CYBER-ATTACK DRONE PAYLOAD DEVELOPMENT AND GEOLOCATION VIA DIRECTIONAL ANTENNAE

THESIS

Clint M. Bramlette, Captain, USAF

AFIT-ENG-MS-19-M-012

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
CYBER-ATTACK DRONE PAYLOAD DEVELOPMENT
AND
WI-FI GEOLOCATION VIA DIRECTIONAL ANTENNAE

THESIS

Presented to the Faculty
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the
Degree of Master of Science in Cyberspace Operations

Clint M. Bramlette, B.S. Wireless Engineering
Captain, USAF

March 2019

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
CYBER-ATTACK DRONE PAYLOAD DEVELOPMENT
AND
WI-FI GEOLOCATION VIA DIRECTIONAL ANTENNAE

Clint M. Bramlette, B.S. Wireless Engineering
Captain, USAF

Committee Membership:

Barry E. Mullins, Ph.D., P.E.
Chair

Timothy H. Lacey, Ph.D., CISSP
Member

Robert F. Mills, Ph.D.
Member
Abstract

The increasing capabilities of commercial drones have led to blossoming drone usage in private sector industries ranging from agriculture to mining to cinema. Commercial drones have made amazing improvements in flight time, flight distance, and payload weight. These same features also offer a unique and unprecedented commodity for wireless hackers—the ability to gain ‘physical’ proximity to a target without personally having to be anywhere near it. This capability is called Remote Physical Proximity (RPP).

By their nature, wireless devices are largely susceptible to sniffing and injection attacks, but only if the attacker can interact with the device via physical proximity. A properly outfitted drone can increase the attack surface with RPP (adding a range of over 7 km using off-the-shelf drones), allowing full interactivity with wireless targets while the attacker can remain distant and hidden. Combined with the novel approach of using a directional antenna, these drones could also provide the means to collect targeted geolocation information of wireless devices from long distances passively, which is of significant value from an offensive cyberwarfare standpoint.

This research develops skypie, a software and hardware framework designed for performing remote, directional drone-based collections. The prototype is inexpensive, lightweight, and totally independent of drone architecture, meaning it can be strapped to most medium to large commercial drones. The prototype effectively simulates the type of
device that could be built by a motivated threat actor, and the development process evaluates strengths and shortcoming posed by these devices.

This research also experimentally evaluates the ability of a drone-based attack system to track its targets by passively sniffing Wi-Fi signals from distances of 300 and 600 meters using a directional antenna. Additionally, it identifies collection techniques and processing algorithms for minimizing geolocation errors.

Results show geolocation via 802.11 emissions (Wi-Fi) using a portable directional antenna is possible, but difficult to achieve the accuracy that GPS delivers (errors less than 5 m with 95% confidence). This research shows that geolocation predictions of a target cell phone acting as a Wi-Fi access point in a field from 300 m away is accurate within 70.1 m from 300 m away and within 76 meters from 600 m away. Three of the four main tests exceed the hypothesized geolocation error of 15% of the sensor-to-target distance, with tests 300 m away averaging 25.5% and tests 600 m away averaging at 34%. Improvements in bearing prediction are needed to reduce error to more tolerable quantities, and this thesis discusses several recommendations to do so.

This research ultimately assists in developing operational drone-borne cyber-attack and reconnaissance capabilities, identifying limitations, and enlightening the public of countermeasures to mitigate the privacy threats posed by the inevitable rise of the cyber-attack drone.
Acknowledgments

Dedicated to the love of my life, bagels.

I would like to express my sincere gratitude to Dr. Mullins for his support, advice, knowledge, and the opportunity to pursue the coolest research project at AFIT. Your enthusiasm and skillset are inspiring.

Thank you to Dr. Lacey, Dr. Mills, and the rest of the AFIT faculty for their support, expertise, and guidance.

Shoutout to K-Dawg for designing and printing the 3D files.

Thank you to my parents, who encouraged me to go to school.

Clint M. Bramlette
Table of Contents

1. Introduction .. 1
 1.1 Overview and Background ... 1
 1.2 Research Goals ... 2
 1.3 Problem Statement ... 2
 1.4 Hypotheses .. 3
 1.5 Approach .. 4
 1.6 Assumptions and Limitations ... 4
 1.7 Contributions ... 5
 1.8 Thesis Overview ... 6

2. Background and Related Research ... 7
 2.1 The Scene .. 7
 2.2 Overview ... 8
 2.3 Drones ... 9
 2.3.1 Terminology ... 9
 2.3.2 Military Drones ... 10
 2.3.3 Commercial Drones .. 12
 2.3.4 Academic Interest ... 14
 2.4 Wireless Technologies ... 15
 2.4.1 Wi-Fi ... 15
 2.5 Wi-Fi Security Protocols & Attacks ... 15
 2.5.1 Open Configuration ... 16
 2.5.2 WEP ... 17
 2.5.3 WPA ... 18
 2.5.4 WPA2 ... 18
 2.5.5 WPA and WPA2 Brute Force Attacks .. 20
 2.5.6 WPA3 ... 22
 2.6 IoT ... 22
 2.7 Cybersecurity and Information Warfare ... 23
 2.8 Related Research .. 25
 2.8.1 Wireless-Sensing Drones .. 25
 2.8.2 Identification from Location ... 27
 2.8.3 Proof of Concept: Drones That Can Hack .. 27
 2.8.4 Directional Antenna .. 30
 2.8.5 Data Leakage ... 30
2.9 Background Summary .. 31

3. Prototype Design ... 32
 3.1 Overview .. 32
 3.2 System Summary ... 36
 3.2.1 localizer Summary ... 36
 3.2.2 skypie System Summary ... 38
 3.3 Design Goals ... 42
 3.3.1 localizer Design Goals .. 42
 3.3.2 skypie Design Goals .. 42
 3.4 skypie Hardware Design .. 44
 3.5 skypie Software .. 50
 3.5.1 Design Paradigm .. 50
 3.5.2 skypie Package .. 52
 3.5.3 skyport Package ... 57
 3.5.4 shared Package .. 69
 3.5.5 Microcontroller .. 70
 3.6 Analysis Algorithms ... 71
 3.6.1 Bearing Prediction and Geolocation Algorithm 1 (BPGA1) 72
 3.6.2 Geolocation Prediction Averaging Algorithm 1 (GPAA1) 74
 3.7 Design Summary .. 76

4. Methodology .. 77
 4.1 Overview and Objectives ... 77
 4.2 System Under Test .. 78
 4.3 Factors .. 78
 4.4 Metrics ... 81
 4.5 Constant Variables .. 82
 4.6 Uncontrolled Variables .. 85
 4.7 Experimental Design .. 86
 4.7.1 Geolocation Experiment: localizer ... 86
 4.7.2 Bearing Variance Experiment: localizer 88
 4.7.3 Geolocation Experiment: skypie ... 89
 4.8 Summary .. 90

5. Results .. 91
 5.1 Overview .. 91
 5.2 Geolocation Experiment: localizer ... 91
 5.2.1 Bearing Prediction .. 92
5.2.2 Geolocation Prediction ... 98
5.2.3 Experiment Summary ... 113
5.3 Geolocation Experiment: skypie ... 122
5.4 skypie Framework Developments Results .. 125
 5.4.1 Hardware Design Decisions and Rationale 125
 5.4.2 skypie Framework Functionality ... 127

6. Conclusion and Future Work .. 129
 6.1 Overview ... 129
 6.2 Research Conclusions ... 129
 6.2.1 Geolocation via Radiolocation Conclusions 129
 6.2.2 BPGA1 and GPAA1 Conclusions .. 131
 6.3 Research Significance and Synthesis .. 131
 6.4 Countermeasures .. 133
 6.5 Future Work .. 134

Appendix A. Supplemental skypie Design Resources 139

Bibliography ... 147
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Exploded Venn-diagram highlighting the intersection of MAUVs, Wi-Fi, and CNA/CNE, which is the focus of this research</td>
<td>9</td>
</tr>
<tr>
<td>2. Number of UAV papers published from the top eight journals/conferences [23]</td>
<td>14</td>
</tr>
<tr>
<td>3. WPA2 four-way handshake. On the left is the Station (STA) and the right is the Access Point (AP)</td>
<td>20</td>
</tr>
<tr>
<td>4. DJI Phantom 2 Vision+ with an omnidirectional antenna payload (above) and accompanying component schematic (below) [38]</td>
<td>29</td>
</tr>
<tr>
<td>5. localizer prototype</td>
<td>33</td>
</tr>
<tr>
<td>6. skypie sensor prototype</td>
<td>34</td>
</tr>
<tr>
<td>7. Hardware components presented in an ‘exploded’ fashion for ease of viewing</td>
<td>35</td>
</tr>
<tr>
<td>8. localizer prototype schematic [41]</td>
<td>37</td>
</tr>
<tr>
<td>9. skypie/skyport system design</td>
<td>41</td>
</tr>
<tr>
<td>10. skypie payload hardware schematic</td>
<td>44</td>
</tr>
<tr>
<td>11. 3D printed structure components</td>
<td>49</td>
</tr>
<tr>
<td>12. Structure components assembled on prototype</td>
<td>49</td>
</tr>
<tr>
<td>13: skypie control flow diagram</td>
<td>53</td>
</tr>
<tr>
<td>14. ‘SKY’ telemetry sentence</td>
<td>55</td>
</tr>
<tr>
<td>15. Sensor App User Interface</td>
<td>59</td>
</tr>
<tr>
<td>16. In-app sensor selection dropdown (left) and the skyport/database/sensors/directory (right), showing that database is saved as a simple folder scheme</td>
<td>60</td>
</tr>
<tr>
<td>17. Geolocation history can be viewed in the ‘Telemetry Tab.’ Hovering over each coordinate shows a box that describes the exact time and location of that point. Dots are color coded chronologically. The last recorded coordinates and bearing are printed at the top of the tab</td>
<td>61</td>
</tr>
</tbody>
</table>
18. View history of compass heading ‘Heading Line Draw Density’ value slider. Each
purple ray extends from a coordinate in time and indicates which way the sensor was
facing. In this example, the antenna is mounted to a bicycle doing a half-circle. ... 63

19. ‘Log’ tab enables user to view remote sensor’s **skyip**e logs. ... 64

20. Using the ‘Console’ tab to execute ‘ifconfig’ and ‘whoami’ commands. 64

21. ‘Sensor’ settings tab, which allows the attacker to make configuration changes.
Changes are posted by clicking the ‘Submit’ button. 65

22. ‘Wi-Fi’ settings tab. Note Mirror mode and Bluetooth mode are stubs that are not
implemented in the scope of this research (discussed in Chapter 6). 66

23. **skyport** Analysis App UI ... 68

24. Available targets from each selected sensor are populated in a dropdown in the Analysis
App. One, multiple, or all can be selected.. 69

25. The timeline section indicates when a target was first and last seen. Using the slider
allows a user to pick which timeframe they want to analyze the target. 69

26. RSSI mapped over bearing during a 360° sweep [41]................................. 72

27. BPGA1 visualized. Note this process is repeated for each time bucket........... 75

28. System Under Test (SUT) and Component Under Test (CUT) diagram 78

29. Experimental layout and collection points. Tent symbols indicate collection points
along a line, tree symbols indicate collection points along a circle, and campfires
represent a collection point that is both on a circular and linear collection pattern. 80

30. Angle of coverage on a linear collection pattern...................................... 81

31. Targets at target locations... 84

32. Target orientations. Note each phone is oriented differently. Target 1 is propped up
horizontally using a cardboard box. To prevent Target 1 from blowing away, a
partially full water bottle is added to weigh it down while a Maroon 5 compact disk
case kept the phone pointed toward the collection points................. 85

33. **localizer** mounted in the configuration used to collect data during experiment.. 87
34. Detailed components of the mobilized **localizer** rig, which is secured to the truck by ratchet straps

35. 300 m (light triangle symbols) and 600 m line (dark triangle symbols) geolocation guesses

36. Visual inspection of geolocation guesses demonstrating a possible systematic bearing offset. The angles represent the difference between the true target bearing and bearing of the proposed centered from three points on the 300 m line.

37. Multiple bearing predictions at 600 m (point 6B1). Note the secondary majority about 180 degrees out of phase with the primary majority

38. Multiple bearing predictions at 300 m (point 3L2). Note that most data points are within 9 degrees of each other

39. Bearing error among all data points

40. Absolute median bearing error at different distances

41. Taking two collection point coordinates and a bearing from each, the algorithm computes where the geodesics would intersect. This is the predicted location as computed by the intersection algorithm

42: Geolocation predictions at 600 m away, if the bearing predictions are perfect to 7 places

43. Geolocation predictions with perfect bearings, rounded to the nearest integer

44. All geolocation guesses by distance and collection pattern

45. Raw geolocation guesses plotted. White points indicate guesses from 300 m, red indicates 600 m. Circle pins represent guesses from the circle pattern, square pins represent guesses from the line pattern. The green line is a political boundary and is not part of the experiment

46. Distance vs. Normalized Geolocation Error

47. Collection pattern normalized by distance (angular coverage varies)

48. Geolocation error among collection pattern at 300 m (same angular coverage)

49. Angular Coverage between 2-Sample Geolocation Guesses at 300 m
50. Angular Coverage between 2-Sample Geolocation Guesses at 600 m......................... 109

51. Angular coverage box-and-whisker plot shows distribution of angular coverage at 600 m. ... 110

52. Length of collection vs. average error at 300 m. Generally, as collection length increases and points increase, error decreases.. 111

53. Length of collection vs. average error at 600 m. Increasing collection points and length at this distance yields little benefit. .. 112

54. Converging occurs too early or too late at 600 m. Guesses from the 600 m are shown as blue triangles, guesses from the 600 m circle are purple triangles. 113

55. Plot of all location predictions. The three targets appear as one at this scale. 114

56. Guesses, median (red ‘M’ marker), and average (orange ‘A’ marker) coordinate predictions on 300 m line using centroid calculations .. 117

57. Guesses, median, and average coordinate predictions on 300 m circle using centroid calculations .. 118

58. Guesses, median, and average coordinate predictions on 600 m line using centroid calculations .. 119

59. Guesses, median, and average coordinate predictions on 600 m circle using centroid calculations .. 120

60. Guesses, median, and average coordinate predictions on all four collection sets, from the point of view of the targets. (Key: square = 600 m, circle = 300 m, white = line, blue = circle) .. 121

61. skyport telemetry history of the skypie on the 300 m line test, with the purple lines indicating the direction the sensor is facing at the time. The red dot indicates the location of the targets. .. 123

62. skyport geolocation predictions (circles) of targets (true location at green square) .. 124

63. All geolocation guesses from the localizer experiment. After adding secondary rays (pink lines) along trend lines, this plot begs the question: “is the truth out there?” 135

64. Conception description of ‘Mirror Mode,’ a theoretical and powerful feature that could be implemented with the skypie framework .. 139

xiii
65. *skypie/skyport* data storage scheme

141
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Hacker Methodology</td>
<td>24</td>
</tr>
<tr>
<td>3. Prototype Hardware Overview</td>
<td>49</td>
</tr>
<tr>
<td>4. skypie dependencies</td>
<td>52</td>
</tr>
<tr>
<td>5. 8x8 RGB LED Array Indications</td>
<td>57</td>
</tr>
<tr>
<td>6. Experimental Variables</td>
<td>79</td>
</tr>
<tr>
<td>7. Response Variables</td>
<td>82</td>
</tr>
<tr>
<td>8. Constant Variables</td>
<td>83</td>
</tr>
<tr>
<td>10. Bearing predictions (in degrees) and variation from multiple sweeps at the same point</td>
<td>92</td>
</tr>
<tr>
<td>11. Normalized Geolocation Error vs Distance</td>
<td>104</td>
</tr>
<tr>
<td>12. Collection pattern performance</td>
<td>107</td>
</tr>
<tr>
<td>13. Overall bearing statistics</td>
<td>113</td>
</tr>
<tr>
<td>14. Overall geolocation statistics</td>
<td>114</td>
</tr>
<tr>
<td>15. Separated coordinate median approach</td>
<td>116</td>
</tr>
<tr>
<td>16. Separated coordinate average approach</td>
<td>116</td>
</tr>
<tr>
<td>17. skypie Current Features and Future Work</td>
<td>127</td>
</tr>
</tbody>
</table>
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard</td>
</tr>
<tr>
<td>AP</td>
<td>Access Point</td>
</tr>
<tr>
<td>BPE</td>
<td>Bearing Prediction Error</td>
</tr>
<tr>
<td>BPGA1</td>
<td>Bearing Prediction and Geolocation Algorithm 1</td>
</tr>
<tr>
<td>CNA</td>
<td>Computer Network Attack</td>
</tr>
<tr>
<td>CNE</td>
<td>Computer Network Exploitation</td>
</tr>
<tr>
<td>CNO</td>
<td>Computer Network Operations</td>
</tr>
<tr>
<td>CO</td>
<td>Cyberspace Operations</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>CRC-32</td>
<td>Cyclic Redundancy Check 32-bit</td>
</tr>
<tr>
<td>CSV</td>
<td>Comma Separated Value (file)</td>
</tr>
<tr>
<td>DCO</td>
<td>Defensive Cyber Operations</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>EAPOL</td>
<td>Extensible Authentication Protocol over LAN</td>
</tr>
<tr>
<td>GPA</td>
<td>Geolocation Prediction Accuracy</td>
</tr>
<tr>
<td>GPE</td>
<td>Geolocation Prediction Error</td>
</tr>
<tr>
<td>GPAA1</td>
<td>Geolocation Prediction Averaging Algorithm 1</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Input and Output</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GTK</td>
<td>Group Transfer Key</td>
</tr>
<tr>
<td>HAT</td>
<td>Hardware Attached on Top</td>
</tr>
<tr>
<td>HMAC-SHA1</td>
<td>Hash-based Message Authentication Code - Secure Hash Algorithm 1</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>HTTPS</td>
<td>Hyper Text Transfer Protocol Secure</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IoT</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>ISIS</td>
<td>Islamic State of Iraq and the Levant, also known as the Islamic State of Iraq and Syria</td>
</tr>
<tr>
<td>IV</td>
<td>Initialization Vector</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LED</td>
<td>Light-Emitting Diode</td>
</tr>
<tr>
<td>LTE</td>
<td>Long-Term Evolution</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>MIC</td>
<td>Message Integrity Code</td>
</tr>
<tr>
<td>MUAV</td>
<td>Multirotor-UAV, Man-Portable-UAV, or Miniature-UAV. ‘MUAV’ stands for ‘unmanned Man-portable Multirotor Unmanned Aerial devices and Systems’ in the context of this work.</td>
</tr>
<tr>
<td>NIC</td>
<td>Network Interface Card</td>
</tr>
<tr>
<td>NMEA</td>
<td>National Marine Electronics Association</td>
</tr>
<tr>
<td>OCO</td>
<td>Offensive Cyber Operations</td>
</tr>
<tr>
<td>PCAP</td>
<td>Packet Capture</td>
</tr>
<tr>
<td>PCHIP</td>
<td>Piecewise Cubic Hermite Interpolating Polynomial</td>
</tr>
<tr>
<td>PLA</td>
<td>Polylactic Acid</td>
</tr>
<tr>
<td>PMK</td>
<td>Pairwise Master Key</td>
</tr>
<tr>
<td>PSK</td>
<td>Pre-Shared Key</td>
</tr>
<tr>
<td>PTK</td>
<td>Pairwise Transient Key</td>
</tr>
<tr>
<td>RC4</td>
<td>Rivest Cipher 4</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>RGB</td>
<td>Red-Green-Blue</td>
</tr>
<tr>
<td>RPP</td>
<td>Remote Physical Proximity</td>
</tr>
<tr>
<td>RSSI</td>
<td>Received Signal Strength Indication</td>
</tr>
<tr>
<td>SFTP</td>
<td>Secure File Transfer Protocol</td>
</tr>
<tr>
<td>SOCOM</td>
<td>United States Special Operations Command</td>
</tr>
<tr>
<td>SSID</td>
<td>Service Set Identifier</td>
</tr>
<tr>
<td>TKIP</td>
<td>Temporal Key Integrity Protocol</td>
</tr>
<tr>
<td>UAS</td>
<td>Unmanned Aircraft Systems</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned Arial Vehicles</td>
</tr>
<tr>
<td>UI</td>
<td>User Interface</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>USSTRATCOM</td>
<td>United States Strategic Command</td>
</tr>
<tr>
<td>WEP</td>
<td>Wired Equivalency Privacy</td>
</tr>
<tr>
<td>WNIC</td>
<td>Wireless Network Interface Card</td>
</tr>
<tr>
<td>WPA</td>
<td>Wi-Fi Protected Access</td>
</tr>
<tr>
<td>WPA2</td>
<td>Wi-Fi Protected Access II</td>
</tr>
</tbody>
</table>
I. Introduction

