are the dominant form of energy storage for consumer electronics today and are increasingly finding large-scale applications such as transportation and grid storage. However, the recent spate of highly publicized lithium-ion battery fires in automotive, aviation, and consumer electronics have brought to the forefront the need to develop novel materials and battery architectures that can support higher energy densities without sacrificing safety.

The aim of Symposium EN06 is to promote a holistic approach to developing safer and more energy dense rechargeable alkali-ion batteries by providing a forum for technical, interdisciplinary discussions spanning the entire continuum from materials design to device engineering. The symposium covered novel materials discovery, characterization and fundamental understanding of safety, and cutting-edge battery architectures.

Accomplishments: The aim of Symposium EN06 of the MRS Spring 2018 meeting is to promote a holistic approach to developing safer and more energy dense rechargeable alkali-ion batteries through novel materials discovery, characterization and fundamental understanding of safety, and cutting-edge battery architectures. The symposium hosted researchers from academia, national laboratories and industry, and featured 92 presentations, including 63 oral presentations (of which 16 were invited speakers from national labs, industry, and universities from across the world) and 29 poster presentations. The four-day full day event saw a large crowd throughout the program with peak attendance well above 150 people. Fourteen invited speakers from academia were provided registration fee support to recognize their contributions to the meeting and encourage future participation. Of these, three were junior faculty (assistant professors) whose registration fees were completely covered.

Training Opportunities: Nothing to Report

Results Dissemination: The 2018 MRS Spring meeting program and abstracts may be viewed on the MRS website: www.mrs.org

Honors and Awards: Nothing to Report

Protocol Activity Status:

Technology Transfer: Nothing to Report
PARTICIPANTS:

Participant Type: Co PD/PI
Participant: Shyue Ping Ong PhD
Person Months Worked: 1.00
Funding Support:

Project Contribution:
International Collaboration:
International Travel:
National Academy Member: N
Other Collaborators:

Participant Type: Co PD/PI
Participant: Jeff Sakamoto PhD
Person Months Worked: 1.00
Funding Support:

Project Contribution:
International Collaboration:
International Travel:
National Academy Member: N
Other Collaborators:

Participant Type: Co PD/PI
Participant: Kang Xu PhD
Person Months Worked: 1.00
Funding Support:

Project Contribution:
International Collaboration:
International Travel:
National Academy Member: N
Other Collaborators:

Participant Type: Co PD/PI
Participant: Byoungwoo Kang PhD
Person Months Worked: 1.00
Funding Support:

Project Contribution:
International Collaboration:
International Travel:
National Academy Member: N
Other Collaborators:

ARTICLES:
It is of great significance to understand and monitor the condition of the commercial batteries in EVs/HEVs and stationary applications under their real working situations. Electrochemical impedance spectroscopy (EIS) has been proved to be a powerful technique for investigating the kinetics and redox reactions at the interfaces, as well as the diffusion behavior in the bulks of every electrochemical systems. Focusing on tracing the temperature of the commercial batteries during the EIS tests at different stages in a well-designed four-week driving simulation, the value of temperature profile during the EIS test as an enhanced indicator to help analyzing the formation of the passivation layers, electrolyte impedance development as well as lithium plating on the anode through EIS analysis have been found.
Summary

The aim of Symposium EN06 of the MRS Spring 2018 meeting is to promote a holistic approach to developing safer and more energy dense rechargeable alkali-ion batteries through novel materials discovery, characterization and fundamental understanding of safety, and cutting-edge battery architectures. The symposium hosted researchers from academia, national laboratories and industry, and featured 92 presentations, including 63 oral presentations (of which 16 were invited speakers from national labs, industry, and universities from across the world) and 29 poster presentations. The four-day full day event saw a large crowd throughout the program with peak attendance well above 150 people. Fourteen invited speakers from academia were provided registration fee support to recognize their contributions to the meeting and encourage future participation. Of these, three were junior faculty (assistant professors) whose registration fees were completely covered.

Objectives

Rechargeable alkali-ion batteries are the dominant form of energy storage for consumer electronics today and are increasingly finding large-scale applications such as transportation and grid storage. However, the recent spate of highly publicized lithium-ion battery fires in automotive, aviation, and consumer electronics have brought to the forefront the need to develop novel materials and battery architectures that can support higher energy densities without sacrificing safety.

