REPORT DATE: 21 May 2019
REPORT TYPE: Briefing Charts
DATES COVERED: 01 May 2019 - 31 May 2019

4. TITLE AND SUBTITLE: Discovery and Innovation in Basic Research (Briefing Charts)

6. AUTHOR(S): Justin Koo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES): Air Force Research Laboratory (AFMC)
AFRL/RQRS
1 Ara Drive
Edwards AFB, CA 93524-7013

8. PERFORMING ORGANIZATION REPORT NUMBER: Q1NC (33SP0853)

9. SPONSOR/MONITOR'S NAME(S) AND ADDRESS(ES): Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB, CA 93524-7048

10. SPONSOR/MONITOR'S ACRONYM(S): AFRL-RQ-ED-VG-2019-126

12. DISTRIBUTION/AVAILABILITY STATEMENT: Distribution Statement A: Approved for Public Release; Distribution is Unlimited. PA Clearance Number: 19283 Clearance Date: 15 May 2019.

13. SUPPLEMENTARY NOTES: For presentation at the Electrospray Workshop/Future of In-Space Workshop; LA AFB, CA, USA; 21 May 2019.
The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display, or disclose the work.

14. ABSTRACT: Viewgraph/Briefing Charts

15. SUBJECT TERMS: N/A

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT: SAR

18. NUMBER OF PAGES: 17

19a. NAME OF RESPONSIBLE PERSON: David Bilyeu

19b. TELEPHONE NUMBER (Include area code): N/A
Discovery and Innovation in Basic Research

JUSTIN KOO, IN-SPACE PROPULSION BRANCH TECHNICAL ADVISOR
AEROSPACE SYSTEMS DIRECTORATE, 21 MAY 2019
Basic Science: Discovery AND Innovation

- **Discovery** – solutions looking for problems
 - I’m not sure what it’ll do, but I know it will be impactful across many areas
 - More brand-new research / less leverage of existing research from other disciplines

- **Innovation** – solutions inspired by problems
 - I know there’s a problem, what is the optimal way to tackle it
 - Less brand-new research / more leverage of existing research from other disciplines

- AFOSR is constantly trying to find appropriate equilibrium between Discovery and Innovation
 - No clear delineation → reflects direct inputs from PO and AFOSR leadership, indirectly from labs

- Common thread on successful basic research efforts, both at AFOSR and AFRL, involves both excellent technical effort AND clear communication on the impact

You must constantly communicate the impact of your research, both short- and long-term!
Ways to define impact (1)

• **Enabling** technologies open new possibilities

 Examples include:

 • Brand new thruster/power concepts (e.g., exploiting new control strategy to improve performance)
 • New diagnostic / simulations to study previously inaccessible (but critical) regions
 • Breakthroughs in material / manufacturing

Potential impacts include:

• Game-changing performance/cost beyond present technology options
• Opening up new application areas outside of space (especially for power technologies)

• Do not assume that government agencies understand why these enabling technologies are so important
• You **will** be asked many times to explain the relevance of your work – because “fundamental” is very difficult to advocate at higher levels

Need to be explicit about potential impacts
Ways to define impact (2)

• **Accelerating** technologies increase the rate of TRL enhancement

 Examples include:
 • Data fusion / assimilation strategies to enhance value of multiple data streams (experimental / low/hi fidelity numerical / theory)
 • Research approaches that materially expedite time-to-solution (faster diagnostics / identification of lower-dimensional manifolds and redundant data)
 • Methodologies to rapidly and confidently explore operating manifold

Potential impacts include:

 • Improved reduced order models and, more importantly, improved confidence in range of applicability
 → Enables faster systems engineering design cycles
 • Identifying potential pathways towards real-time integrated health monitoring / integrated health management
 → Increased confidence in schedule for future TRL enhancement

Strong DoD interest in how to transition tech from the lab to flight faster
Navigating government review process

• Well-defined basic research should not be adversely affected by government review
 • Should always point to potential thruster improvements, but focus research plan on developments to:
 • Understanding of underlying physics
 • Impact/relevance of new diagnostics
 • Validated theory and model development
 • Accelerated learning strategies
 • Still need to tie research back to the transition impacts described in the first two slides

• We will be discussing broad tech areas/challenges that we see affecting DoD future space propulsion systems
 • We will advocate for these at an appropriate distribution level
• We have missed critical tech challenges that will both enable and accelerate technology development
 • You are going to have to work harder to elaborate on the transition impacts
Future of DoD Space Enterprise

- Leverage proliferated LEO – incredibly fast and efficient way to insert new space capabilities (SDA)

- Accelerate traditional DoD space constructs (SMC 2.0)

Only consistent message is to expedite transition of tech from the lab to flight
Early generation EP

\[\frac{T}{P} = \frac{2\eta}{gI_{sp}} \]

ET systems represent high thrust EP

Hydrazine (2 kW)

Ammonia (26 kW)
Present generation EP

HET systems operate at low power at low Isp

Xenon HETs (Mostly 3-5 kW, max 13 kW)

Xenon Ion Engines
Next-generation EP

Throttleable, High Power EP
Theoretical Limits of all plasma propulsion (Xenon)

Minimum theoretical cost for perfectly lossless ionization

13.1 eV per Xenon Ion

\[T = \frac{gI_{sp}}{P} \left(0.5 \times (gI_{sp})^2 + \varepsilon_{ion} \right) \]
Theoretical Limits of all plasma propulsion (Xenon)

Effective Ionization cost in HETs scales with Isp

\[T/P = \frac{\varepsilon_i}{P_{\text{min}}} \]

\[+ \varepsilon_{\text{ion}} \]
Practical limits on next-generation EP

20 eV per Xenon Ion
40 eV per Xenon Ion
60 eV per Xenon Ion
80 eV per Xenon Ion
100 eV per Xenon Ion
Next-generation EP (Xenon)

Unexplored performance envelope for current generation HETs is limited
Next-generation EP (Ammonia)

Potentially even worse for light propellants
Backup Slides
Enabling throttleable, high efficiency, high thrust EP

Goal: Throttleable (<1000-2000 s), high efficiency EP
 • Transient power inputs up to an order of magnitude higher than current SoA

Potential Approaches
• Non-thermal ionization approaches; leveraging transient generation / rapid acceleration (pulsed systems); avoid ionization altogether (Ionic Liquids)

Challenges
• Ionization losses / acceleration mechanism closely linked – how can we isolate and study effects?
• In-lieu of complete thruster testing, how can we reasonably discuss cost per ion?
• Optimization of dynamic systems (e.g. changing pulse/current shapes) is very difficult

Reducing non-propulsive energy per ion is critical for high T EP operation