1.1 Overview and Background

The increasing capabilities of commercial drones have led to blossoming drone usage in private sector industries ranging from agriculture to mining to cinema [1]. Commercial drones have made amazing improvements in flight time, flight distance, and payload weight. These same features offer a unique and unprecedented commodity for wireless hackers—the ability to gain ‘physical’ proximity to a target without personally having to be anywhere near it. This capability is called Remote Physical Proximity (RPP). By their nature, wireless devices are largely susceptible to sniffing and injection attacks, but only if the attacker can interact with the device via physical proximity. A properly outfitted drone could increase the attack surface with RPP (adding a range of over 7 km using off-the-shelf drones [2]), allowing full interactivity with wireless targets while allowing the attacker to still remain distant and hidden.

These drones also provide the means to collect targeted geolocation information of wireless devices from long distances passively, which is of significant value from an offensive cyberwarfare standpoint.
1.2 Research Goals

The goal of this work is to evaluate a drone-based attack system’s ability to track its targets by passively sniffing Wi-Fi signals and to develop a framework for an effective directional wireless ‘cyber-attack drone.’ The range and precision capabilities offered by the use of a directional antenna have yet to be explored. Development of this drone helps determine the threats posed by the inevitable rise of the ‘cyber-attack drone’ and help develop countermeasures to mitigate their effects.

1.3 Problem Statement

This work attempts to investigate the threats, capabilities, and necessary mechanics of a new wireless attack vector in the form of drone-mounted wireless attack systems. Evaluating the limits and capabilities of these devices is a necessary step to identifying what threats and privacy concerns exist. Because few documented platforms exist, this research identifies limitations and capabilities from a developer’s perspective.

This work also addresses geolocation via radiolocation. A unique weakness of wireless devices is that they are forced to leak transmission data whenever they are communicating—to include unencrypted Link Layer data. This information, which typically includes a unique identifier for each device, can be passively intercepted by an attacker with a nearby sensor and used to track and locate that device.

Collecting wireless data leakage with a directional antenna on a drone allows an attacker adds additional layers of insulation for an attacker trying to remain undiscovered. The directional antenna allows the drone to be out of earshot and visual range of the
victim, while the drone allows the attacker to theoretically be anywhere in the world by communicating over a mobile broadband connection. The stealth provided by a directional antenna drone is a distinct, invaluable advantage over traditional wireless wardriving and attack methods. However, directional Wi-Fi geolocation has not been previously evaluated from long distances and presents high potential for error. This research seeks to find operational parameters that, when employed by a drone-mounted wireless attack platform, help reduce geolocation prediction errors as well as identify ways to improve geolocation via directional Wi-Fi captures in the future.

1.4 Hypotheses

This research hypothesizes that geolocation by radiolocation of Wi-Fi signals using a directional antenna can be effective at up to 600 m with a prediction error below 15% of the distance between the sensor and Wi-Fi target device. These predictions are calculated from Global Positioning System (GPS) coordinates of collection points and bearing to the target from the collection point. Bearing is predicted by mapping Received Signal Strength Indication (RSSI) values as the antenna rotates. Multiple geolocation predictions are then processed in a systematic way to provide a final coordinate prediction.

Secondly, this research also hypothesizes that a functional prototype payload for conducting Computer Network Operations (CNO) can be built cheaply (less than $500), functionally lightweight (below 1 kg), and quickly (in less than 4 months) by a single motivated threat actor with the purpose of leveraging unique drone-borne capabilities. This threat actor is simulated by the author.
1.5 Approach

An existing, stationary sensor prototype is used to manually gather bearing predictions via RSSI mapping from cell phones acting as Wi-Fi hotspots (the ‘targets’). These targets are placed at least 3 times the typical maximum range away from the sensor. According to the assumptions listed in Section 1.6, this means experimentation starts at 300 m away from the targets.

A partial-factorial experiment is run on several parameters to test their effect on geolocation accuracy. This data is then be used to create geolocation predictions by calculating the geodesic intersection of each pair of coordinates and bearing readings. Patterns and parameters that statistically yield the best results or best likelihood of results are evaluated.

A new prototype, designed with specifications that make it viable for flight on a drone and autonomous from the drone’s internal architecture is developed as a framework for conducting geolocation via radiolocation in addition to other advanced attack and intelligence gathering functions.

1.6 Assumptions and Limitations

This research is conducted under the following understood assumptions and limitations, namely:

- Geolocation attempts are performed in an open field. Obstructions are thus kept to a minimum. While not realistic in an urban environment, this keeps experimental results as controlled as possible and eliminates unknown factors.
• Geolocation tests are performed from elevated but ground-based platforms (not yet mounted to airborne vehicles).

• Although dependent on many variables, a typical maximum distance for consumer Wi-Fi devices is assumed to be 50 m indoors and 100 m outdoors, so this research starts experimentation at 300 m.

• Additionally, this work limits the amount of coverage the collection device may encircle the target to a maximum of 90°. This is chosen both because of space limitations and because smaller angles of coverage, which reduce the distance a drone has to fly around a target, provide more stealth (the more the drone has to fly, the more likely it is to be observed).

• Electromagnetic interference created by the prototype is considered non-destructive in the 2.4 GHz frequency range and ignored.

• Surrounding traffic (to include Wi-Fi traffic from non-experiment devices) in the 2.4 GHz is potentially disruptive but is considered what typical for an urban environment.

• Wireless sniffing in this research is limited to Wi-Fi signals in the 2.4 GHz range.

1.7 Contributions

This research contributes to the body of airborne wireless attack research, specifically wireless network localization. It presents empirically identified recommendations for improving geolocation from distances 3 to 6 times the typical maximum outdoor range of Wi-Fi devices.
This research also presents an improved and operational hardware prototype and software framework designed for remote collection and communication. The prototype is ready to be extended for advanced attack and intelligence-gathering capabilities.

1.8 Thesis Overview

This thesis is arranged in six chapters. Chapter 2 provides a brief background in drone technology, current wireless technology and security measures, an overview of cyberspace operations, and related research in drone usage for cyber operations. Chapter 3 briefly describes the design of a stationary hardware/software prototype used for bearing and geolocation predication. It also presents the design details of a novel hardware prototype and software suite designed to demonstrate and expand the utility of drone-borne cyber operations. Chapter 4 describes an experiment to evaluate geolocation of other wireless devices using directional antennae. Chapter 5 discusses the results of the experiment, while Chapter 6 summarizes the research and presents opportunities for future work in this field.
II. Background and Related Research

2.1 The Scene

The critically-acclaimed 2007 video game *Bioshock* takes place in an elaborate pressurized city constructed at the bottom of the Atlantic Ocean. “Rapture,” the opulent elusive art-deco city was intended to be an objectivism-based utopia “where the artist would not fear the censor...where the scientist would not be bound by petty morality,” but the city forged on Objectivism rapidly fell into a technologically impressive but nightmarish landscape [3]. Among these futuristic science-fiction curiosities are the monstrous lethal security drones. These drones—which are cheap enough for personal use—are controlled wirelessly, capable of prolonged flights, autonomous flight and navigation, and carrying heavy payloads (usually guns). The idea is unsettling: an autonomous highly mobile machine that acts on behalf of a warfighter. While they serve to make a thought-provoking and unsettling gameplay mechanic, advanced drones technologies like those in *Bioshock* threaten to leap from the rendered screens of dystopian science fiction to the real world in the coming years.

To a room full of junior officers in late 2016, US Strategic Command (USSTRATCOM) commander General John E. Hyten cited drones and the continued exponential growth in data bandwidth and computer processing power to be among some of the largest game-changers in warfare during the next 10 years [4]. He cautioned that the Department of Defense (DoD) may not be able to keep up with these rapidly growing
technologies, and worried adversaries would be faster to adapt items such as commercially-available drones and repurpose them for malicious and terrorist activity. “If you thought technology has come a long way in the past ten years, then you better strap in for the next ten.” [4]

2.2 Overview

To accurately understand future drone-based threats, it is necessary to understand the current state of the commercial technology industry, which has been defined by a culture of rapid and volatile change since the beginning of the 21st century. This research focuses on the evolving fields of drones and wireless technologies, with a special interest in where they intersect in the interests of cybersecurity. This chapter explains the current state of drone usage in the military and commercial sector (Sections 2.3.2 and 2.3.3 respectively), gives a background in wireless security protocols and current attacks against them (Sections 2.4 and 2.5), briefly discusses the Internet of Things (Section 2.6), introduces cybersecurity and warfare topics (Section 2.7), and finally explains current research surrounding using drones for cyberspace operations (Section 2.8).

As shown in Figure 1, this research combines the cybersecurity aspects of wireless technology with the expanded attack surface presented by current consumer drone capabilities when targeting public and private wireless consumer technologies. The intersection of these fields is the focus of this research. More specifically, this research aims to understand and mitigate digital threats posed by man-portable Multirotor-UAVs (MUAVs) when equipped with Computer Network Attack and Exploitation (CNA &
CNE) capabilities via Wi-Fi. Such understanding can lead to mitigation techniques to help protect privacy of wireless users and the data confidentiality of organizations using wireless devices on their networks.

Figure 1. Exploded Venn-diagram highlighting the intersection of MAUVs, Wi-Fi, and CNA/CNE, which is the focus of this research

2.3 Drones

2.3.1 Terminology

“Drone” is a blanket term for Unmanned Aircraft Systems (UAS) as well as Unmanned Arial Vehicles (UAV). UAV refers to the aircraft vehicle alone, but the term has been revised to UAS so it includes the ground and communication links necessary to operate it. According to United States (US) public law, a UAS is defined as an aircraft
that is operated without the possibility of direct human intervention from within or on the aircraft [5].

Another important subcategory of drone is the multirotor, which consists of fixed-pitch blades affixed to multiple rotors. Flight control is maintained by varying the relative speed of each rotor, a scheme that is relatively easier to build and control than the traditional helicopter. While finally proven to be capable of manned flight in 2011 [6], almost all are unmanned, controlled by a combination of onboard circuitry and a wireless link to a ground station. Such devices are typically small enough to be man-portable, and are classified as miniature-UAVs. Common configurations include the 4-rotor quadcopter and 8-rotor octocopter [7], which have enjoyed explosive growth in the commercial market and increasing interest in the research community. For simplicity and consistency with current terminology, this thesis refers to unmanned man-portable multirotor devices and systems as *Multirotor-UAVs* or *MAUVs*.

2.3.2 Military Drones

Drones have undergone rapid development and acquisition in the government since the turn of the millennium. From 2005 to 2012, the number of countries that have acquired drones nearly doubled according to a U.S. Government Accountability Office (GAO) report [8]. The GAO also states the United States government has determined drone development and acquisition supports national security interests. Meanwhile, terrorist organizations also seek to acquire drone systems for attacks and intelligence gathering against US interests.
The DoD has been fielding and testing tactical applications of miniature-UAVs (not to be confused with Multirotor-UAVs) at a moderate rate. Among these technologies include Massachusetts Institute of Technology’s “Wide Area Surveillance Projectile,” a prototype drone that could be shot out of a 155-millimeter naval gun then sustain an independent flight of 15 minutes [9]. The project, which was developed for the US Army, quietly disappeared after initial announcements.

In respect to MAUVs specifically, the DoD is also entering the arena. In June 2016, US Special Operations Command (SOCOM) issued a Joint Urgent Operational Needs Statement requesting 325 “Lethal Miniature Aerial Missile Systems” to assist and replace the current tactical MAUV platform, which it started using in 2013 [10] [11]. The request, a contract of at least $51.4 million was fulfilled within the year by the AeroVireonement Switchblade, capable of 100 mph speeds, 15-minute flight time, and delivering explosives. For better or for worse, this technology is being embraced on all sides. While visiting Mosul, Iraq, SOCOM commander General Ray Thomas witnessed ISIS employing modified commercial off-the-shelf quadcopters to fire 40-millimeter ordinances.

At the 28th Annual Special Operations/Low-Intensity Conflict Symposium & Exhibition, James Gerts, Assistant Security of the Navy for Research, Development, and Acquisition, stated, “the threat is really changing...[with] this explosion of commercial technology...each individual technology path [is] on an accelerated schedule. When you start stacking accelerations on top of each other, pretty soon you’ve got autonomous
swarms of drones with facial recognition attacking you on the battlefield. And so how do you get out in front of that?” [11] [12]

2.3.3 Commercial Drones

The commercial drone market has made astounding technological advances and market growth. Previously only available to hobbyists who chose to build them, consumer drones have fallen into the reach of a wide consumer base. Drones are expected to rise to a $4.6 billion and $6.6 billion industry for the personal and commercial markets respectively by 2020 [13] [14]. This trend can be explained as a combination of the long-awaited publication of actual Federal Aviation Administration (FAA) drone policy, a highly competitive market, and important technological advances, the first being miniaturized fixed-wing multirotor control around 2005 [15]. High-density lithium-polymer batteries, miniaturized actuators and sensors, and brushless electric motors are important components that have been vital for the success of the commercial drone. Finally, the smartphone revolution, which lowered the cost and size of components such as mobile processors, camera sensors, and Wi-Fi chips made an inevitable perfect storm that launched drone technology.

Table 1 illustrates some current specification of drones on the consumer market in 2018. Notably, it demonstrates that for less than $1,000, several different models can easily fly over twenty minutes and cover over two miles. This growth of capability is remarkable considering the personal drone barely existed pre-2012.
Table 1. Specifications of Popular Consumer Drones in 2018 [2]

<table>
<thead>
<tr>
<th>Model</th>
<th>Manufacturer</th>
<th>Camera (MP)</th>
<th>Maximum Flight Time (minutes)</th>
<th>Maximum Flight Distance (miles)</th>
<th>Maximum Horizontal Speed (mph)</th>
<th>Weight (grams)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phantom 3 Pro</td>
<td>DJI</td>
<td>12</td>
<td>23</td>
<td>3.1</td>
<td>38.5</td>
<td>1280</td>
<td>$800</td>
</tr>
<tr>
<td>Phantom 4 Pro</td>
<td>DJI</td>
<td>20</td>
<td>30</td>
<td>4.3</td>
<td>45</td>
<td>1370</td>
<td>$1,200</td>
</tr>
<tr>
<td>Inspire 1 Pro</td>
<td>DJI</td>
<td>16</td>
<td>15</td>
<td>3.1</td>
<td>40</td>
<td>3500</td>
<td>$3,000</td>
</tr>
<tr>
<td>Inspire 2</td>
<td>DJI</td>
<td>20</td>
<td>27</td>
<td>4.3</td>
<td>58</td>
<td>4000</td>
<td>$4,900</td>
</tr>
<tr>
<td>Spark</td>
<td>DJI</td>
<td>12</td>
<td>16</td>
<td>1.2</td>
<td>31</td>
<td>300</td>
<td>$550</td>
</tr>
<tr>
<td>Mavic Pro</td>
<td>DJI</td>
<td>12</td>
<td>27</td>
<td>4.3</td>
<td>40</td>
<td>730</td>
<td>$700</td>
</tr>
<tr>
<td>Mavic Air</td>
<td>DJI</td>
<td>12</td>
<td>21</td>
<td>2.4</td>
<td>42</td>
<td>430</td>
<td>$800</td>
</tr>
<tr>
<td>Bebop 2 Power</td>
<td>Parrot</td>
<td>14</td>
<td>30</td>
<td>1.2</td>
<td>40</td>
<td>525</td>
<td>$600</td>
</tr>
<tr>
<td>X-star Premium</td>
<td>Autel</td>
<td>12</td>
<td>25</td>
<td>1.2</td>
<td>35</td>
<td>1600</td>
<td>$1,600</td>
</tr>
<tr>
<td>Breeze</td>
<td>Yuneec</td>
<td>16</td>
<td>12</td>
<td>0.1</td>
<td>11</td>
<td>350</td>
<td>$180</td>
</tr>
<tr>
<td>Typhoon H Pro</td>
<td>Yuneec</td>
<td>12</td>
<td>22</td>
<td>1</td>
<td>30</td>
<td>1695</td>
<td>$1,000</td>
</tr>
<tr>
<td>H920 Plus</td>
<td>Yuneec</td>
<td>16</td>
<td>24</td>
<td>1</td>
<td>25</td>
<td>4990</td>
<td>$2,800</td>
</tr>
<tr>
<td>H520</td>
<td>Yuneec</td>
<td>20</td>
<td>28</td>
<td>1</td>
<td>38</td>
<td>1633</td>
<td>$3,000</td>
</tr>
</tbody>
</table>

With the commercial-off-the-shelf “hobby” drone approaching single flight times of 30 minutes, horizontal speeds of over 50 mph, and flight ranges of over 4 miles, the applications reach beyond entertainment and into the realm of commercial utility. Drones are increasingly employed in the construction, agriculture, insurance, oil refining, police, fire and rescue, journalism, real estate, utility, and cinema industries [18]. While the applications vary, so far, the primary usage of drones in these industries derives from some type of data collection (video feed, pipeline surveillance, capturing sensor data, monitoring pipelines, etc.) [16]. Drones used for data collection typically require little modification from their out-of-the-box configuration to achieve their goals.
Tech companies have initiated plans for drones that go beyond data collection, such as Amazon’s exploration into drone-based delivery or Facebook and Google X’s attempt to use drone to deliver Internet connectivity, but the success and sustainment of those projects has yet to be evaluated [17].