The aim of Symposium EN06 is to promote a holistic approach to developing safer and more energy dense rechargeable alkali-ion batteries by providing a forum for technical, interdisciplinary discussions spanning the entire continuum from materials design to device engineering. The symposium covered novel materials discovery, characterization and fundamental understanding of safety, and cutting-edge battery architectures.

Research Highlights

The 63 oral presentations and 29 posters were divided into several topical sessions:

EN06.01: Safe and Energy-Dense Batteries: This opening session that was comprised entirely of three invited talks from world-renowned experts was intended to provide an overview into various approaches to achieving safe and energy-dense batteries. M. Stanley Whittingham (Binghamton University) gave a talk on multi-electron intercalation reactions as a potential approach to achieving much higher capacity cathode materials. This is in contrast to current cathode technology, which mostly functions on the basis of a single electron/Li intercalation per
transition metal. Akitoshi Hayashi (Osaka Prefecture University) discussed the fabrication of positive electrode materials in all-solid-state rechargeable Li or Na batteries to achieve high capacities. He showed how formation of favorable and large contact areas between electrode and electrolyte can be achieved by electrolyte coating on electrode particles via gas-phase or liquid-phase techniques. Finally, Boris Kozinsky (Harvard University) provided an overview of modelling approaches to study Li-ion transport in amorphous solid electrolytes.

EN06.02: Electrode--Electrolyte Interfaces: Lincoln Miara (Samsung Electronics) discussed the outcomes from a computational thermodynamic study to analyze the stability between several relevant solid-electrolyte-electrode interfaces. Miaofang Chi (ORNL) presented her high resolution, in situ TEM analysis of Li metal-solid electrolyte interfaces. Al Masias (University of Michigan/Ford) presented new perspectives on the mechanical properties of metallic Li at room temperature. Stack pressures used when cycling Li metal solid-state batteries are comparable to the yield strength of Li. Stefan Adam (National University of Singapore) presented his research on transition metal fluorides for as cathodes.

EN06.03: All-Solid-State Batteries: Ye Zhang (University of Houston) presented his approach for stabilizing the Na3SbS4/Na interface by introducing a cellulose-supported poly(ethylene oxide) (CPEO) layer between Na3SbS4 and Na. Owing to the high stability of the CPEO layer and the enhanced interfacial contact with Na, the Na/CPEO/Na3SbS4/CPEO/Na symmetric cell shows stable Na stripping/plating behavior. Yamada Hiroto (Nagasaki University) presented a non-intuitive result indicating that exposing garnet LLZTO powders before densification modifies the grain boundary chemistry to improve resistance to Li metal penetration. A critical current density (CCD) of 0.6 mA/cm² was achieved with powders intentionally exposed to air before densification.

EN06.05: Solid Electrolytes: Huanan Duan (Shanghai Jiao Tong University) presented his study on optimizing the LLZO garnet preparation process to obtained materials with good air stability and room-temperature conductivity in the range of 4–6 x 10⁻⁴ S cm⁻¹. Feng Pan (Peking University) presented work on structures and properties of cathode materials of Li-ion batteries. Corsin Battaglia (EMPA) presented his research on Na₂(B₁₂H₁₂)₀.₅(B₁₀H₁₀)₀.₅, that simultaneously offers high sodium ion conductivity of 0.9 mS cm⁻¹ at 20°C, excellent thermal stability up to at least 300°C, and importantly, a large electrochemical stability window of 3 V including stability versus metallic Na enabling long-term stripping and plating and the use of a sodium metal anode. Lastly, Randy Jalem (JST) conducted atomistic-level computational modelling to elucidate the effect of atomic defects that block ionic conductivity in garnet electrolyte to include Ga and protons.

EN06.06: Li--Sulfur Batteries: This session featured two invited speakers: Dr. Tim Arthur from Toyota presented their efforts in developing all-solid Li-sulfur batteries in line with Toyota’s recent year investment in sulfur-based solid electrolytes. The talk was focused on in-situ characterization of the interfaces using synchrotron techniques rather than battery performances of the sulfur-Li systems. Dr. Bugga from NASA-JPL talked about the efforts of developing Li-sulfur high energy batteries for space and military applications.