2.3.4 Academic Interest

Multirotor copters have also been a popular topic in the academic community, with 282 IEEE publications between 2015 and 2018 using the keyword “multirotor.” Such papers include enhancements such as infrared assisted landing [18], computationally-efficient trajectory generation [19], video stabilization [20], automated battery swapping [21], and multi-sensor navigation in GPS denied environments [22]. Figure 2 show numbers of UAV papers identified from the top eight journals/conferences over the years 2001–2016. The points have been interpolated with an exponential curve [23].

![Figure 2. Number of UAV papers published from the top eight journals/conferences [23]](image-url)
It can be expected, due to consumer and academic interest, that drone capabilities will continue to increase in terms of autonomy, sensor accuracy, flight control, range and flight time, resiliency, and onboard artificial intelligence.

2.4 Wireless Technologies

This section discusses technical aspects of widely used wireless technologies that are deployed on devices ranging from routers, smartphones, drones, and other consumer and retail devices. The most applicable to this research is Wi-Fi.

2.4.1 Wi-Fi

Wi-Fi is a popular and widely used physical and link layer specification defined by the IEEE 802.11 (hereafter referred to as 802.11) standard [24]. The architecture is comprised of four major physical components: (i) access points (APs), (ii) wireless medium, (iii) stations (devices), and (iv) distribution systems (i.e., router) [25]. The wireless medium is the electromagnetic spectrum allocated in the 2.4 and 5.8 GHz radio bands, which are subdivided into different frequency channels. Client devices poll different channels to find APs and attempt to make connections. APs are typically assigned a service set identifier (SSID) to identify them locally. Devices wishing to connect to the system must first authenticate if the system has security enabled and then associate.

2.5 Wi-Fi Security Protocols & Attacks

The next section presents security protocols implemented for Wi-Fi, known attacks against them, and how the attacks can be augmented with the assistance of a drone.
2.5.1 Open Configuration

An “open” AP is one that has no encryption or authentication mechanism in place. As a result, traffic to and from open APs are susceptible to eavesdropping and injection attacks if not encrypted by a high-layer mechanism such as Hyper Text Transfer Protocol Secure (HTTPS). They are also much easier for an attacker to spoof (digitally masquerade as someone else for illegitimate gain), which can lead to Man-in-the-Middle attacks.

Despite the insecurity, open APs are common in areas that offer public Wi-Fi. Out of user convenience, many contemporary smartphones probe for all Wi-Fi APs they have connected to in the past using a special broadcast called a ‘Probe Request,’ unintentionally leaking the SSID of every network the phone has ever connected to. A list of previous associations can also be used to help uniquely profile a device. Connection authentication only requires the SSID to match, so an unassociated smartphone automatically attempts to connect to any AP with a previously associated SSID, even if the AP illegitimate.

For quality of service, if multiple APs of the same SSID are within range, a Wi-Fi client chooses to associate with the stronger signal. An attacker can deauthenticate the connection using a special 802.11 packet sent to the client. Then, the target device attempts to reconnect to the AP of the corresponding SSID with the strongest signal. For open APs, this presents a vulnerability because an attacker can take control of the new session if they set up an “evil twin” (a spoofed AP with the same SSID) that is closer or has a stronger antenna than the legitimate one [26]. An evil twin attack is one that can
be easily done with a drone, as drones can carry equipment capable of spoofing APs and have mobility to attain proximity to deliver a strong signal to a given target.

2.5.2 WEP

The Wired Equivalency Privacy (WEP) was the first security algorithm for 802.11, utilizing the Rivest Cipher 4 (RC4) stream cipher for encryption, the Cyclic Redundancy Check 32-bit (CRC-32) checksum for integrity, and secured by a 10 or 26 hexadecimal key. Initially designed to provide the confidentiality of a wired network, an implementation flaw was demonstrated in 2001 that allows the key to be cracked with cipher-text alone [27]. Because RC4 is a stream cipher, it is important to prevent an identical message traffic key from being generated. An initial vector (IV) field is usually supplied to prevent such repetition, however WEP uses an IV that is only 24 bits long. According to the famous birthday paradox, of the 16.7 million possible IVs, a repeat can be expected with a 50% probability after 5,000 frames. With 99% confidence, a repeat happens after 12,400 frames. Since IVs are passed plaintext, it is easy for an attacker to know when this has occurred.

Improvements to the attack, such as simulated packet replay to increase traffic and speed up the attack and open-source hacker tools such as aircrack-ng soon showed that WEP could be cracked within minutes. Now depreciated, WEP usage has dropped from its peak of 45% in 2010 to 7% in 2018 [28].
2.5.3 WPA

While Wi-Fi Protected Access II (WPA2) was the recommended solution to WEP, Wi-Fi Protected Access (WPA) was designed to be an intermediate solution for hardware that could not support WPA2. Utilizing the Temporal Key Integrity Protocol (TKIP), a new 128-bit key is generated for each packet, making WPA resilient to IV attacks that compromised WEP.

Both WPA and WPA2 (discussed next) offer two versions tailored to different end-user architectures: WPA-PSK and WPA-Enterprise. WPA-PSK, or WPA-Personal, is designed for home and small office use where clients authenticate with a pre-shared key (PSK), typically in the form of an 8-63 ASCII passphrase [24]. WPA-Enterprise is also known as WPA-802.1X and requires an authentication server to be on the network.

2.5.4 WPA2

IEEE 802.11i-2004 is an amendment to the original standard that introduced Wi-Fi Protected Access II (WPA2), the replacement for the broken Wired Equivalent Privacy (WEP) and deprecated Wi-Fi Protected Access (WPA) [29]. Using the PSK or authentication server parameters, WPA2 devices generate a Pairwise Master Key (PMK) using a cryptographic hash function to secure communication. The PMK itself is never sent over the wire yet can still be verified by both sides to provide secure authentication. A temporary key called the Pairwise Transient Key (PTK) is generated from the PMK for each connection.
WPA2 utilizes the Extensible Authentication Protocol (EAP) over LAN (EAPOL) four-way handshake between the AP and client during authentication. Figure 3 depicts the handshake, with the AP on the right and the client station on the left:

- The AP first sends a one-time use, random 256-bit value called the “ANonce,” (‘A’ for AP)
- The client responds with its own 256-bit random “SNonce,” (‘S’ for station) along with a Message Integrity Code (MIC). The client can now derive the PTK from nonce values and the two parties’ Media Access Layer (MAC) addresses.
- The AP can use the ANonce, SNonce to derive the PTK as well. It verifies the MIC. If successful, it sends over other connection parameters, to include the Group Transfer Key (GTK).
- The station verifies the MIC to ensure the AP has the correct PTK. It sends back an ACK and a data connection can begin.

This handshake scheme is unique in that it allows both parties to independently prove to each other they both know the correct PMK without ever actually transmitting it. While the details are beyond the scope of this research, it is important to know that the authentication is possible because both parties send specific messages encrypted by the independently generated PMK. If both devices can decrypt each other’s message and get the expected plaintext, then a secure session can begin.
Among other implementation changes, WPA2 utilizes the Advanced Encryption Standard (AES) block cipher instead of the RC4 stream cipher, which increases cryptologic diffusion.

2.5.5 WPA and WPA2 Brute Force Attacks

WPA-PSK and WPA2-PSK are considerably more difficult to compromise than WEP, but they are still susceptible to brute-force or dictionary-building attacks [29]. Here, an attacker must try a potential passphrase, calculate the message authenticity check in the same way a legitimate device does, then verify if the password is correct. For WPA and WPA2, parameters that are used in the computation must first be acquired by capturing an initial handshake of a legitimate party. For WPA2, the EAPOL four-way
handshake messages depicted in Figure 3 contain all the information that is needed to verify if a passphrase is correct. After sniffing a single legitimate handshake, the attacker is free to passively test as many guesses as desired. This can be done without further interacting with the network until the correct passphrase is found.

WPA and WPA2 have security measures to make this attack less effective. When using the PSK method, a 256-bit shared encryption key is created for the AP. This is done by concatenating the passphrase, SSID, and length of the SSID string, hashing them 4,096 times using HMAC-SHA1, then feeding the result into an RSA key derivation function. Devices then encrypt their sessions with a 128-bit key derived from it.

The purpose of hashing 4,096 times is to slow down the speed of an attacker attempting to brute-force guess the passphrase. An attacker must perform 4,096 hashes for each guess, adding computational complexity required for each guess. Since the SSID is used as a salt to the passphrase, encryption key pairs are unique to the SSID. Thus, an attacker cannot build a universal pre-built table of passwords and their corresponding encryptions keys (known as a rainbow table). Each table is only relevant to a specific SSID. Still, analysis of worldwide deployments shows that the 100 most common SSIDs compose 11.97% of all APs worldwide [28], so some pre-computed tables have generalized usefulness. Using a valid rainbow table allows an attacker to search if a given AP uses any of the precomputed passwords in linear time. The tradeoff with rainbow tables is the extreme memory space required to store them as well as the time required to compute them in the first place. Pre-computed rainbow tables for the top 1000 SSIDs and common passwords are available online [30].
2.5.6 WPA3

First announced in January 2018, WPA3 offers security upgrades, such as updating the handshake to make password brute-forcing more difficult. Since the market share that implements WPA3 is less than 1% [28], this research does not further investigate WPA3.

2.6 IoT

Conceptually, the Internet of Things (IoT) can be summarized as the combination of humans, dedicated physical devices, and Internet connectivity [31]. With an emphasis on sensors, controllers, actuators connected to the Internet, IoT continues to increase the physical influence cyberspace has on the “real world,” further empowering the cyber domain. While this adds benefits in the form of convenience and automation for consumers, it also increases the risk for data leakage, compromise, privacy violations, and kinetic attacks enabled by cyber-attack [31]. Additionally, as the emerging market is fast-paced and full of competition, cybersecurity mechanisms are typically an afterthought. One would expect IoT locks to be reasonably secure, yet Rose demonstrated in 2016 that 12 out of 16 Bluetooth Low Energy locks could be compromised [32].

Regardless of the consequences, even conservative estimates of IoT devices projects a number over 10 billion by 2020 [31]. With heavy integration into homes and businesses (appliances, sensors, personal devices, cameras, smart hubs), it is vital to understand the cyber and wireless-related risks of employing IoT devices.
2.7 Cybersecurity and Information Warfare

In 2001 Secretary of Defense Robert M. Gates stated, “cyberspace and its associated technologies offer unprecedented opportunities to the US and are vital to our Nation’s security, and by extension, to all aspects of military operations.” [33] Increasingly, the information domain has played a larger role in US warfare. “Hacking,” a fuzzy term usually referring to gaining unauthorized access to electronic information systems, has gone from a fringe hobby to a formalized profession. Such expertise is leveraged offensively, defensively, and passively. Different groups have different terms for each of these types of activity.

Joint Publication 3-12 defines Cyberspace Operations (CO) as comprised of Offensive Cyberspace Operations (OCO) and Defensive Cyberspace Operations (DCO) [33]. OCO is analogous to cyber-attack (a projection of force through cyberspace), and DCO is defensive or mitigation actions to prevent or recover from a cyber-attack. The terms OCO and Computer Network Attack (CNA) are interchangeable. Computer Network Exploitation (CNE) is a term used to describe digital exploitation, monitoring, and data collection used for the purpose of intelligence gathering with no projection of force. Sometimes intelligence gained from CNE can assist OCO, however in the context of US operations, the two operate under different legal authorities.

As hacking has matured, so have the tactics, techniques, procedures, and terminology [26]. Though variations exist, a common methodology is largely recognized for the attack process that is depicted in Table 2.
Table 2. Hacker Methodology

<table>
<thead>
<tr>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconnaissance</td>
</tr>
<tr>
<td>Scanning / Enumeration</td>
</tr>
<tr>
<td>Gaining Access</td>
</tr>
<tr>
<td>Privilege Escalation / Pivoting</td>
</tr>
<tr>
<td>Maintaining Access</td>
</tr>
<tr>
<td>Covering Tracks</td>
</tr>
</tbody>
</table>

Of the steps in the methodology, drones can provide a distinct advantage in the first three steps: Reconnaissance, Scanning/Enumeration, and Gaining Access.

Reconnaissance is passive information gathering of a target. It is a systematic attempt to identify, locate, and collect information. The more that is known about a target, the easier Gaining Access is. Drones also have the advantage of mobility and geographic awareness, allowing the ability to add geographic data (latitude, longitude, altitude, etc.) to information collected.

The next phase, Scanning and Enumeration, is an active attempt to interact with a computer system to elicit a response. It is used to identify relevant technical information about a system for the purpose of gaining access. This includes identifying open ports, applications, services, operating systems, vulnerabilities, and security measures. When enough information is gathered, an actual attempt to gain access can be made based on known attack vectors. This can be accomplished in many ways, to include exploitation, social engineering, or password cracking [26].

There are many possibilities in the Scanning/Enumeration and Gaining Access phases that an attacker could benefit from by using drone technology. A drone with a
properly equipped Wireless Network Interface Card (WNIC) can surreptitiously allow an attacker to capture and interact with wireless traffic as if they are physically close (also called Remote Physical Proximity).

Privilege escalation involves taking steps to acquire higher levels of access beyond the level in which they first gain access, while maintaining access consists of attaining more persistent, simpler, or redundant methods of control from the original entry vector. Covering tracks consists of taking steps to prevent discovery by legitimate users and administrators.

2.8 Related Research

This section investigates developments and research that employ drones for collecting or interacting with wireless networks. Research about augmentations that could increase the drone hacking capabilities are also presented.

2.8.1 Wireless-Sensing Drones

Some drones may be configured to have the capability to detect and monitor wireless traffic. These can be used to target specific wireless protocols, such as Wi-Fi, Bluetooth, or Global System for Mobile communications (GSM). The existence of drones designed for such a purpose are rare but do exist. For instance, in 2015 a modified DJI Phantom was used over Los Angeles by the marketing company Adnear (now renamed to Near) to collect unique device identification data from Wi-Fi connections for the purpose creating targeted advertisements [34].
Wi-Fi devices use a Wireless Network Interface Controller (WNIC) to collect wireless traffic. WNICs are capable of up to three modes: managed, promiscuous, and monitor mode. In normal circumstances, the WNIC is set to managed mode, which means the card checks incoming frames for the intended destination address. A “frame” is the name for a data-link layer message, often containing a packet of information. If the destination field matches the device’s globally unique Media Access Control (MAC) address, the wireless card continues to process the packet and move it up the network stack. However, if the MAC does not match, the frame is dropped if the card is in managed mode. If a card is set to monitor mode, it processes and stores all intelligible frames, regardless if it is for the intended destination [22]. This allows the device to “sniff” all the traffic in the air around it. This includes connection attempts, unique MAC addresses, connection information, SSID broadcasts, and other significant data about local users [24].

The extent to which an entity processes and uses this data may be of interest for privacy advocates. In the case of the Adnear drone, information was correlated to assist in location-based advertisement targeting. The potential possibilities of what can be done with similar data is discussed in the next section. These collections may be done with stationary wireless devices, however a drone equipped for a similar task can cover a larger geographic area and integrate location data. As current FAA regulations are safety-focused and not privacy-focused, there are few checks on these drone capabilities.
2.8.2 Identification from Location

According to a report by Massachusetts Institute of Technology researchers, “uniqueness of human mobility traces is high”—that is, using even coarse data sets and minimal samples, it is fairly easily to identify a user by their distinct but predictable physical location data [35]. Since smartphones and other personal devices often beacon frames with a static MAC address, it is easy to passively collect unique location information. Mounting that capability on a drone makes the attack even more powerful to do with drones. The report found that any cellphone user can be uniquely identified with 95% confidence if given just four location data points. With eleven data points, the researchers were able to identify all 1.5 million cell users in an undisclosed “small European country.” The dataset was not particularly extensive or complex, consisting of a list of users tagged by their closest cellphone tower once an hour.

2.8.3 Proof of Concept: Drones That Can Hack

While much academic focus and articles exist for hacking drones (where the drone is the target) [36], there are only a few examples of developing drones that hack (where the drone is the attacker). However, a few examples exist.

A proof-of-concept fixed wing drone running the Backtrack 4 operating system was developed by two security researchers in 2011. The drone weighed 13 pounds and could allegedly intercept phone calls by mimicking a cell phone tower, among other capabilities [37].
Shown in Figure 4, a rudimentary proof-of-concept hacking MUAV was demonstrated in 2015 using DJI Phantom 2 Vision+ with a Raspberry Pi and omnidirectional antenna [38]. The total cost was roughly $1,200. The drone achieves communication with the hacker via a 3G dongle and was demonstrated as connecting to an open AP then performing arbitrary remote code execution on a demo Windows XP machine using the classic MS-08-067 “netapi” exploit. “Snoopy,” a component referenced in the figure, is a distributed tracking and profiling framework for wireless devices developed by Sensepost, a consulting arm of Europe’s SecureData, perhaps one of the most sophisticated frameworks publicly available in this field [39]. The “802.11 mini card” in the figure enables a Wi-Fi link between the Alfa wireless card and the 3G dongle, many of which provide connectivity through a mini-hotspot.
Figure 4. DJI Phantom 2 Vision+ with an omnidirectional antenna payload (above) and accompanying component schematic (below) [38]

Perhaps the most sophisticated publicly recognized hacking drone, the “Danger Drone” is a prototype consisting of a Raspberry Pi on a custom drone created by two researchers from Bishop Fox in 2016, presenting at the popular hacker DEFCON and
Black Hack conferences in 2017 [40]. Hacking capabilities are established through the Raspberry Pi’s WNIC. The drone has a 1.2-mile range and reportedly can use a cellphone module for control over a cellular Long-Term Evolution (LTE) connection. The total cost of parts is listed at just below $500. The drone was presented as a penetration test tool to measure the effectiveness of drone defense deployments.

2.8.4 Directional Antenna

A directional antenna offers a unique advantage over the more commonplace omnidirectional antennas in that they can offer a larger sensing range. Because they also have a limited bearing, a rotating antenna can determine the relative angle at which a target signal is strongest. Law demonstrated a median bearing accuracy of 9° using a Yagi directional antenna connected to a stepper motor and Raspberry Pi [41]. With multiple data points at multiple different locations, bearing and signal strength could be used to triangulate the actual position of a target.

2.8.5 Data Leakage

After capturing Wi-Fi and Bluetooth Low Energy (BLE) frames of a smart home in 2018, Beyer created a program that can correctly classify devices with a 94% accuracy for Wi-Fi and a 75% success rate for BLE [42]. On average, the research demonstrated a 95% accuracy at detecting events such as a door opening or camera detecting motion. This was done even when the connections were encrypted—the data was derived purely from low-layer headers and other traffic properties such as frame size and rate. The
researcher further correlated the events to accurately assess pattern-of-life information about the human user’s daily schedule.

A similar mechanism can easily be employed on a drone to track pattern-of-life information of users and devices in a much larger geographic radius. If combined with a directional antenna, this could be done covertly by being multiple times away from the standard maximum range of 100 meters.

2.9 Background Summary

This chapter provides a brief summary of current military drone and commercial drone usage and capabilities. Wireless technology with an emphasis on Wi-Fi is discussed, along with associated security protocols and known attacks. The growing cyber-physical crossover caused by the rise Internet of Things (IoT) is explored. A primer on Cyberspace Operations and the role drones offer to enhance cyber-attack capabilities are explored, followed by developments and research areas that demonstrate drones currently participating in a similar capacity. This research contributes to the areas of drones, wireless technology, and cybersecurity.
III. Prototype Design

3.1 Overview

This research presents and analyzes data obtained from two different hardware and software prototypes:

localizer – a stationary, rotating directional Wi-Fi collection device. The antenna is rotated by a stepper motor and controlled by code written in Python. This is the same device and software used in Law’s thesis on “Passive Radiolocation of IEEE 802.11 Emitters Using Directional Antennae” [41].

This research builds on Law’s previous work by investigating the collection device’s viability at geolocation and bearing prediction accuracy at further distances. While equipped with a GPS module, localizer framework cannot determine compass bearing on its own and needs to be calibrated each time it is moved.

skypie – a lightweight, directional Wi-Fi collection device developed during this research. This prototype is the next iteration of localizer, with a focus on being viable for drone operations. Pilot tests indicated that using a stepper motor like that in localizer is excessively heavy and would make onboard compass readings unpredictable, so the antenna is fixed. Mobility and rotation will be accomplished through the rotation of the drone.

The skypie sensor payload is equipped with its own GPS and accelerometer, offering complete independence from the drone’s control architecture. The sensor can operate either autonomously or be controlled via configuration and commands sent over a 3G/4G
link. The codebase, written in Python, also contains \texttt{skyport}, a Python-based set of
web applications that can process and analyze data from multiple sensors and provides a
Graphical User Interface (GUI) for interacting and controlling \texttt{skypie} sensors.

The \texttt{localizer} prototype is shown in Figure 5 and described in Section 3.2.1, and the \texttt{skypie} prototype is shown in Figure 6. Figure 7 depicts an ‘exploded’ version
of the \texttt{skypie} hardware components for ease of viewing, which are described in Section
3.4.

\begin{center}
\includegraphics[width=\textwidth]{localizer Prototype.png}
\end{center}

\textbf{Figure 5. localizer prototype}
Figure 6. *skypie* sensor prototype
Figure 7. Hardware components presented in an ‘exploded’ fashion for ease of viewing.
3.2 System Summary

3.2.1 localizer Summary

As shown in Figure 5, the localizer prototype consists for a Yagi antenna and signal receiver mounted to a rod spun by a high-precision stepper motor. The stepper motor is powered by a 13 V DC power supply. Movement is managed by a stepper motor driver which is controlled by a Raspberry Pi via the General Input and Output (GPIO) pins, connected via the ribbon cable and breadboard. The Raspberry Pi is running the Raspbian Operating System (OS) powered by a separate Universal Serial Bus (USB) battery. Using an Ethernet cable, a user can connect to the Pi over Secure Shell (SSH) and initiate the localizer Python program, which performs packet and GPS captures. The Wi-Fi signal receiver and GPS module are used to digitize and analyze Wi-Fi packets and GPS signals. Figure 8 displays the prototype schematic of localizer.

For the standard use case, localizer takes in capture parameters such as sweep duration and angle. It uses multithreading to simultaneously start a packet capture, capture data from the GPS module, and spin the antenna. Upon completion, it processes each SSID beacon packet it sees, mapping the RSSI values over the time of the capture. It then returns the compass bearing at which it interpolated the highest RSSI value for each SSID using a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) interpolation algorithm. Because of size and weight additions necessary for the stepper motor (to include the stepper motor driver and 13V power source), the device is prohibited from practical used on a commercial MUAV.
Figure 8. localizer prototype schematic [41]
3.2.2 **skypie System Summary**

Figure 9 displays a high-level summary of the skypie/skyport system design, which is described in this section. Components outlined in solid blue are a part of the “kill chain” but not inside the system design. Components outlined in a dashed blue line are part of the system design but are not within the scope of this research.

The system is divided into two major components: the remote sensor (skypie payload) mounted to an MUAV, and the attacker’s workstation, which runs skypport to analyze sensor data and control remote sensor behavior. Each skypie payload has sensors for collection, data files, and a communication mechanism for uploading and downloading data. Data is exfiltrated over a cellular or Wi-Fi link to the Internet, with an Internet-facing server acting as intermediary. The attacker downloads raw data files to their workstation with the skypport software, which runs analysis and correlation algorithms. Results are displayed in a web application (web app). Results such as geolocation history and geolocation prediction are available to view over satellite imagery.

A typical use case is for a cyber attacker to deploy the sensor payload, amiably named a skypie, by mounting it underneath a medium to large MUAV. As the drone operator (who may or may not be the cyber attacker) flies the drone, the sensor captures Wi-Fi traffic as PCAP files in monitor mode. It also records GPS data (location, speed, angle, etc.) and magnetic compass bearing. New data files are then uploaded via either a cellular network connection from a USB modem, a separate Wi-Fi connection, or are stored
locally until a connection becomes available. Files are uploaded securely to an Internet-facing Secure File Transfer Protocol (SFTP) server. Each distinct sensor logs into a directory assigned to it with a unique password.

The cyber attacker can then use the `skypor`t software. With the ‘master’ SFTP credentials, `skypor`t downloads data from each sensor and execute analysis algorithms on new data, such as geolocation prediction. The cyber attacker can view the drone’s location history, configuration parameters, and analysis findings via a user-friendly web app hosted locally on their machine. The web app overlays telemetry information over satellite imagery to assist in CNA/CNE operations.

Note the attacker’s workstation never directly contacts the remote sensors, and additional steps can be taken to obscure attribution so the attacker can remain anonymous.

The cyber attacker can remotely change many of the sensor’s collection parameters, such as adding a Wireshark filter to Wi-Fi collection (to target specific traffic or save space), modify storage buffer sizes, toggle collection modes, alter upload and download intervals, and put the sensor into a ‘sleep’ mode, to name a few options. The cyber attacker can also send shell commands and scripts to be executed on the sensor even if the sensor is currently offline. These activities can be accomplished in the web app’s graphical User Interface (UI), or via modifying text-based configuration files that are uploaded to the SFTP server. The next time the sensor checks in, it sees new requests and executes them. Remote logs and command output are downloaded and available for viewing in the same fashion.
Extended uses for the \texttt{skypie/skyport} framework are explored in Chapter 6.
Figure 9. *skypie/skyport* system design
3.3 Design Goals

3.3.1 localizer Design Goals

According to Law [41], design goals for the localizer prototype are as follows:

i. **Low Cost.** A significant consideration for this research is the potential for low-cost applications. Prototype hardware is limited to commercial commodity hardware, and selection of the software framework and any libraries imported into the software project is limited to free open source software.

ii. **Low Weight.** This research intends to explore ways to quickly and accurately locate distant Wi-Fi access points from a UAV platform. Prototype hardware is selected that mimics the capabilities of a drone platform, namely low weight and antenna rotation control. Maximum prototype payload capacity is limited to 500 g, a reasonable payload for medium to large consumer UAVs [43].

3.3.2 skypie Design Goals

The prototype introduced by this paper is built upon the following design goals:

A **Low Cost.** Similar to localizer, skypie is developed with a target cost lower than $500 to represent the capabilities that can be attained from motivated but poorly resourced attacker. Note these costs do not include the drone itself.

B **Realistic Utility and Robustness.** This goal stresses the applicability for realistic CNA/CNE drone-based operations. It has several implications:
i. Sensor should operate autonomously or be able to be controlled remotely over a secure wireless channel. If communications are interrupted, they resume when available.

ii. Sensor should be capable of near-real time data feedback and control.

iii. Sensor should be able to operate and collect for multiple hours. This includes sufficient battery life during collection and local storage capacity.

C **Drone Architecture Portability.** Appliance should not be dependent on any other feature of the drone other than its capability to strap it on and carry it. This means the payload must have its own GPS module, accelerometer, and means for wireless command and control (C2) reachback to the attacker. This design goal causes important hardware and software changes to the design from the *localizer* prototype. The advantage of drone architecture independence is interoperability with any drone capable of carrying the weight. This is preferable because a payload using onboard drone features is likely be confined to one type of drone or control protocol, causing the device to have a higher chance of becoming outdated.

D **Low Weight.** Where the *localizer* design assumes telemetry and communication functions are to be performed by the attached drone, in accordance with Design Goal C, *skypie* requires additional components to give it independence from the drone. A 2017 review of commercial drones payload capabilities reveals that payloads up to 1 kg are supported by many medium to
large consumer drones, with higher end drones capable of up to 9 kg [44]. Maximum prototype weight is limited to 1 kg in this research.

3.4 **skypie** Hardware Design

Hardware components are chosen carefully to meet the design goals. Table 3 depicts a chart of all major hardware components, the specific models used, weight, and price at time of writing. Figure 10 shows a detailed schematic of how the hardware components are connected to each other.

![Figure 10. skypie payload hardware schematic](image)

- **Wi-Fi Antenna.** While there are many directional antennas, the Danets USB-Yagi TurboTenna antenna is chosen because of its small size (31.5 cm in length), low weight (137 g), inexpensive price, and commercial availability. The cross section is small, which is beneficial for MUAV flight in windy environments. The
Table 3. Prototype Hardware Overview

<table>
<thead>
<tr>
<th>Item</th>
<th>Model / Version</th>
<th>Weight (g)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wi-Fi Antenna</td>
<td>Danets USB-Yagi TurboTenna</td>
<td>137</td>
<td>$113</td>
</tr>
<tr>
<td>Wi-Fi Receiver Signal</td>
<td>USB WiFi Interface - DNX10NH-HP*</td>
<td>35</td>
<td>N/A</td>
</tr>
<tr>
<td>Computer</td>
<td>Raspberry Pi 3 Model B+ V1.2</td>
<td>68</td>
<td>$35</td>
</tr>
<tr>
<td>Digital Storage</td>
<td>16 GB SanDisk Ultra microSDCH UHS-1</td>
<td>1.7</td>
<td>$8</td>
</tr>
<tr>
<td>Microcontroller</td>
<td>Adafruit Metro 328**</td>
<td>16.5</td>
<td>$18</td>
</tr>
<tr>
<td>GPS External Antenna</td>
<td>Passive GPS Antenna uFL - 15mm x 15mm</td>
<td>5.5</td>
<td>$4</td>
</tr>
<tr>
<td>GPS</td>
<td>Adafruit Ultimate GPS Breakout - 66</td>
<td>8.5</td>
<td>$40</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>Adafruit Triple-axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accelerometer+Magnetometer (Compass)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Board - LSM303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td>Aibocn Power Bank 10,000 mAh External</td>
<td>247</td>
<td>$12</td>
</tr>
<tr>
<td>Reachback Communication</td>
<td>Unlocked Modem USB 4G LTE Huawei E397u-53 (T-Mobile, US only)***</td>
<td>51</td>
<td>$25</td>
</tr>
<tr>
<td>Optional Sensors</td>
<td>Raspberry Pi Sense HAT</td>
<td>20.4</td>
<td>$38</td>
</tr>
<tr>
<td>Structure</td>
<td>3D printed casing</td>
<td>52</td>
<td>$2</td>
</tr>
<tr>
<td>Structure</td>
<td>Mini-breadboard</td>
<td>13</td>
<td>$2</td>
</tr>
<tr>
<td>Miscellaneous Components</td>
<td>Screws, bolts, wiring, headers, USB cables, soldering</td>
<td>36</td>
<td>$16</td>
</tr>
<tr>
<td>Total (without Power Supply)</td>
<td></td>
<td>447</td>
<td>$316</td>
</tr>
<tr>
<td>Total (with Power Supply)</td>
<td></td>
<td>693</td>
<td>$328</td>
</tr>
</tbody>
</table>

*Price included with antenna

**Metro 328 can be replaced with Adafruit Metro Mini (3 g, $12). The full size is chosen for developmental accessibility only.

***Usage of the 3G/4G modem is not in the scope of this research
high-power beam width is approximately 56° with a gain of 18 dBi [45]. The antenna functions in the 2.4 GHz band.

- **Wi-Fi Signal Receiver.** The DNX10NH-HP USB Wi-Fi network interface comes packaged with the Yagi TurboTenna and reliably works out of the box with the Raspbian OS. It compares well to the popular Alfa AWUS036H USB wireless adapter commonly used for wireless cyberspace operations [41].

- **Computer.** The Raspberry Pi 3 Model B+ is an opportune platform for this application because of its low price point ($35), low weight (45 g), sophisticated features, and supported ecosystem. The abundance of USB ports and GPIO pins make it flexible for adding additional sensors.

- **Microcontroller.** While the Raspberry Pi functions as a full operating system, it does not offer real-time support for hardware modules. Many sensors, stepper motors, and other electronic components require a real-time controller to function. To accommodate the need for the GPS module and accelerometer, plus any hardware added later, the Adafruit Metro 328 is chosen because of its compatibility with the ubiquitous Arduino Uno (sharing the same Atmega328 chipset) and for the ecosystem it shares with other Adafruit components. The Metro 328 can be programmed using the free Arduino Integrated Development Environment (IDE). Power and programming can be accomplished via the onboard micro USB port, which also doubles as the power source. The Metro 328 is also available in a smaller form factor (3 g, $12), however for accessibility of development, the larger size is chosen (16 g, $20).
• **Global Positioning Module.** This Adafruit Ultimate GPS Breakout (66 channel with 10 Hz Updates Version 3) device is chosen over the cheaper GlobalSat BU-353S4 ($31) used in **localizer**. This choice is made to reclaim one of the USB ports being used on the Raspberry Pi, as well as to couple the accelerometer and GPS data into a single data feed, which is sent from the controller to the Pi. The Ultimate GPS Breakout is also technically superior to the GlobalSat BU-353S4, notably offering 10 updates per second if desired. A passive GPS Antenna uFL 1 dBi gain antenna is attached to boost reception.

• **Accelerometer.** The Adafruit Triple-axis Accelerometer+Magnetometer (Compass) Board is chosen because of its tiny form factor, ease of interaction, pre-built libraries, and satisfactory factory calibration settings. The underlying chip is the LSM303.

• **Power Supply.** The ideal power supply minimizes weight while maximizing power capacity. At 272 g and 10,000 mAh for $12, the Aibocn Power Bank External Battery Charger is acceptable.

• **Reachback Communications.** Though not in the scope of this research, the **skypie** payload is designed to be able to receive and transmit data via a 3G or 4G link. This can be done using a modem-mode 3G or 4G USB dongle and a Subscriber Identify Module (SIM) card with the appropriate data plan and service provider [46]. For experiments in this research, this link is simulated by the Wi-Fi connection using the Raspberry Pi’s native Wi-Fi interface (not the Yagi
antenna used for collection). According to Design Goal B i, the unit should still operate if cellular coverage is not in the area or if the link does not exist.

- **Optional Sensors.** This prototype includes a Raspberry Pi Sense Hardware Attached on Top (HAT), which was originally used for the compass sensor (ultimately not chosen because of the extensive calibration needs and software decencies), but kept for the 8x8 Red-Green-Blue (RGB) Light-Emitting Diode (LED) array. The LED array is useful for indicating the state of the device in development mode. The board also offers pressure, humidity, and gyroscopic sensors which are not currently used.

- **Structure.** A 3D-printed plate is designed to securely hold the components. It is printed using Polylactic Acid (PLA) biodegradable filament. The design is shown in Figure 11. Figure 12 shows where each piece fits on the assembled prototype.
Figure 11. 3D printed structure components

Figure 12. Structure components assembled on prototype
3.5 skypie Software

Prototype skypie software is written almost entirely in Python. The microcontroller code and geodesic intersection algorithm are written in C++. The codebase is a single repository divided into three packages: skypie, skyport, and shared. Important components and features of each packages are described in the next sections. The source code is not included in this document due it exceeding 4,200 lines of code.

3.5.1 Design Paradigm

To meet the design goals in Section 3.3.2, the software is designed with the following rules:

- Controllable settings of the sensor are in the form of a configuration file. This is how the attacker can control the behavior of sensor-related functions. An example of a skypie configuration is available in Appendix A.