EN06.07: High--Energy Cathodes: Prof. Shirley Meng from UC San Diego presented the work from her group on the frontier topic of anion-redox chemistry in transition metal oxide and the possibility of harnessing such chemistry for high capacities beyond 300 mAh/g. The atomic-resolution characterization tools developed recently via TEM and STEM techniques enabled us to peer into more details of the irreversible phase-changes near the cathode/electrolyte interfaces, which serves as guidelines to stabilize the structure. Dr. Wolverton of Northwestern University
highlighted the recent advances in developing Li-rich materials based on Fe/Mn oxides. The voltage fading caused by structural instability still presents severe challenge in harnessing these aggressive redox reactions for high capacity. Dr. Xiaolin Li from PNNL summarized their efforts in Na-ion battery materials, and concluded that interphases in the Na versions of the rechargeable batteries still remain little understood, and constitutes the key to higher energy Na-ion chemistries.

EN06.08: Devices: In this session, various speakers talked about innovative means to configure the devices. Dr. Bruce Dunn (UCLA) lectured the 3D printable electrodes and hierarchical design of battery devices based on 3D-printing technology. Prof Jung from Ulsan University presented diagnostic techniques using 3 electrode device to examine the very challenging all-solid batteries.

EN06.09: Anodes I: Yue Qi (Michigan State University) discussed recent modeling methodology developed to compliment in-situ observations in order to elucidate the underlying factors contributing to mechanistic failures. Dingchang Lin (Stanford University) presented an electrolyte-proof design of three-dimensional Li metal anode where most of the Li domains are embedded in a Li-ion conductive matrix. Chonghang Zhao (Stony Brook University) presented morphological changes and degradation of the Si nano-porous electrode during charging and discharging by using synchrotron-based X-ray nano-tomography.

EN06.10: Li Metal Anodes: M V Reddy (National University of Singapore) discussed electrochemical properties of nanocomposites of divalent transition metal oxides MO (M= Mn, Fe, Co, Ni, Cu) and LiF. Fang Liu (University of California, Los Angeles) presented the way to stabilize the interface of lithium metal anodes for advanced rechargeable batteries by using hermetic coating layer with Vapor deposition. David Mitlin (Clarkson University) discussed the advantages of selenium (Se) lithium and sodium metal cathodes that are monolithic and free-standing, and with record Se loading of 70 wt%. Gillian Hawes (University of Waterloo) presented several non-porous carbon-based thin films that can act as selectively-permeable lithium-ion membranes and as protective intermediaries between the lithium metal anode and the electrolyte.

EN06.11: Anodes II: Martin Winter (University Munster) discussed intrinsic cell safety and the prominent role of the electrolyte and how different additives influence the different components of a LIB cell and cell safety. Taehoon Kim (Okinawa Institute of Science and Technology) presented the way to obtain stable SEI formation by using a multi-layer of stacked-graphene (8-layers) grown by chemical vapor deposition (CVD). Daniel Koch (National University of Singapore) discussed the possibility of further Ti oxidation or O reduction in terms of charge density increase or depletion around the corresponding nuclei, at least in a theoretical framework. Wim Soppe (ECS-Solliance) presented a method based on Plasma Enhanced Chemical Vapor Deposition (PECVD) to create self-organized nano-structured silicon layers, which can accommodate the large volume changes and its advantages.

EN06.13: Beyond Li-Ion: Yun Jung Lee (Hanyang University) discussed the ways to achieve reversible Li-O2 battery operations with high energies by tackling these instabilities through the synergistic integration of dual soluble catalysts for both discharging and charging with antimony tin oxide (ATO) non-carbon electrodes with a porous inverse opal structure. Hye Ryung Byon (KAIST) presented the insights into design of the carbon electrode surface toward the enhancement of discharge capacity, charge potential and cycling stability. It also paves the way for improvement of Li-O2 cell performance in the absence of additional promoters. Di-Yan Wang (Tunghai University) talked about recent work related to development of Aluminum ion battery (AIB) and
the way to increase the cathode capacity in AIB and understanding details of the anion-graphite intercalation mechanism.

EN06.14: High Energy Density Li-Ion Electrodes: Ji-Quang Zhang (PNNL) discussed a novel “localized high concentration electrolyte (LHCE)” that enables dendrite-free cycling of lithium metal anodes with high coulombic efficiency (99.5%) and excellent capacity retention of Li metal batteries. Zhenpeng Yao (Northwestern University) presented a novel computational mechanistic approach that provides a detailed explanation of the hysteresis and non-equilibrium reaction pathways associated with typical conversion-type electrodes such as Co$_3$O$_4$ and NiO. Meng Cheng (University of Illinois at Chicago) presented the hybrid electrolyte ink that is directly printed on electrodes without any surface treatment for the substrate and post-processing for the electrolyte by using elevated-temperature DIW process. Wei Wang (Huazhong University of Science and Technology) presented developing sodium ferrous sulfate (NFS) that can have relatively high operating voltage (average discharge voltage at 3.8 V) with superior Na intercalation kinetics by using carbon coating and PC electrolyte. Junjie Niu (University of Wisconsin-Milwaukee) presented novel approach to stabilize Sn by using Skin Grafting route. Shuang Gao (University of Kentucky) presented electrochemical properties of Zr-doped NCM-811 materials.