- The program control is modeled as a control loop. At the beginning of each loop, the latest version of the configuration file is loaded.

- Subtasks (such as Wi-Fi collection, telemetry collection, file upload or download) are initiated using parameters (such as Wireshark filters, duration, interval) as specified by the latest configuration file.

 - These changes are only actuated when the previous iteration of the same task has been completed. This is chosen to benefit system stability and is a preferred Python programming practice.
• Tasks are completed asynchronously as threads. This takes advantage of multi-threading and allows multiple operations to occur at once.

• For collection-based tasks (such as Wi-Fi and telemetry), data files are written to a separate file per thread. This means data file sizes are managed by changing collection intervals. Files are named by start time.

• Tasks are broken into finite, interval-based tasks. This is chosen to prevent interrupting threads. The disadvantage is that data may be missed in between the short transition periods. The advantages include increased code readability, simpler implementation, better programming practices, and less potential for data corruption.

• Because both the sensor and the attacker are likely to not have static Internet-facing IP addresses, a public server is required to act as a ‘dead drop’. In practice, this is a web server the attacker has set up. The sensor uploads data using SFTP, and the attacker can login and download data from the sensors at any time.

• Analysis is performed on the attacker’s workstation. The attacker uses a secondary program (skyport), which utilizes the same looping and threading mechanism in the sensor. In this case, the control loop is responsible for managing uploads, downloads, and analysis on new files according to its skyport configuration file. An example of a skyport configuration file is available in Appendix A.

• If the sensor software is somehow killed, a chron job reinitiates it after 60 seconds and resumes operation. If the attacker wants to keep the sensor dormant, they can choose to put it in ‘off’ mode. Therefore, the sensor turns on every 60 seconds,
checks for an update, and turns back off. This is to support persistence and extend battery life. The *chron* job also initiates *skypie* software at bootup.

- The user interface should be friendly and as portable as possible to show 1) viability as a useful operational attack tool and 2) how easily cyber-attack drones can be harnessed by any threat actor once developed.

3.5.2 *skypie* Package

The *skypie* package contains code that runs exclusively on deployed sensor device (the Raspberry Pi) and has specific software requirements. Those requirements are listed in Table 4. Important design components of the *skypie* package are described in the following sections.

Table 4. *skypie* dependencies

<table>
<thead>
<tr>
<th>Package</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>iwconfig</td>
<td>Get Wi-Fi adapter settings, set monitor mode/channel</td>
</tr>
<tr>
<td>iwlist</td>
<td>Get Wi-Fi interface current channel</td>
</tr>
<tr>
<td>ifconfig</td>
<td>Prepare Wi-Fi interface for monitor mode</td>
</tr>
<tr>
<td>dumpcap</td>
<td>Capture packets from Wi-Fi interface</td>
</tr>
<tr>
<td>tshark</td>
<td>Makes packet captures available to Python for analysis</td>
</tr>
</tbody>
</table>

3.5.2.1 *main.py*

This module parses parameters and starts the execution of the manager module. Several parameters the program supports are “-a” which activates the main control loop, “-n”, which does not wait for a GPS satellite fix before starting, “-d” which shows debugging messages, and “-x”, which starts self-destruct mode. Self-destruct mode will
replace the sensor’s hard drive with 0’s until the system crashes. Self-sabotaging commands can also be executed remotely utilizing the `command.py` module described in Section 3.5.2.5.

3.5.2.2 manager.py

This module controls the activities of the rest of the program. Essentially, the other modules in the package offer services, such as Wi-Fi collection, telemetry collection, or data transfers. The manager module is responsible for keeping those services running as directed by the sensor configuration file. This behavior is summarized in Figure 13 and is further explained in the rest of Section 3.5.2.

![Figure 13: skypie control flow diagram](image)

Figure 13: skypie control flow diagram
Upon initiation by \texttt{main}, \texttt{manager} sets up data folders and checks for the \texttt{skypie} sensor configuration file (.\text{/synch/config.txt}), which has customizable parameters for operation. An example configuration file is given in Appendix A. Altering the configuration file is the recommended way to change sensor behavior. \texttt{manager} reads the current configuration (loading a default version if none exists), then creates a dictionary of threads for each important function. Each iteration of the loop checks for changes to the configuration file and starts new threads as needed.

Threaded tasks are intended to be finite and expire (for example, “collect Wi-Fi packets for 60 seconds”). When a thread completes, the main loop sees the expired thread and start another thread (for example, “collect for another 60 seconds”). If the attacker decides to turn off Wi-Fi collection, \texttt{manager} sees the Wi-Fi collection config value is now ‘off’, and does not initiate a new collection thread until that value is ‘on’ again. This is the same behavior that dictates all configuration changes. Note that once a thread is started, it is not interrupted, new settings apply only after the current thread has completed. This choice is made for system stability.

3.5.2.3 \texttt{collection.py}

This module handles collection of Wi-Fi packets by making a subprocess call to \texttt{dumpcap} after setting the selected interface into monitor mode. Parameters, such as Wireshark filter and duration are passed along. File output locations, including the entire data storage scheme are shown in Appendix A.
3.5.2.4 telemetry.py

This module handles parsing telemetry data, which comes from the microcontroller over a serial connection from the fourth USB port (/dev/ttyUSB0). Sentences are customized to this application, stripping National Marine Electronics Association (NMEA) data for relevant fields and adding the compass bearing from the accelerometer. An example of a skypie telemetry sentence is show in Figure 14, displaying fields, the index at which they can be found, and example values. Fields in indexes 4-6 are added for consistency with localizer GPS data even though the skypie sensor does not populate them.

<table>
<thead>
<tr>
<th>Index 0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>lat</td>
<td>lon</td>
<td>alt</td>
<td>lat_err</td>
<td>lon_err</td>
<td>alt_error</td>
<td>compass_heading</td>
<td>gpx_fix</td>
<td>gpx_quality</td>
<td>gpx_speed</td>
<td>gpx_track</td>
<td>gpx_altitude</td>
<td>gpx_satellites</td>
</tr>
<tr>
<td>1546033603</td>
<td>39.78</td>
<td>-84.09</td>
<td>248.3</td>
<td>7.35</td>
<td>1</td>
<td>7</td>
<td>0.18</td>
<td>157.72</td>
<td>248.3</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1546033603</td>
<td>39.78</td>
<td>-84.09</td>
<td>248.3</td>
<td>7.11</td>
<td>1</td>
<td>7</td>
<td>0.18</td>
<td>157.72</td>
<td>248.3</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1546033603</td>
<td>39.78</td>
<td>-84.09</td>
<td>248.3</td>
<td>7.44</td>
<td>1</td>
<td>7</td>
<td>0.18</td>
<td>157.72</td>
<td>248.3</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 14. ‘SKY’ telemetry sentence

Under normal operation, manager requests the GPS module to acquire a satellite fix and return a current timestamp before the main loop starts. The OS then uses that timestamp to update the system clock. This ensures packet captures and telemetry data are synchronized as much as possible, which is critical for accurate packet-telemetry analysis.

3.5.2.5 command.py

This module contains a thread class that checks for new script files sent from the attacker. The commands are executed in a subprocess at the same privilege level as the
Skype code (root). The output is written to a text file, which is placed in the `./data/synch/log` folder for upload back to the attacker’s workstation.

3.5.2.6 interface.py

This module parses `ifconfig` and `iwconfig` data and offers support for changing available wireless interface settings. The antenna interface used for collection is selected by `manager` using this module (specified by the `config.txt` file), and whenever a capture is performed this module puts the interface in monitor mode. This module also contains a thread class that asynchronously cycles through 802.11 channels, which is invoked consistently through the `manager` module’s main control loop. When the application closes, the interface is restored to managed mode.

3.5.2.7 indicator.py

This module contains code that checks for the presence of the Raspberry Pi Sense HAT, which is an optional hardware component. If present, the 8x8 RGB LED array illuminates to signify what actions are happening in the main loop. This visual is useful in a development and testing environment, but may not be desired in real operations. Table 5 demonstrates what the different patterns mean. Behavior of a normal capture operation appears as fast-moving purple numbers and occasional flashes for green, blue, and pink.
Table 5. 8x8 RGB LED Array Indications

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky Blue Fill</td>
<td>Skypie program startup</td>
</tr>
<tr>
<td>Purple Fill</td>
<td>Skypie is on, waiting to start loop. A prolonged purple fill indicates the system is waiting for a GPS fix to synchronize system clock</td>
</tr>
<tr>
<td>Green Fill</td>
<td>Indicates a Wi-Fi collection thread has been initiated</td>
</tr>
<tr>
<td>Blue Fill</td>
<td>Indicates a telemetry collection thread has been initiated</td>
</tr>
<tr>
<td>Pink Fill</td>
<td>Indicates an upload or download has been initiated</td>
</tr>
<tr>
<td>Pink Flashing</td>
<td>Indicates repeated attempts to upload or download, but no connection is available</td>
</tr>
<tr>
<td>Purple Number</td>
<td>Indicates an iteration of the main loop. The number presents the last digit.</td>
</tr>
<tr>
<td>White Number</td>
<td>Indicates the Wi-Fi Channel Hopping thread has been initiated</td>
</tr>
<tr>
<td>Red Number</td>
<td>Buffer checks have been performed and handled</td>
</tr>
<tr>
<td>Orange Number</td>
<td>State file has been written</td>
</tr>
<tr>
<td>Flashing Red</td>
<td>Self-destruct has been requested</td>
</tr>
</tbody>
</table>

3.5.3 skyport Package

The skyport package is intended to run on the attacker’s workstation, which works best on a x86 or 64-bit Linux platform but most features (with the exception of geolocation prediction) also work on x86 and 64-bit Windows. This package contains two web apps, Sensor App and Analysis App, that provide an interactive interface for control and analysis.

To accommodate ease of use and portability, both apps are created using Plotly Dash [47], which is a set of libraries that allow for the construction of web-based graphical
applications entirely in Python. It is also tied to the plotly library, suitable for generating charts, graphs, and maps. Mapbox [48] is used for adding satellite overlays because it offers a free and customizable map API compatible with plotly graphs.

The two apps operate separately or simultaneously. The skyport manager is only required to be running if real-time updates are desired, so each of the three modules can be ran as independent programs or in unison.

3.5.3.1 Background Control (manager.py)

In a similar fashion to the skypie/manager.py, this module acts as the driving control module. It uses a thread dictionary to ensure data upload, download and analysis operations are executing as directed by a configuration file. Data files are stored as Comma Separated Value (CSV) files or PCAP files. State data, logs, and config files are stored as text files. The program organizes data by sensor name and data type. The file structure is show in Appendix A.

3.5.3.2 Sensor Control and Tracking App (sensor_app.py)

The purpose of this app is to view sensor geolocation history, change configuration settings, view the sensor log, and send remote arbitrary commands via a web console. It can be run with python sensor_app.py, which starts a webserver at 127.0.0.1:7771. Figure 15 depicts the UI, which is designed to make the user feel “creepy, but friendly.”
Figure 15. Sensor App User Interface
The Sensor App consists of two major components, the Control Settings (on the left), which allows a user to control Skypie behavior settings, and Sensor Tabs (on the right), which allows the user to view location history, execute remote commands, view remote logs, and calibrate the device. A dropdown at the top allows the user to select which sensor they are interacting with, if there are multiple.

When the UI detects changes to any input fields, it actuates change. For example, if the user selects a new sensor in the sensor selection dropdown, the program reads data files for the chosen sensor, in this case, a geographic history CSV file for a sensor named ‘crunchy’), and plots the coordinates on a map in the Telemetry tab. Figure 16 demonstrates how the UI elements relate to the simple flat file ‘database’ scheme of sensor data.

![Current Sensor: Crunchy, Gunter, Starchy](image)

Figure 16. In-app sensor selection dropdown (left) and the `skyport/database/sensors/` directory (right), showing that database is saved as a simple folder scheme.

Figure 17 demonstrates a test run of the sensor and the plot of telemetry data in the Telemetry tab. Location history is shown as a series of dots indicating color coded by timestamp. The latest location and heading are printed at the top of the tab.
Figure 17. Geolocation history can be viewed in the ‘Telemetry Tab.’ Hovering over each coordinate shows a box that describes the exact time and location of that point. Dots are color coded chronologically. The last recorded coordinates and bearing are printed at the top of the tab.
There is also an option to view the heading of the sensor at different points in time using the ‘Line Draw Density’ slider. Heading is represented as a purple line originating at the sensor’s location extending in the direction it was facing at that point in time. This is depicted in Figure 18.

The remote sensor’s skypie program log can be viewed via the ‘Log’ tab, as shown in Figure 19.

Arbitrary remote commands can also be uploaded and executed on the remote sensor using the ‘Console’ tab. An example of this is demonstrated in Figure 20.

The Control Settings tabs are shown in Figure 21 and Figure 22. Figure 21 displays the Sensor Control tab, which is used to change properties such as file transfer settings, webserver settings, and the device’s name. Figure 22 shows the Wi-Fi Control tab, which can be used to change the Wi-Fi collection mode and filters.

The user can modify and setup sensor operation settings by using the UI fields in the Control Settings tabs and clicking the ‘Submit’ button. This action modifies the sensor configuration file on the attacker’s workstation, which is then uploaded to the SFTP server by manager and is downloaded to the sensor when it checks in.
Figure 18. View history of compass heading ‘Heading Line Draw Density’ value slider. Each purple ray extends from a coordinate in time and indicates which way the sensor was facing. In this example, the antenna is mounted to a bicycle doing a half-circle.
Figure 19. ‘Log’ tab enables user to view remote sensor’s *skypie* logs.

Figure 20. Using the ‘Console’ tab to execute ‘ifconfig’ and ‘whoami’ commands.
Figure 21. ‘Sensor’ settings tab, which allows the attacker to make configuration changes. Changes are posted by clicking the ‘Submit’ button.
3.5.3.3 Analysis App (analysis_app.py)

The Analysis App is used to view the data collected by skypie sensors. Figure 23 shows the Analysis App UI. The Analysis App consists of a Target Map pane (left) and a Target Analysis pane (right). At the top is a dropdown selector, allowing the user to choose which sensors to query. Data is fused from each selected sensor’s data. One or
multiple targets can be selected by unique MAC using the “Available Targets” dropdown, shown in Figure 24. In this way, a user can view information collected about one targeted device from multiple sensors. A time slider also allows an analyst to focus on a specific timeframe, which is useful if the target is a mobile device such as a phone. The UI also denotes which timeframes the sensors have data collected for the target. The time slider is show in Figure 25.

Information about the first target in the “Available Targets” dropdown is displayed in the Target Analysis pane. There is the potential for many other features to be added to Target Analysis pane, such as correlating clients that have been seen communicating together or what a specific target device has connected previously as indicated by 802.11 Probe Requests. These possibilities are discussed in Section 6.5. Currently, geolocation prediction is the only feature built-in, which is processed via the analysis.py module using the algorithms described in Section 3.6. The skyport Analysis App operates similar to the Sensor App and can be accessed at 127.0.0.1:7773.
Figure 23. skyport Analysis App UI
3.5.4 shared Package

The shared package contains utilities that can be shared between the deployed sensor and the attacker’s workstation.
3.5.4.1 transfer.py

This module executes uploads and downloads of data over an SFTP connection, which ensures transfers are encrypted using pre-shared keys, one for each sensor and a master key for the attacker. If a directory upload or download is requested, only new or newly modified files (verified by timestamp) are moved to save bandwidth.

3.5.4.2 analysis.py

This module contains the various methods and classes that perform different levels of data handling and analysis for packet captures and telemetry data. This module also contains the geolocation algorithms presented in the Section 3.6, while Section 5.3 describes their effective utility.

3.5.5 Microcontroller

The Adafruit 328 microcontroller is programmed in C++ using the Arduino IDE. Adafruit libraries (Adafruit_Sensor, Adafruit_LSM303DLHC, and Adafruit_GPS) are used for the two sensor chips. The LSM303 and Ultimate GPS are leveraged to extract compass and GPS data respectively. Code consists of a simple loop polling each device for data, then parsing it into the SKY telemetry sentence format seen in Figure 14. Compass bearing is derived from an arctangent calculation of the X and Y magnetometer sensor readings from the LSM303, shown in Equation 1:

\[
Bearing = \frac{\tan^{-1} \frac{X}{Y} \cdot 180}{\pi}
\]

(1)
Communication from the GPS chip to the microcontroller occurs at 9600 baud, and updates are polled once a second. The chip is capable of more frequent polls if desired. Communication to the Raspberry Pi is a serial connection over USB at 115200 baud.

3.6 Analysis Algorithms

The following sections the rudimentary algorithms that are created as a starting point for radiolocation with a directional antenna on a moving platform. They are implemented in the shared package.

If a sensor is stationary and has been calibrated, the ability to determine bearing of a target is straightforward if it experiences a full 360° sweep. The sensor plots RSSI over the bearing, and returns the value where the interpolated RSSI peaked. The process is shown in Figure 26, where the actual beacon data points are green dots and connected by two interpolation algorithms (PCHIP and Bernstein polynomial). The true bearing is represented a solid vertical line while the bearing predictions are shown by dotted vertical lines.
When independently mounted to a drone, the task is complicated by the fact there is no guarantee the antenna gets to experience a 360° sweep at every location, nor that it gets a 360° sweep at all. Instead, the payload is given a flightpath that changes location sometimes, changes bearing other times, changes both, and sometimes is completely stationary.

3.6.1 Bearing Prediction and Geolocation Algorithm 1 (BPGA1)

BPGA1 takes a basic approach to return a result despite the challenges discussed. A pictorial overview of the algorithm is shown in Figure 27, breaking it down into steps.

First, BPGA1 takes all packets it has seen over a predefined ‘bucket’ of time (60 seconds), and only considers the top 20% of those with the highest RSSI for each target. This is because if the drone is rotating, it is assumed the true bearing of the target is the direction from which the antenna receives the strongest signal. Second, each packet is
correlated to a SKY telemetry sentence by timestamp. Third, a geodesic intersection is calculated for each of the top packet locations and supposed bearings (capped at 100 calculations per unique MAC address) giving a coordinate prediction for each pair of packets. Predictions farther than a certain threshold (3 km) are thrown out to prevent blatantly incorrect guesses from ruining the average.

Fourth, a weight (w_i) is generated for each prediction and is directly proportional to the magnitude of the distance between the two points (Lat_i and Lon_i).

Fifth, the prediction from each pair is combined into a weighted average (Lat_{avg} and Lon_{avg}) using the formula in Step 5 of Figure 27 and the weights from Step 4. The rationale is that predictions taken from measurements farther apart from each other may be more accurate given imperfect bearing predictions. The summation is normalized by the sum of the weights (w_T) to return a coordinate prediction.

Finally, the algorithm also returns the largest difference in radio values (Radio Confidence) during the time bucket as well as the largest distance between two coordinates used (Geolocation Confidence). These values are used as rudimentary confidence metrics, under the assumption that more geographically separated observations are more valuable. Higher radio differences are desired because they imply sensor rotation, thus increasing the likelihood the bearings used to calculate the predictions are correct.

These values are calculated for each device for each time bucket and are stored in ./sensors/[sensor_name]/analysis/geo-mac-analysis.csv for the Geolocation Prediction Averaging Algorithm 1 (GPAA1) to use.
This algorithm is implemented in the `calculateLocation()` function of the `MacInfo` class of `analysis.py`.

3.6.2 Geolocation Prediction Averaging Algorithm 1 (GPAA1)

GPAA1 is invoked when a user is viewing targets in the Analysis App. It takes the output of BGPA1 from each selected sensor, which consists of a coordinate prediction for each time bucket and associated weights for both distance and radio difference seen from that bucket.

Using those values, GPAA1 looks only at the timeslice selected by the user and tries to form a single geolocation prediction. It does this by weight averaging each BGPA1 geolocation prediction. Guesses taken from larger distances and larger radio power disparities are given the most weight. Weights are first divided by a maximum value (3 km for distance, 0.1 mW for radio). The maximums were chosen to normalize both ranges from 0 to 1 for common readings. These values are then combined into a single weighted confidence value

\[
C = W_{Ratio} \times R + (1 - W_{Ratio}) \times G
\]

(2)

where \(R \) is the Radio Confidence for that interval, \(G \) is the Geolocation Confidence, and \(W_{Ratio} \) is the weight ratio of radio difference to geolocation difference (currently left equal at 0.5).
Figure 27. BPGA1 visualized. Note this process is repeated for each time bucket.
These Confidence values (C_i) are used for each time bucket over the timeslice and averaged into the latitude and longitude predictions

\begin{equation}
Lat_{avg} = \frac{1}{C_T} \sum_{i=0}^{n} C_i \cdot Lat_i
\end{equation}

\begin{equation}
Lon_{avg} = \frac{1}{C_T} \sum_{i=0}^{n} C_i \cdot Lon_i
\end{equation}

where Lat_i and Lon_i are the predictions for each time bucket, C_i is confidence value found from (1) for each bucket, and C_T is the sum of the confidence values.

3.7 Design Summary

This chapter describes two successive iterations of prototypes with the same ultimate goal of demonstrating cyber-attack and intelligence-gathering capabilities. Both meet their respective design goals as outlined in Section 3.3 and have been proven operational. The following chapters demonstrate their use in the field and examine geolocation using their collection capabilities.
IV. Methodology

4.1 Overview and Objectives

The experiment portion of this research involves testing the viability of using radiolocation of Wi-Fi traffic using a directional antenna to geolocate wireless transmitting devices passively. There are many applications of successful passive geolocation that range from search-and-rescue to and assisting warfighting operations [41].

The localizer prototype is primarily used for this assessment because the stepper motor gives a controlled mechanism for conducting 360° sweeps. This research extends Law’s thesis by both increasing the distance from the targets and attempting to answer the following questions:

- Is geolocation via radiolocation viable at a distance of 300 m and 600 m? How accurate can it be?
- What collection parameters are most important to geolocation at those distances, and what specific settings provide the best results?

While the localizer is best suited for controlled experimental purposes, it lacks the capability to assess bearing on its own and is too heavy for operational purposes. This is why the skypie prototype is also tested in the field. The skypie experiment’s purpose is to demonstrate its collection capabilities, strengths, weaknesses, and provide and data for improvement.
4.2 System Under Test

Figure 28 displays the System Under Test (SUT) and Component Under Test (CUT) diagram. Experiment parameters (described in Section 4.3) consist of the factors that are tested which are measured by the metrics (covered in Section 4.4). Constant variables and computing parameters are held constant and described in Section 4.5.

![System Under Test (SUT) and Component Under Test (CUT) diagram](image)

Figure 28. System Under Test (SUT) and Component Under Test (CUT) diagram

4.3 Factors

This experiment attempts to perform a partial factorial experiment with the following variables, described in Table 6. Variables that need additional explanation are discussed after the table. The location of collection points for the experiment are shown in Figure 29.
Table 6. Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Proposed Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>300, 600 (meters)</td>
<td>Distance from target. Addresses the question: How does accuracy change as the sensor moves away from target?</td>
</tr>
<tr>
<td>Collection Pattern</td>
<td>Linear, Circular</td>
<td>Pattern in which collections are conducted. Addresses the question: Is it more beneficial to collect in a circular or linear fashion?</td>
</tr>
<tr>
<td>Collection Points</td>
<td>2, 3, 4, 5, 6, 7</td>
<td>Number of collection points. Addresses the question: How many collection points are necessary to get accurate coordinates?</td>
</tr>
<tr>
<td>Angular Coverage</td>
<td>10° - 90°</td>
<td>Angle over which collection points surround the target. Addresses the question: How “long” of a trail of collection points must be used to get accurate coordinates? (see Figure 30)</td>
</tr>
<tr>
<td>Framework</td>
<td>localizer, skypie</td>
<td>How the two devices perform at collection.</td>
</tr>
</tbody>
</table>

Angular coverage is a term used to express the widest angle that collection points surround a target. An example is shown in Figure 30.

Framework indicates which prototype will be used for collection and what kind of analysis will be used. In the case of localizer the prototype cannot compute geolocation itself. Rather the devices simply projects bearing predictions for each sweep. Analysis is done manually, feeding the results into a geodesic intersection algorithm described in Section 5.2.2.1 [49]. In the case of skypie, the prototype collects bearing, GPS, and RSSI data. The framework then uses BPGA 1 and GPAA1 to guess an average location of each target automatically.
Figure 29. Experimental layout and collection points. Tent symbols indicate collection points along a line, tree symbols indicate collection points along a circle, and campfires represent a collection point that is both on a circular and linear collection pattern.
4.4 Metrics

Metrics are ultimately reflected in the accuracy of bearing and location guesses from different collections, with an emphasis on geolocation accuracy. This is either represented as an error value in meters (Geolocation Prediction Error) or error normalized by the true distance from the target (Geolocation Percent Accuracy). Metrics can only be known with truth data. The variables are described in Table 7.
Table 7. Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection Range</td>
<td>Boolean</td>
<td>A true or false determination if data can be collected with a specific framework at a specified distance.</td>
</tr>
<tr>
<td>Bearing Variability</td>
<td>Degrees</td>
<td>Amount of bearing variation present from multiple readings of a stationary target and collection points. Indicates the reliability of readings.</td>
</tr>
<tr>
<td>Bearing Prediction Error (BPE)</td>
<td>Degrees</td>
<td>Difference between an experimentally-determined bearing and the true bearing from a collection point.</td>
</tr>
<tr>
<td>Geolocation Prediction Error (GPE)</td>
<td>Meters</td>
<td>Difference between an experimentally-determined location prediction and the true target location.</td>
</tr>
<tr>
<td>Geolocation Percent Accuracy (GPA)</td>
<td>Percent</td>
<td>The Geolocation Prediction Accuracy divided by the distance between the sensor and target. Used to compare accuracy at different distances.</td>
</tr>
</tbody>
</table>

4.5 Constant Variables

Throughout the course of the experiment, several factors are held constant. This does not suggest that variation in these values does not impact the response variables, but a necessity to limit the scope of the experiment. Table 8 summarizes the constant variables.
Table 8. Constant Variables

<table>
<thead>
<tr>
<th>Factor</th>
<th>Desired Experiment Level</th>
<th>How Controlled?</th>
<th>Anticipated Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target locations</td>
<td>Pre-defined layout (see Figure 29)</td>
<td>Experimental design</td>
<td>Varies</td>
</tr>
<tr>
<td>Number of Targets</td>
<td>3</td>
<td>Experimental design</td>
<td>None</td>
</tr>
<tr>
<td>Target models</td>
<td>LG Rebel 2 LTE, ZTE ZFive 2 LTE (x2)</td>
<td>Experimental design</td>
<td>None</td>
</tr>
<tr>
<td>Traffic behavior</td>
<td>WPA2 Access Point</td>
<td>Device configuration</td>
<td>Standardized packet capture distribution</td>
</tr>
<tr>
<td>Rotation rate</td>
<td>45 seconds per revolution</td>
<td>Device configuration</td>
<td>Slowed to increase capture at longer distances [41]</td>
</tr>
<tr>
<td>Channel hop interval</td>
<td>179 Time Units (802.11 protocol), about .183 seconds</td>
<td>Device configuration</td>
<td>Most effective for captures [41]</td>
</tr>
<tr>
<td>Channel hop distance</td>
<td>2 channels per hop</td>
<td>Device configuration</td>
<td>Most effective for captures [41]</td>
</tr>
<tr>
<td>Initial bearing of sweep</td>
<td>0° (facing North)</td>
<td>Manual check with compass</td>
<td>Slight bearing error introduction [41]</td>
</tr>
</tbody>
</table>

Variables that need additional description are discussed here:

- Target locations – are deployed as demonstrated in Figure 29. Targets are separated enough to reduce interference from each other, but not enough to greatly vary their general location from the collection points. The scale (targets along a 2 m line, <1% of closest collection distance) would ideally reflect several Wi-Fi devices in a single room. Targets sit atop a plastic folding table at different orientations as show in Figure 31 and Figure 32.
• Number of targets – the number is chosen to provide replicants for similar measurements.
• Target models – are chosen for cost efficiency. All are capable smartphones running the same version of Android (6.0, Marshmallow).
• Traffic behavior – as a Wi-Fi access point, beacon frames are expected roughly 10 times a second.
• Rotation rate, Channel hop interval, and Channel hop distance are all chosen from earlier research that suggests best packet capture rates [41].

Figure 31. Targets at target locations
Figure 32. Target orientations. Note each phone is oriented differently. Target 1 is propped up horizontally using a cardboard box. To prevent Target 1 from blowing away, a partially full water bottle is added to weigh it down while a Maroon 5 compact disk case kept the phone pointed toward the collection points.

4.6 Uncontrolled Variables

As with most developed areas, the 2.4 GHz band is subject to wireless traffic outside of the scope of the experiment from nearby devices. While this may cause interference, this traffic simulates an environment in which the systems are designed to be operational.

A second uncontrollable variable is the inherent inaccuracy of GPS readings, which are used in the field to establish target and collection locations. The error, potentially up to 4.9 meters [50], is unavoidable unless using more precise measuring instruments.
4.7 Experimental Design

This section describes detailed instructions on how each experiment is conducted.

4.7.1 Geolocation Experiment: localizer

1. The same field location is used for all experiments.

2. Targets (cell phones) are placed on table at the target location specified in Figure 29 in the configuration shown in Figure 31. The cell phones have their Wi-Fi WNICs placed into AP mode.

3. The prototype is mounted on a stainless-steel support rack (0.78 m high) strapped on top of a Ford F-150 truck (1.905 m), so that it rests a total of 2.685 m above the ground, which is a reasonable elevation for a low-flying drone. A photo of the rig is shown in Figure 33, and details are shown in Figure 34.

4. The prototype is turned on and connected to a laptop via Ethernet cord. The laptop uses SSH to activate the localizer program. A separate directory is made for each collection point to store data files. Collection parameters are set to default, with the exception of sweep duration (set to 45 seconds).

5. The truck moves to the first collection point along a collection pattern, starting at the southernmost point and moving north. The truck is placed in park and remains stationary for collection.

6. An analog compass is used to manually move the antenna to 0° (magnetic north).
7. Using the laptop and SSH, a **localizer** sweep is performed. Detected APs are shown on screen, which is used to verify all three targets have been observed by the sweep. This is done 3 times for each collection point.

8. The truck is moved to the next collection point. The truck is placed in park and remains stationary for collection.

9. Steps 6 through 8 are repeated until the pattern is completed. This is repeated for all 4 collection patterns. Collection points that are on both a line and circle are only collected once during the linear pattern.

![Figure 33. localizer mounted in the configuration used to collect data during experiment](image)
4.7.2 Bearing Variance Experiment: localizer

This experiment is done to analyze how much bearing readings differ from a singular point at distances roughly 300 m and 600 m from the targets.

1. The field, targets, and truck are set up the same as Steps 1 through 4 in the localizer Geolocation Experiment (see Section 4.7.1).

2. The truck is moved to point 3L2 shown in Figure 29. The truck is put in park and remains stationary.
3. An analog compass is used to manually move the antenna to be facing to 0°
(magnetic north).

4. At least 10 sweeps are performed.

5. The truck is moved to point 6B1. The truck is put in park and remains
stationary.

6. Steps 3 and 4 are repeated for point 6B1.

4.7.3 Geolocation Experiment: skypie

In the skypie experiment, a subset of the localizer experiment is performed to validate
capture functionality and get initial feedback for the geolocation algorithms (BPGA and
GPAA).

1. The field, and targets are set up the same as Steps 1 through 3 in the
localizer Geolocation Experiment (see Section 4.7.1).

2. The truck is moved to the start of the 300 m collection line.

3. The skypie sensor payload is turned on. The skypie software is started
manually from the IDE using a keyboard and monitor, which are unplugged
after.

4. A driver moves the truck at a speed of roughly between 5 and 15 meters per
second (11 and 35 miles per hour), similar to the speed of commercial MUAVs
[2]. Meanwhile another individual handler holds skypie prototype out the
window and rotates it in slow circles using an unpredictable pattern. This was
done to resemble a drone operator performing erratic rotations.
5. The **skypie** program is turned off.

6. Step 4 is repeated for a second pass.

4.8 Summary

This chapter outlines the process and parameters under study in this research, as well as details about how data collection occurs. The experimental environment is discussed at length as well as metrics to judge effectiveness.
V. Results

5.1 Overview

This chapter describes results obtained from using the localizer and skypie frameworks during the experiment described in Chapter 4.

Section 5.2 covers the localizer geolocation experiment. Because the localizer prototype is designed for experimental use as opposed to operational use, it is the focus of the statistical analysis. The relationship between the factors and the metrics are analyzed, demonstrating best collection settings that can translate to any device performing directional geolocation. Post-collection techniques and improvements are suggested in Section 5.2.3.2.

The remainder of the chapter discusses results from using and developing the operationally-oriented skypie. Section 5.3 demonstrates skypie’s collection capabilities in the field and discusses the skypie geolocation experiment. Section 5.4 describes results of the skypie development process.

5.2 Geolocation Experiment: localizer

At each collection point shown in Figure 29, the localizer prototype took at least 3 separate readings to prevent having a single data point for each location. A reading consists of a 360° sweep hopping 2 channels every 179 Time Units specified by the 802.11 protocol (about 0.183 seconds), which are the optimal configurations for beacon collection
under normal conditions [41]. The recommended sweep time is relaxed from 30 to 45 seconds because the distance is increased.

As bearing values are used to calculate geolocation predictions, this analysis starts with a study of bearing prediction findings.

5.2.1 Bearing Prediction

In addition to the aforementioned tests, 10 additional sweeps are performed at a solitary point along the 300 m and 600 m lines from the targets (see Section 4.7.2) to investigate the variance in the bearing prediction given by localizer at these distances. The results are depicted in Table 9. Note that point 3L2 is actually 261 m from targets and point 6B1 is actually 599 m.

<table>
<thead>
<tr>
<th>Point</th>
<th>Sample Size</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Median</th>
<th>True Bearing</th>
<th>Mean Error</th>
<th>Median Error</th>
<th>STD</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3L2</td>
<td>12</td>
<td>201</td>
<td>238</td>
<td>231.08</td>
<td>235</td>
<td>261.1</td>
<td>-30.02</td>
<td>-26.1</td>
<td>9.90</td>
<td>98.08</td>
</tr>
<tr>
<td>6B1</td>
<td>30</td>
<td>228</td>
<td>435</td>
<td>279.04</td>
<td>236.5</td>
<td>217.1</td>
<td>17.94</td>
<td>-24.6</td>
<td>64.27</td>
<td>4131.22</td>
</tr>
</tbody>
</table>

The amount of variance is significant, especially when proven later how much bearing error can throw off a geolocation intersection. Accurate bearing is vital to getting accurate results using intersection-based geolocation. Further inspection of the data reveals two interesting features. The first is that both locations suffer from roughly the same median bearing error (-25°) despite the distance and true angle from the targets. Indeed, when all geolocation estimates are plotted, many data points in this experiment seem to suffer from a systematic offset of -15 to -25 degrees. This pattern is shown in
Figure 35. Figure 36 visually examines three collection points and the offset of the predicted target from the actual.

Figure 35. 300 m (light triangle symbols) and 600 m line (dark triangle symbols) geolocation guesses.
Figure 36. Visual inspection of geolocation guesses demonstrating a possible systematic bearing offset. The angles represent the difference between the true target bearing and bearing of the proposed centered from three points on the 300 m line.

The second interesting feature is the distribution of bearing guesses at point 6B1. If the values are combined into a histogram (see Figure 37), it is notable that while the majority of predictions are within 220° to 240° (the true direction of the target), a secondary majority is found between 0° and 40°, for a difference of roughly 200°. Because the offset for this spike is relatively close to 180°, it is likely this secondary spike is caused
by the back lobe of the directional antenna receiving signals when facing opposite the targets. Note that the 300 m collection point does not suffer from this problem as shown in Figure 38. It is likely errors like this are a function of distance and obstacles that cause reflections.

Figure 37. Multiple bearing predictions at 600 m (point 6B1). Note the secondary majority about 180 degrees out of phase with the primary majority.