In terms of funding management, the symposium EN06 organizers used the ARO grant to pay for registration fees for invited speakers who were carefully selected based on three criteria: (1) innovation of the work, (2) importance of the work to advances in energy storage technologies, and (3) reputation of the scientist. To promote the participation of junior faculty, full support for registration fees were provided for assistant professors, while partial support was provided for associate and full professors.

Contributions to the Discipline

Symposium EN06 brought together an interdisciplinary group of researchers and engineers, from academia, national labs and industry, focused on experimental, theoretical, and computational efforts to understand and design materials for safer and more energy-dense rechargeable batteries. The symposium has provided a forum for technical, interdisciplinary discussions spanning the entire continuum from materials design to device engineering, covering a range of topics from novel materials discovery to characterization and fundamental understanding of safety, to cutting-edge battery architectures. We believe this has generated a greater appreciation for the multifaceted challenges in the field and promoted collaborations and cross-pollination of ideas.

More than 110 abstracts were submitted, of which 92 were selected after the critical review process mandated by MRS. It is the organizers’ firm belief that the ideas and collaborations fostered by the symposium EN06 will drive the successful design of new materials for applications in the rechargeable batteries that are not only safer, but also exhibit higher energy densities.

Future Directions

The development of safe and energy dense rechargeable batteries remains a key enabler for a sustainable energy future. The MRS has been extremely supportive of this important area of research, and we expect this trend to continue, or even accelerate, in the near future. Increasingly, researchers are finding that the critical factors to safe and high energy battery dense lies not in merely bulk materials development, but rather the holistic development of all components and the interactions between them. The development of advanced characterization and theory efforts in this regard is expected to feature heavily in future conference symposia.
Acknowledgements

We gratefully appreciate support from the Army Research Office (ARO), which was critical to the success of this symposium. We also want to thank MRS staff for supporting the application of this ARO grant.
SYMPOSIUM EN06
Safer and More Energy-Dense Rechargeable Batteries
April 3 - April 6, 2018

Symposium Organizers
Byoungwoo Kang, POSTECH
Shyue Ping Ong, University of California, San Diego
Jeff Sakamoto, University of Michigan
Kang Xu, U.S. Army Research Laboratory

Symposium Support
Army Research Office

MRS Invitation to Publish
All authors are invited to submit articles based on their 2018 MRS Spring Meeting presentations to journals in the MRS portfolio. (www.mrs.org/publications-news) Papers submitted and accepted for publication in MRS Advances (www.mrs.org/mrs-advances) will be available as symposium collections. Visit the MRS/Cambridge University Press Publications Booth #100 in the Exhibit Hall to learn more, including MRS Advances print options available at special rates during the meeting week only.

* Invited Paper

SESSION EN06.01: Safe and Energy-Dense Batteries
Session Chairs: Shyue Ping Ong and Jeff Sakamoto
Tuesday Morning, April 3, 2018
PCC North, 100 Level, Room 121 B

10:30 AM *EN06.01.01
Can Multi-Electron Intercalation Reactions be the Basis of THE Next Generation Batteries? M. Stanley Whittingham; State University of New York at Binghamton, United States.

11:00 AM *EN06.01.02
Design of Positive Electrode Layers for All-Solid-State Rechargeable Batteries with High Energy Density Akitoshi Hayashi; Osaka Prefecture University, Japan.

11:30 AM *EN06.01.03
Li-Ion Transport Modeling in Amorphous Solid Electrolytes Boris Kozinsky1, 2; 1Robert Bosch LLC, United States; 2Harvard University, United States.

SESSION EN06.02: Electrode-Electrolyte Interfaces
Session Chairs: Shyue Ping Ong and M. Stanley Whittingham
Tuesday Afternoon, April 3, 2018
PCC North, 100 Level, Room 121 B

1:30 PM *EN06.02.01
Unlocking High Voltage Stability in all Solid State Batteries Lincoln Miara; Samsung Electronics, United States.

2:00 PM *EN06.02.02
Formation and Stability of Solid Electrolyte-Electrode Interfaces Probed by Electron Microscopy Miaofang Chi; Oak Ridge National Laboratory, United States.