Figure 38. Multiple bearing predictions at 300 m (point 3L2). Note that most data points are within 9 degrees of each other.
It may benefit an advanced geolocation guessing algorithm to remove predictions that fall into a secondary majority that are about 180° out of phase from a primary majority. This can prevent geolocation guesses from being in the opposite direction of the sensor if two such points are used as input. If only one input is in the wrong direction, however, a geodesic intersection algorithm (similar to the one used in this research) still theoretically returns a valid result because the Earth is (mostly) spherical. Points calculated from two out-of-phase bearing predictions do interrupt geolocation averages.

In the case of a drone, the problem of removing these out-of-phase predictions is made difficult because the true location is unknown and because the sensor is not guaranteed a complete 360° rotation in a single location.

Lastly, overall bearing predictions are compared to the true values. This is shown in box-and-whisker plot in Figure 39. Box-and-whisker plots in this research show minimum and maximum as the whiskers while the box represents the 1st and 3rd quartiles. The median is denoted by a line inside the box and average is denoted by an ‘x’. Outliers appear dots outside the box.

Note again the median errors remain close to each other at -16.4° and -20° for 300 m measurements and 600 m measurements respectively, while outliers in the 600 m range resemble back lobe misreadings.
Figure 39. Bearing error among all data points.

Compared to Law’s original work testing localizer at distances less than 100 m (with brick, mortar, and glass obstacles) and a median bearing error of 13.7°, results indicate a loss of accuracy as distance increases. The relationship among all three distances is plotted in Figure 40. The data fits a linear correlation (shown as a dotted
line) with an R^2 value of 0.9956, suggesting a 0.0123° decrease in bearing accuracy per meter from the target after the first 100 m (1° lost per 81.3 meters).

![Figure 40. Absolute median bearing error at different distances.](image)

5.2.2 Geolocation Prediction

The approach this research takes to geolocation is evaluated by calculating the intersection of point coordinates and their bearings using a geodesic model. Following an ideal situation, if perfect bearings to a target are given at two different sensor locations, the resulting intersection of the sensor locations and the perfect bearings intersect at the coordinates of the target.

5.2.2.1 Intersection Algorithm

The algorithm implemented by this statistical analysis to calculate location is designed by Charles F. F. Karney, and the source code is available in Appendix A [49].
The algorithm finds the intersection of the two geodesics on the surface of the Earth. The geodesics are created from the two coordinates and bearings the algorithm takes as input. This is demonstrated visually in Figure 41.

Figure 41. Taking two collection point coordinates and a bearing from each, the algorithm computes where the geodesics would intersect. This is the predicted location as computed by the intersection algorithm.

To verify geolocation by calculating bearing intersection, Error! Reference source not found. demonstrates what the predictions of all pairs along the 600 m line with a perfect bearing (not the experimental result bearings). The top half of the figure shows the entire field. Predictions are shown as white and black circles, which appear directly
on top of the green targets. The bottom half zooms close enough to show the targets separated from each other, and a distinct line of predictions can be seen for each of the three targets. The average error is a shockingly low 1.64 m (more accurate than GPS), and the median is 1.56 m.
Figure 42: Geolocation predictions at 600 m away, if the bearing predictions are perfect to 7 places.

While Error! Reference source not found. validates the algorithm, results of that quality require precision to 7 decimal places. If simply rounded to the nearest integer, which is consistent to localizer output, the median error of coordinate predictions is now 5.45 m and the average is 11.32 m. This is shown plotted in Figure 43, where red markers are the targets and the white markers are geolocation predictions. This can be considered the best possible case for a distance of 600 m without splitting coordinates (as suggested in Section 5.2.3.2). As a reminder, Section 5.2.2 shows that at least 10° degrees of error can be expected at 100° m, 15° for 300 m, and 20° for 600 m.
5.2.2.2 Raw Geolocation Estimates

In further calculations, geolocation predictions of over 3 km from the sensor are not considered. Such predictions are considered inaccurate because conditions would have to be exceptionally ideal for the directional antenna to pick up the signal. Without any other outlier removal, Figure 44 shows an overview of the guesses among the difference collection patterns and sizes.

Figure 44. All geolocation guesses by distance and collection pattern

Figure 45 shows the test field with most of the points plotted (those outside the window are not shown). White markers indicate guesses from 300 m and red markers
indicates 600 m. Circle symbols represent guesses from the circle pattern and square symbols represent guesses from the line pattern. Overall, it seems predictions made at 300 m center around a point near the targets. A similar pattern can be seen for 600 m predictions, but it is much less clear and many predictions are clearly wrong.

As found in previous research, a few of the outliers (caused by inaccurate bearings) are so distant they make average location approaches inaccurate [41]. If the geolocation algorithm is fortunate enough to be able to detect and remove outliers, accuracy can be improved. This ability may be a luxury for data from a drone-mounted platform expected to give real-time geolocation, but it could be possible with enough data from several data collection locations.

Figure 45. Raw geolocation guesses plotted. White points indicate guesses from 300 m, red indicates 600 m. Circle pins represent guesses from the circle pattern, square pins represent
guesses from the line pattern. The green line is a political boundary and is not part of the experiment.

5.2.2.1 Outliers

The next sections continue investigation with outliers removed. Outliers cannot simply be removed by Geolocation Prediction Error (GPE) because that involves truth data, which a drone would not have in an operational setting. Instead, outliers are considered guesses whose latitude or longitude fall outside 1.5 times the standard deviation of the other guesses. If either latitude or longitude is an outlier, the guess is not included.

5.2.2.1 Distance

Normalized by distance from target, the closer distance of 300 m outperforms 600 m in median and average geolocation prediction error, and also has a tighter distribution. Values are shown in Table 10 and represented in Figure 46.

Overall, median geolocation errors are off by at least a half of the distance from the original target, while best-case guesses are 5%-10% for 300 m and 600 m respectively, showing that geolocation via radiolocation can be extremely difficult to make accurate within the expectation of GPS-quality results.

<table>
<thead>
<tr>
<th></th>
<th>300 m</th>
<th>600 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>49%</td>
<td>64%</td>
</tr>
<tr>
<td>Median</td>
<td>46%</td>
<td>62%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>19%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Table 10. Normalized Geolocation Error vs. Distance
Figure 46. Distance vs. Normalized Geolocation Error

5.2.2.2 Collection Pattern

Figure 47 shows the collection pattern mapped at each distance. At 300 m, results indicate geolocation prediction improves when the collection is done by a circular pattern. At 600 m, it appears the distinction is less pronounced and a circular pattern is less accurate. This is hard to determine with confidence due to the missing data point at 6C3.

To further explore if there is a difference between collection pattern, Figure 48 shows the results when both line and circle collection cover 68° and use 4 equally-spaced collection points \{Line = (3B0, 3L2, 3L4, 3B1), Circle = \{3B0, 3C1, 3C2, 3B1\} \}. Here, the points
are essentially the same with the circular points being slightly farther away (but on the same azimuth from the target). While the quartiles appear to make the circular pattern look more accurate, the median errors are relatively close at 9.77 m apart. Table 11 shows the results for 600 m as well under similar parameters. In summary, it cannot be certain if difference is caused primarily by collection pattern.

![Figure 47. Collection pattern normalized by distance (angular coverage varies)](image)
Figure 48. Geolocation error among collection pattern at 300 m (same angular coverage)

Table 11. Collection Pattern Errors

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Line (300 m)</th>
<th>Circle (300 m)</th>
<th>Line (600 m)</th>
<th>Circle (600 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Angular Coverage</td>
<td>68°</td>
<td>68°</td>
<td>68°</td>
<td>68°</td>
</tr>
<tr>
<td>Guesses</td>
<td>32</td>
<td>34</td>
<td>39</td>
<td>30</td>
</tr>
<tr>
<td>Average</td>
<td>47.34%</td>
<td>39.69%</td>
<td>63.73%</td>
<td>67.75%</td>
</tr>
<tr>
<td>Median</td>
<td>44.38%</td>
<td>41.12%</td>
<td>61.11%</td>
<td>77.16%</td>
</tr>
</tbody>
</table>
5.2.2.3 Angular Coverage

The relationship between the angle of coverage as illustrated in Figure 30 and bearing error is represented in the scatter plot in Figure 49, where error is normalized over the distance from the target. Overall, increasing angular coverage decreases bearing error. The most significant decrease in error occurs by increasing coverage from 10° to 30°.

More predictions exist for lower coverage angles because there are more points to compare against at smaller angles than larger ones. There exists a large disparity between predictions for a single angular value, which indicates that both “good” and “bad” guesses can come from small and large angles alike. “Bad” guesses are more likely to happen at values at very low coverage (those less than 25°). Notably, “good” guesses at low angles are relatively comparable to “good” guesses at large angles, suggesting quality bearing readings could still produce quality predictions from smaller angles.

Trends from both distances show that increasing coverage from 10° to 30° decreases error the most. Improving the coverage between 45° and 65° did not improve error by any recognizable amount. The lowest median errors are at 32° and 87°.

To further show the distributions among similar angles, Figure 51 shows a breakdown of box-and-whisker plot of guesses for every set of points at 600 m.
Figure 49. Angular Coverage between 2-Sample Geolocation Guesses at 300 m

Figure 50. Angular Coverage between 2-Sample Geolocation Guesses at 600 m
5.2.2.4 Collection Path Length and Number of Collections

The next investigation is the number of adjacent points that are needed to get the most error reduction. The real-world application of this is to determine how far (relative to target distance) and how many 360° collections a drone needs to perform get the best geolocation prediction.

Figure 52 plots average predictions errors for groups of predictions. The groups are composed of subsequent points along a collection pattern. The more points a group has, the larger its dot is, with the smallest groups made of 2 data points and the largest having 7. The location on the x-axis of a dot indicates total length of collection the group represents. A reasonable assumption is that as a collection group increases in length and

Figure 51. Angular coverage box-and-whisker plot shows distribution of angular coverage at 600 m.
number of points, error should decrease, which would be represented as dots getting lower as they increase in size or move to the right.

Whereas there is a discernable correlation at 300 m (shown by the dashed trendline in Figure 52), there is hardly any correlation at 600 m, shown in Figure 53. It seems increasing collection points and length at this distance yields little benefit. This can be seen when the predictions are plotted on a map (Figure 54); most bearing estimates are prone to intersecting too far in front or behind the target, creating a pattern sweeping around the true locations.

![Figure 52. Length of collection vs. average error at 300 m. Generally, as collection length increases and points increase, error decreases.](image-url)
Figure 53. Length of collection vs. average error at 600 m. Increasing collection points and length at this distance yields little benefit.
Figure 54. Converging occurs too early or too late at 600 m. Guesses from the 600 m are shown as blue triangles, guesses from the 600 m circle are purple triangles.

5.2.3 Experiment Summary

5.2.3.1 Overall Prediction Accuracy

Overall bearing statistics for the experiment are shown in Table 12, which demonstrates median bearing errors between 10.9° and 20.4° degrees and average bearing errors between 12.5° and 40.1°. Geolocation statistics are shown in Table 13. Median geolocation prediction errors range for the collection patterns range from 38% to 65% of the target distance. This is attributed to the high average bearing errors. The increase of back lobe bearing readings (about 180° out of phase of the true bearing) plus the magnitude of the distance itself also contribute error. Extending target distance is theorized to reduce bearing accuracy for the following reasons:

- Weaker signals, meaning fewer packets arrive
- Less variation among RSSI values
- There is less time the antenna is pointing in the exact direction of the targets, meaning fewer packets are collected the farther the target is.
- More error occurs when interpolating fewer packets.

These reasons are suspected to be the cause of the decrease in accuracy and increase in standard deviation of bearing readings at 600 m, which is modeled to show that every meter of distance decrease median bearing accuracy at a rate of 1° lost per 81 meters of distance. A plot of all guesses and the true location of the targets in latitude and longitude is show in Figure 55.

Table 12. Overall bearing statistics
Table 13. Overall geolocation statistics

<table>
<thead>
<tr>
<th>Distance and Pattern</th>
<th>300 Circle</th>
<th>300 Line</th>
<th>600 Circle</th>
<th>600 Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Prediction Error</td>
<td>112.53</td>
<td>156.58</td>
<td>317.30</td>
<td>388.65</td>
</tr>
<tr>
<td>Median Prediction Error</td>
<td>121.38</td>
<td>141.36</td>
<td>342.09</td>
<td>399.36</td>
</tr>
<tr>
<td>% Median Error</td>
<td>38%</td>
<td>52%</td>
<td>53%</td>
<td>65%</td>
</tr>
<tr>
<td>% Average Error</td>
<td>40%</td>
<td>24%</td>
<td>57%</td>
<td>67%</td>
</tr>
</tbody>
</table>

Figure 55. Plot of all location predictions. The three targets appear as one at this scale.
5.2.3.2 Prediction Improvements

Methods of analysis so far have taken predictions as a pair of coordinates and the resulting distance error from the target. This is useful for examining which parameters and trends to deliver more accurate guesses, but it requires truth data and is not the most accurate strategy, as this section will show.

This next section covers the construction of predictions without knowing the true target location while at the same time using a simple technique to reduce error.

Re-inspection of Figure 43 shows that even when bearing predictions are correct to the single digit, the average distance from the target of each prediction increases around the target, with few landing on the target itself. However, when latitudes and longitudes are separated and the centroid or medoid are taken for each, then recombined into a new coordinate, the result is a better reflection of target location than if done so as coordinate pairs.

Applying this simple strategy to the experiment results, the predictions fall to a more reasonable error rate.

An approach using the median and averaging of coordinates separately is shown in Table 14 and Table 15 respectively. Averaging latitudes and longitudes separately is shown to be the best method for reducing error across most sets, capable of getting predictions under 86 meters for three of the four sets (two at 300 meters and one at 600). The fourth set (600 m line) suffered from excessive bearing inaccuracy and back lobe readings that continued to throw both the average and median off.
To show experiment results, Figure 56 shows all predictions and the average and median coordinates on the 300 m line. Figure 57 shows the same for the 300 m circle, Figure 58 for the 600 m line, and Figure 59 for the 600 m circle. Figure 60 shows the field from a tilted perspective with all collections combined. The green line is a political boundary and is irrelevant to this research.

Table 14. Separated coordinate median approach

<table>
<thead>
<tr>
<th>Distance and Pattern</th>
<th>300 Circle</th>
<th>300 Line</th>
<th>600 Circle</th>
<th>600 Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Longitude</td>
<td>-84.10427</td>
<td>-84.1044</td>
<td>-84.1042</td>
<td>-84.10143</td>
</tr>
<tr>
<td>Median Coord Error</td>
<td>97</td>
<td>101</td>
<td>84</td>
<td>321</td>
</tr>
<tr>
<td>% Median Coord Error</td>
<td>32%</td>
<td>34%</td>
<td>14%</td>
<td>54%</td>
</tr>
</tbody>
</table>

Table 15. Separated coordinate average approach

<table>
<thead>
<tr>
<th>Distance and Pattern</th>
<th>300 Circle</th>
<th>300 Line</th>
<th>600 Circle</th>
<th>600 Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Latitude</td>
<td>39.776985</td>
<td>39.77679</td>
<td>39.77772</td>
<td>39.778366</td>
</tr>
<tr>
<td>Average Longitude</td>
<td>-84.10445</td>
<td>-84.1045</td>
<td>-84.10425</td>
<td>-84.10136</td>
</tr>
<tr>
<td>Average Coord Error</td>
<td>70.1</td>
<td>85.2</td>
<td>76</td>
<td>333.1</td>
</tr>
<tr>
<td>% Average Coord Error</td>
<td>23%</td>
<td>28%</td>
<td>13%</td>
<td>56%</td>
</tr>
</tbody>
</table>
Figure 56. Guesses, median (red ‘M’ marker), and average (orange ‘A’ marker) coordinate predictions on 300 m line using centroid calculations
Figure 57. Guesses, median, and average coordinate predictions on 300 m circle using centroid calculations
Figure 58. Guesses, median, and average coordinate predictions on 600 m line using centroid calculations
Figure 59. Guesses, median, and average coordinate predictions on 600 m circle using centroid calculations
Figure 60. Guesses, median, and average coordinate predictions on all four collection sets, from the point of view of the targets. (Key: square = 600 m, circle = 300 m, white = line, blue = circle)
5.3 Geolocation Experiment: skypie

A subset of the localizer experiment is run on the skypie framework to demonstrate capture functionality in the field and provide initial feedback for the geolocation algorithms (BPGA1 and GPAA1). The collection pattern chosen is the 300 m line, as described in Section 4.7.3.

The telemetry and packet captures are processed through Bearing Prediction and Geolocation Algorithm 1 (BPGA1) and Geolocation Predication Averaging Algorithm 1 (GPAA1) using skypor. Figure 61 shows the telemetry history of the sensor as seen from the Sensor App, and Figure 62 shows the computed geolocation predictions from the Analysis App.

skypie is also capable of successfully collecting from all targets at the 600 m line, but analysis suffered the same problems as 300 m.
Figure 61. \textbf{skyport} telemetry history of the \textbf{skypie} on the 300 m line test, with the purple lines indicating the direction the sensor is facing at the time. The red dot indicates the location of the targets.
Figure 62. **skyport** geolocation predictions (circles) of targets (true location at green square) on the 300 m line

It takes only a visual inspection to see geolocation predictions are inaccurate. Geolocation guesses are determined more by the location of the sensor rather than the target’s location. The primary reason is theorized to be incorrect bearing readings caused by BPGA1’s short bucket time and a necessity to adjust the way GPAA1 determines weighted averaging.

BPGA1 chooses a heading even if it does not see enough change in RSSI or enough samples to make a “good” estimate, primarily because there is not enough current research to know what kind of data is needed to make one. The current way GPAA1 averages
these guesses is also not sufficient to determine which predictions to apply more weight. The result is that many incorrect bearings converge much too quickly, causing predictions to be very close to where the antenna is facing. Improvement for these algorithms based upon this trial data is in Section 6.2.2.

5.4 **skypie Framework Developments Results**

This section discusses results and lessons learning from development of the **skypie** prototype.

5.4.1 **Hardware Design Decisions and Rationale**

The next section discusses several design choices that are made after initial research, experimentation, or pilot tests.

I. **Stationary vs. Rotating Antenna.** A stationary antenna is chosen because the magnetic interference from a stepper motor would greatly interrupt any magnometer/compass readings, thus making heading measurements inaccurate. Pilot tests with a stepper motor greatly impacted the analog compass during pilot tests with the **localizer** prototype.