2:30 PM BREAK

3:30 PM *EN06.02.03
Mechanical Properties of Lithium—Past, Present and Future Alvaro Masias1, 2; 1Ford Motor Company, United States; 2University of Michigan, United States.

4:00 PM *EN06.02.04
Design of Materials for Safe High Rate Capability Batteries Stefan N. Adams; National University of Singapore, Singapore.

SESSION EN06.03: All-Solid-State Batteries
Session Chairs: Miaofang Chi and Lincoln Miara
Tuesday Afternoon, April 3, 2018
PCC North, 100 Level, Room 121 B

4:30 PM EN06.03.01
Enhancing Interfacial Stability Between the Solid Electrolyte and Sodium Metal Anode via Polymer Interlayer Ye Zhang; University of Houston, United States.

4:45 PM EN06.03.02
Modification of Grain-Boundary to Suppress Lithium Growth Through Garnet-Type Solid Electrolyte Hirotoshi Yamada; Nagasaki Univ, Japan.

SESSION EN06.04: Poster Session I
Tuesday Afternoon, April 3, 2018
5:00 PM - 7:00 PM
PCC North, 300 Level, Exhibit Hall C-E

EN06.04.01
High Capacity All-Solid-State Sodium Metal Battery with Hybrid Polymer Electrolyte Yongwei Zheng; Drexel University, United States.

EN06.04.02
Ion Beam Irradiated Graphenic Layers as Lithium Ion Battery Anodes Prateek Hundekar; Rensselaer Polytechnic Institute, United States.

EN06.04.03
Polymer-Assisted Deposition Li(Ni,Co,Mn)O2 Thin Films Di Huang; New Mexico State University, United States.

EN06.04.04
Atomic-Scale Control of Silicon Expansion Space as Ultrastable Battery Anodes Jian Zhu; Hunan University, China.

EN06.04.05
The Studies of Lattice Parameter and Electrochemical Behavior for LiV2(PO4)3/C Cathode Materials Min-Young Kim; Korea Institute of Industrial Technology, Korea (the Republic of).

EN06.04.06
Observation of Interfacial Dynamics in Magnesium Batteries Using Operando XAS/TEM Khim Karki; Hummingbird Scientific, United States.

EN06.04.07
High-Power Alternative-Ion Batteries via Co-Intercalation Jennifer Donohue1, 2; 1State University of New York at Binghamton, United States; 2Vanderbilt University, United States.

EN06.04.08
Modification of LiFePO4 Cathode with 3D “Silk flowers” Like Ni-Al-Li-LDHs in Lithium-Ion Battery Xiaojing Zhang; University of Electronic Science and Technology of China, China.

EN06.04.09
The Effect of Calendering Temperature for Sulfur Electrodes Used for Large-Scale Lithium-Ion Batteries Rachel Ye; University of California, Riverside, United States.

EN06.04.10
Novel High Sulfur Loading Cathodes for High Performance Li-S Batteries Hoon Kang; KOREATECH, Korea (the Republic of).

EN06.04.11
Lithium-Sulfur Batteries—Effect of Electrolyte and Sulfur Loading on the Electrochemical Performance Hoon Kang; KOREATECH, Korea (the Republic of).

EN06.04.12
A New Design Concept of Li-S Battery Based on the Reaction Mechanism of Sulfur for High Performance Energy Storage Systems Jin Kyeong Kang; KOREATECH, Korea (the Republic of).

EN06.04.13
A Highly Robust Sulfur Cathode with a Structure Stabilizer for a Long-Life Li-S Battery Jong Won Park; KOREATECH, Korea (the Republic of).

EN06.04.14
Inverse Vulcanization with Functional Linkers—Towards New Cathode Active Materials Haneol Kang; POSTECH, Korea (the Republic of).
The document contains a list of presentations and abstracts from a conference, likely related to materials science and electrochemistry. The abstracts cover topics such as the synthesis and stability of cathode materials for lithium-ion batteries, and applications of various materials in battery technologies. The sessions are categorized under different numbers, possibly indicating different tracks or themes within the conference. Each abstract includes the title, authors, and institutions associated with the research, providing a glimpse into the current state of research and developments in the field.
10:00 AM BREAK

10:30 AM EN06.13.03
*EN06.14.01
Highly Stable Lithium Metal Batteries Enabled by Localized High Concentration Electrolytes Ji-Guang Zhang; Pacific Northwest National Laboratory, United States.

1:30 PM *EN06.14.01
Highly Stable Lithium Metal Batteries Enabled by Localized High Concentration Electrolytes Ji-Guang Zhang; Pacific Northwest National Laboratory, United States.

2:00 PM EN06.14.02
Revealing the Conversion Mechanism of Transition Metal Oxide/Sulfide Electrodes During the Electrochemical Lithiation Zhenpeng Yao; Northwestern University, United States.

2:15 PM EN06.14.03
Exploring the Combined Anionic and Cationic Redox Reactivity in the Super Li-Rich Li₂FeO₄ Based High-Energy-Density Cathode Materials Zhenpeng Yao; Northwestern University, United States.

2:30 PM EN06.14.04
Elevated-Temperature Direct Ink Writing of Hybrid Solid-State Electrolyte for 3D Printing of Li-Ion Battery Meng Cheng; University of Illinois at Chicago, United States.

2:45 PM BREAK

3:15 PM EN06.14.05
A Comparative Study of the Charge Compensation Mechanism of Li₁Ni₀.₃Ta₀.₈O₃ and Li₁Mn₀.₃Ta₀.₈O₃ Disordered Rocksalt as Cathode Material for Li-Ion Battery Quentin Jacquet; 1,2 College de France, France; 3 Université Pierre et Marie Curie, France; 4 RSE, Réseau sur le stockage électrochimique de l’énergie, France.

3:30 PM EN06.14.06
A Fe-Based Cathode Material with High Operating Voltage for Sodium-Ion Battery Wei Wang; Huazhong University of Science and Technology, China.

3:45 PM EN06.14.07
Sn Wears Super Skin—A New Design for Long Cycling and High Rate Batteries Jamie Niu; Univ of Wisconsin-Milwaukee, United States.

4:00 PM EN06.14.08
DFT-Guided Exploration and Experimental Testing of Dopants for LiₓFeₓSiO₄ High Capacity Cathode Materials Yan Zeng; McGill University, Canada.

4:15 PM EN06.14.09
Zirconium-Doped Layered LiₓNi₀.₃Co₀.₇Mn₀.₄O₂ as A High-Rate and Durable Lithium-Ion Battery Positive Electrode Material Shuang Gao; University of Kentucky, United States.

SYMPOSIUM EN07
Issues, Challenges and Opportunities in Actinide Materials
April 3 - April 5, 2018

MRS Invitations to Publish
All authors are invited to submit articles based on their 2018 MRS Spring Meeting presentations to journals in the MRS portfolio. (www.mrs.org/publications-news) Papers submitted and accepted for publication in MRS Advances (www.mrs.org/mrs-advances) will be available as symposium collections. Visit the MRS/Cambridge University Press Publications Booth #100 in the Exhibit Hall to learn more, including MRS Advances print options available at special rates during the meeting week only.

* Invited Paper

SESSION EN07.01: Actinide Biology, Medicine, Decontamination and Nanoscience
Session Chairs: Ladislav Havela and David Shuh
Tuesday Morning, April 3, 2018

10:30 AM *EN07.01.01
Exploring Trends in Bonding from Actinium to Einsteinium Using Biologically Relevant Ligands—Where Separation, Decontamination and Nuclear Medicine Meet Rebecca Abergel; Lawrence Berkeley National Lab, United States.

11:00 AM *EN07.01.02
What Can Actinides Do for Metal-Organic Frameworks and What Can Metal-Organic Frameworks Do for Actinides and Fission Products? Shuaow Wang; Soochow University, China.

11:30 AM *EN07.01.03
Production of Ac-225 from High Energy Proton Irradiation of Thorium C.S. Cutler; Brookhaven National Laboratory, United States.

SESSION EN07.02: Plutonium and Its Properties
Session Chairs: Borje Johansson, Jeremy Mitchell and Per Soderlind
Tuesday Afternoon, April 3, 2018

1:30 PM *EN07.02.01
A Review of the Electronic Structure of Plutonium Gerard H. Lander; 1,2 European Commission Joint Research Centre, Germany; 3 Institut Laue-Langevin, France.

2:00 PM EN07.02.02
Physical Mechanism of the δ′-ε Phase Stability in Plutonium Metal Borje S. Johansson; Materials Theory, Uppsala University, Sweden.

2:15 PM EN07.02.03
Assessing Density-Functional Theory for Equation-of-State from Light Solids to Actinides Per Soderlind; Lawrence Livermore National Lab, United States.

2:30 PM BREAK