II. **Smartphone vs. Raspberry Pi Computer.** The use of a cellular device as the main computer was considered, but ultimately decided against. The benefit is that cellphones have a slim form factor, good computing specifications, light-weight batteries, built-in cellular connectivity, and also come with many sensors needed for geolocation. However, cellphones lack the input/output ports that the Raspberry Pi offers (four USB, Ethernet, and GPIO pins), have a higher cost, and
less operating system choices, so the Raspberry Pi is chosen as the main computing platform.

III. Drone Dependence vs. Drone Independence. Deciding the amount of dependency on a drone is a difficult choice for designing the payload. On one hand, payload integrated into the drone has the advantages of on-board sensor data (camera feeds, GPS feeds), communication channel, and potentially a power source. While several custom and open-source drone protocols exists, most commercial drones have propriety protocols, meaning the payload would be pigeonholed into a specific make or manufacturer.

IV. Raspbian vs. Kali Linux. The two operating systems considered for use on the sensor platform are Raspbian and Kali Linux. Raspbian is a variant of the Debian OS made by the Raspberry Pi corporation specifically for operability on Raspberry Pi chips, so it provides a larger support ecosystem. This includes utilities and libraries useful with the hardware components. Kali Linux is also a variant of Debian used for penetration testing and CAN, and comes pre-loaded with many hacker utilities and programs. Raspbian supports the necessary Python libraries for performing collection and analysis functions required by localizer (originally developed for Raspbian) and skypie. Setup with Raspberry Pi hardware, such as the Sense HAT, is much easier with Raspbian.

While the payload is designed to focus on having cyber-attack capabilities, the ultimate goal is to mimic and pass through a connection from the attacker’s computer as if it is local (this scheme is described in 6.5). This gives the hacker
more flexibility and the payload operating system does not need excessive hacker tools itself.

V. **Cellular vs. Radio Reachback.** A cellular connection is beneficial in urban areas where the cellular infrastructure exists. The attacker also has the advantage of communicating with the device from larger distances since the cellular networks allow Internet data connections. From a stealth standpoint, in urban environments cellular signals are ubiquitous and it may be harder for a defender to identify the link. A radio communication channel is better in environments with poor or no cellular service, however the attacker needs to be within radio range of the sensor. Commercial radio chips also come in a limited amount of frequencies, which an astute defender may be able detect. For this research, a cellular connection is chosen to mimic a scenario where the attacker is targeting a home or business.

5.4.2 skypie Framework Functionality

Table 16 provides a list of features that were planned and completed in this iteration of research and suggests steps that could be taken to improve it in the future. The symbols in the ‘State’ column indicate the progress of each feature. A green circle indicates the feature is completed, a yellow triangle indicates the feature is implemented but should be improved, and a red diamond indicates the feature is not implemented.
Table 16. skypie Current Features and Future Work

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Implementation Status</th>
<th>State</th>
<th>Next Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wi-Fi</td>
<td>Passive Wi-Fi Sniffing</td>
<td>Proven Operational</td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Bearing Prediction</td>
<td>Rudimentary algorithm</td>
<td></td>
<td>Improve accuracy</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Geolocation Prediction</td>
<td>Rudimentary algorithm</td>
<td></td>
<td>Improve accuracy</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Device Analysis</td>
<td>Rudimentary identification</td>
<td></td>
<td>Add features (see CNA/CNE category)</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Access Point Interaction</td>
<td>Present in localizer, not</td>
<td></td>
<td>Implement</td>
</tr>
<tr>
<td>UI</td>
<td>Web UI Suite</td>
<td>Proven Operational</td>
<td></td>
<td>Optimize graphing speeds</td>
</tr>
<tr>
<td>Telemetry</td>
<td>GPS Sensor</td>
<td>Proven Operational</td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td>Telemetry</td>
<td>Accelerometer</td>
<td>Operational</td>
<td></td>
<td>Improve accuracy</td>
</tr>
<tr>
<td>Operational</td>
<td>Database Storage Structure</td>
<td>Proven Operational</td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td>Operational</td>
<td>Data Upload</td>
<td>Works over secondary WLAN interface</td>
<td></td>
<td>Cellular Implementation</td>
</tr>
<tr>
<td>Operational</td>
<td>Data Download</td>
<td>Works over secondary WLAN interface</td>
<td></td>
<td>Cellular Implementation</td>
</tr>
<tr>
<td>Operational</td>
<td>Secure data transfer</td>
<td>SFTP connection</td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td>Operational</td>
<td>Operation Battery Life</td>
<td>4+ hours while collecting</td>
<td></td>
<td>Sufficient</td>
</tr>
<tr>
<td>Operational</td>
<td>Remote Sensor Control</td>
<td>Proven Operational</td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td>Operational</td>
<td>Remote Sensor Geolocation</td>
<td>Proven Operational</td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td>Operational</td>
<td>Arbitrary Remote</td>
<td>Proven Operational</td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td>Operational</td>
<td>Command Execution</td>
<td>Proven Operational</td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td>Operational</td>
<td>Multi-Sensor Capability</td>
<td>Proven Operational</td>
<td></td>
<td>Test with multiple sensors</td>
</tr>
<tr>
<td>Operational</td>
<td>Survivable Chasis</td>
<td>Proven Operational</td>
<td></td>
<td>Make water-resistant</td>
</tr>
<tr>
<td>CNA/CNE</td>
<td>EAPOL Packet Grabbing</td>
<td>Stub</td>
<td></td>
<td>Implement</td>
</tr>
<tr>
<td>CNA/CNE</td>
<td>Mirror Mode</td>
<td>Stub</td>
<td></td>
<td>Implement</td>
</tr>
<tr>
<td>CNA/CNE</td>
<td>Associated Client Tracking</td>
<td>Stub</td>
<td></td>
<td>Implement</td>
</tr>
<tr>
<td>CNA/CNE</td>
<td>Probe Request Tracking</td>
<td>Stub</td>
<td></td>
<td>Implement</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>Passive Sniffing</td>
<td>Stub</td>
<td></td>
<td>Add hardware, implement</td>
</tr>
</tbody>
</table>
VI. Conclusion and Future Work

6.1 Overview

This chapter summarizes the research and results found during development and experimental evaluations. Section 6.2 reiterates notable conclusions from experimentation and statistical analysis. Section 6.3 synthesizes findings in the context of cybersecurity and privacy. Section 6.4 discusses potential countermeasures. Lastly, Section 6.5 provides possibilities for future work in the field of cyber-attack drones.

This research succeeds in proving the hypothesis that a functional cyber-attack drone payload could be built under $500, under 1 kg, and within four months. One of the four data sets shows that geolocation via radiolocation of Wi-Fi targets can be accurate below the hypothesized 15% of distance from the targets at 600 m using less than 90° of angular coverage and full channel hopping, however the other three data sets failed to reach that degree of accuracy. Geolocation efforts with larger coverage angles, targeted single-channel sweeps, and intelligent filtering are recommended to increase accuracy.

The research goals, which are to investigate the effectiveness of geolocation via radiolocation and implement an attack drone payload are both met.

6.2 Research Conclusions

6.2.1 Geolocation via Radiolocation Conclusions

Geolocation via 802.11 emissions (Wi-Fi) using a portable directional antenna is possible, but difficult to achieve the accuracy that GPS delivers. This research found that
geolocation of a target cell phone acting as a Wi-Fi access point in a field from 300 m away is accurate within 70.1 m from 300 m away and within 76 m from 600 m away. Three of the four main tests failed to be under the hypothesized geolocation error of 15% of the sensor-to-target distance, with tests 300 m away averaging 25.5% and test 600 m away averaging at 34%.

Results suggest collections in a circular pattern experimentally outperformed those of a line, however when the two consist of the same angular coverage the results are mixed. Greater angular coverage appears to reduce the number of incorrect predictions, with the greatest reduction occurring from 10° to 30°, while little is gained from increasing between 45° to 65°. Increasing the number of subsequent collection points and length of collection generally increased accuracy at 300 m, but there is little correlation at 600 m. The most important factor in reducing geolocation guess error is getting accurate bearing readings. The experiment observed many inaccurate bearings as well as high standard deviations among readings from the same location. These are likely the result of few beacons received during the sweep because of the limited slice of time at which the target and antenna are aligned. This is combined with the fact that the device needed to channel hop to collect from the 11 802.11bg channels. Bearing readings also are subject to antenna back lobe misreadings that caused certain geolocation guesses to be on the opposite side of the sensor.

It is likely geolocation attempts can be significantly improved by the following techniques:

- Exploring angular coverage exceeding 90° or using multiple sensors to achieve the same effect
• Intelligently filtering back lobe readings
• Filtering outlier geolocation predictions intelligently
• Performing full 360° sweeps on the 802.11 channel of the target

6.2.2 BPGA1 and GPAA1 Conclusions

Testing the skypie framework enacted a test of the BPGA1 and GPAA1 algorithms, which generally failed in accuracy. GPAA1 failed because BPGA1 surmised predictions from too many incorrect bearing readings. BPGA1 make geolocation guesses without enough data. BPGA1 can be improved by adding additional weight on RSSI values as opposed to just weight based on geographic separation.

Both algorithms are time-based, where they issue a prediction at the end of every time interval, even if the guess is inaccurate. Both algorithms could be improved by only fielding guesses that meet a proven threshold, such as only returning a bearing if the RSSI values have seen a spike in power while the accelerometer indicates a minimum threshold of rotation. Buckets in which there is not enough data means the algorithm should wait for more information.

In the future, the algorithms could also gain information from other telemetry fields available in the implementation, such as GPS azimuth and GPS speed.

6.3 Research Significance and Synthesis

Developing the skypie prototype and testing geolocation with the localizer prototype gave insight into challenges with precise geolocation and device tracking from long distances by only using Wi-Fi signals.
At the observed error rates, distances, and experimental constraints, tracking a victim’s cell phone as they walked through the city would be inaccurate, most likely showing dots in many places the device never was. Averaging would most likely yield a location in the vicinity. Trying to track the person as they moved would also be challenging, as predictions are so scattered when the device is stationary it is hard to tell the difference as to if the device is actually moving or just experiencing variation in guesses.

This research found several techniques to lower overall error (see Section 6.2.1), but overcoming the underlying obstacles—getting accurate bearing readings and a mature geolocation algorithm—requires more work on the part of an attacker to get precise and accurate results.

That said, even with error rates in the 30% range, a wireless attack payload can easily still perform cyber operations on a target, to include sniffing, injecting, and performing denial-of-service attacks. These are activities an attack framework like skypie can perform from 600 m away. This is significant because a motivated attacker can also perform these attacks with less than $500, purely open source software, a commercial drone—all while acting from a remote location and remaining anonymous. If the drone becomes captured, the attacker can evade detection by remotely self-destructing the payload’s operating system (a bonus feature in skypie). If the communication channel is similar to that of skypie, there would not be a clear data trail to follow since the payload only contacts a proxy SFTP server and the cellular SIM card can be bought with cash.
Indeed, like the drones in *Bioshock*, a well-crafted cyber-attack drone poses a significant threat to an unsuspecting target.

6.4 Countermeasures

During the development of a wireless cyber-attack attack platform and experiments testing radiolocation using Wi-Fi signals, several countermeasures have been identified that would make conducting CNA and CNE more challenging in this field:

1. **Random and Rotating MAC Addresses.** Device profiling can be done easily if MAC addresses remains constant. Using MAC addresses is also convenient because it still works in the presence of most encryption schemes. If the MAC of a device changes often, the attacker must resort to more complicated forms of identification (such as radio frequency fingerprints or behavior correlation).

2. **Wi-Fi PSK Changes and Unique SSIDs.** Each time the PSK changes, an attacker needs to re-capture an EAPOL/WPA2 handshake and crack the password for that network. Changing the PSK periodically may deter an attacker who has previously compromised a network. Unique SSIDs prevent the password from being cracked quickly by a rainbow table.

3. **Disable Probe Requests in Future Protocols.** Probe requests reveal unique connection history about a device, revealing associations with previous SSIDs. Since SSIDs do not change often and location information about them can be found online [28], probe requests can also leak geolocation history.
4. **Varying AP Signal Strength.** Radiolocation discussed in this work relies inherently on RSSI. If an AP were to randomly alter signal intensity, even slightly, amplitude-based geolocation would lose accuracy.

6.5 **Future Work**

Creating, developing, and forging the technology cyber-attack drone has many avenues for improvement. Several suggestions, particularly those that build upon radiolocation techniques and the foundational skypie framework built in this research are:

1. **Bearing Prediction.** Decreasing bearing prediction error is the most straightforward way to increase geolocation accuracy. This task is complicated by the fact that the sensor is both moving in space and rotating unpredictably—making determining a target’s heading difficult to impossible if there is not enough rotation in a particular location. Additionally, the sensor is designed to be on an airborne MUAV that has lift and steering generated by electromagnetic motors. Overcoming these challenges is important for improving this type of radiolocation.

2. **Geolocation Algorithm.** Intelligently identifying how to combine multiple predictions with different confidence levels would also improve geolocation accuracy. This requires more experimental geolocation collection and alteration of how sensor data is combined into a final guess. Additional telemetry fields available from the GPS module, such as GPS speed and
azimuth, may be beneficial to utilize in new algorithms. Additionally, a higher-level algorithm may be able to assess patterns from lower-level algorithm to make more informed guesses. An example of this potential is shown in Figure 63 (the experiment results from Section 5.2.3), where rays have been drawn where geolocation guesses seem to form lines. One of these intersections occurs at the exact location of the targets. If a higher-level algorithm does a similar analysis, it might be able to identify guesses beyond simple averaging. This would be beneficial in environments with obstacles.

Figure 63. All geolocation guesses from the localizer experiment. After adding secondary rays (pink lines) along trend lines, this plot begs the question: “is the truth out there?”
3. **Airborne Operation Performance.** Putting and testing the payload for operations on an actual drone is an inevitable step in this research. The added elevation from the drone has been shown to increase signal reception in pilot studies, and it is possible bearing and geolocation predictions would improve as well. Additional environmental challenges may arise, however the *skypie* successfully can be used in bumpy setting without significant issues (it was tested on motorized mountain bicycle on a bumpy field).

4. **Additional Wireless Protocols.** Now that a software framework and prototype exists for collecting, transporting, and viewing Wi-Fi traffic, adding sensors and support for other protocols is a natural choice. Adding Bluetooth and Software Defined Radio (specifically GSM) sensors expands the attack surface to the majority of networked consumer wireless devices with little weight addition.

5. **CNA and CNE Features.** The development of *skypie* ends right at an exciting point—where an existing framework exists and higher-level wireless CNA/CNE features are ready to be built in. These can include, but are not limited to: connection association correlation, probe request correlation, advanced device profiling, EAPOL/WPA2 sniffing and cracking, denial of service attacks, replay attacks, and interactive AP connections.

 A proposed feature for the *skypie* framework is ‘Mirror Mode,’ which would allow an attacker to theoretically trick a victim AP into thinking the
attacker’s machine is local as shown in Figure 64. Mirror Mode is proposed as follows:

1) The Wi-Fi EAPOL/WPA2 handshake has previously been sniffed and cracked by skypie or other means.

2) Mirror Mode is next enabled in the skyport UI by the attacker. The attacker uses a laptop with a WNIC to generate traffic. The attacker laptop MAC is entered into the with the skyport configuration file by the attacker, so the program knows what device to record and forward.

3) A secondary WNIC (separate from the Internet-connected one) on the attacker’s workstation records Wi-Fi traffic from the attack laptop’s MAC address in small PCAP files.

4) The PCAP files are uploaded to the skypie sensor.

5) When the skypie receives the files, it replays them to the target AP over a WNIC using a utility like tcpreplay [51].

6) The replay simulates the attacker’s laptop being physically present, allowing distant devices to react as if it were actually there. Since the password is known, the attacker can authenticate and associate with the target AP.

7) The skypie sensor captures broadcasts and incoming traffic addressed to the attacker’s WNIC as PCAP files, sending them back to the attacker’s workstation.
8) The attacker’s workstation replays the PCAPs back over its WNIC connection, playing the traffic back to the attacker’s laptop.

There no doubt latency will be introduced by Mirror Mode, but if successful, the attacker then has the advantage of attacking from ‘inside’ the private wireless network remotely, successfully gaining Remote Physical Proximity (RPP). This would be a new type of injection attack that combines the ease and anonymity of remote attacks with the inherent weaknesses wireless traffic.
Figure 64. Conception description of ‘Mirror Mode,’ a theoretical and powerful feature that could be implemented with the skypie framework
Appendix A. Supplemental skypie Design Resources

These resources are provided to add clarity on specifics of certain aspects of the skypie/skyport framework design.

A.1 skypie/skyport Data Storage Scheme

The framework’s data storage scheme is shown in Figure 65. Boxes indicate directories, and files inside are shown next to or below each box as text.

The left column represents the attacker’s workstation, which is running skypie. Data is stored in the .:/skyport/database/sensors directory, with a subdirectory for each sensor. In the example depicted in Figure 65, there are three sensors deployed, “starchy,” “gunter,” and “xena.”

Directories in green are downloaded from the skypie sensor, which is depicted in the right column. Directories that are purple are uploaded to the skypie sensor. Directories in blue do not move.

The center column depicts the SFTP server, which acts as an Internet-facing intermediary for the sensor and the attacker’s workstation. The files in the “synch” directory of each sensor are uploaded here until the attacker downloads them.
Figure 65. **skypie/skyport** data storage scheme

A.2 skypie Default Configuration File (config.txt)

The program utilizes a standard configuration file scheme similar to Microsoft Windows INI files, consisting of sections and key-value pairs. This default file is commented to describe each setting. If the program expects a certain set of values, those values are printed in brackets after the description in the comments. For example, the `logging_level` key in the `[log]` section accepts values that are ‘debug’, ‘info’, ‘warning’, ‘critical’ or ‘none’.

```plaintext
## Skypie Config File. Modifying this file alters the behavior of the program.
# SFTP Server
[fileserver]
# Sensor's name, creates unique storage location on skyport. Useful for multiple sensors.
name=starchy
# Credentials for the SFTP account of the sensor's name
```

141
verifier=aSecretPassword9000
Port to connect over SFTP for uploading/downloading sensor data
sftp_port=2222
IP/hostname to connect over SFTP for uploading/downloading sensor data
sftp_server=ftp.balllaboratories.org
Whether files will be deleted or kept after uploading to the remote server
remove_after_upload=False

Logging Settings
[log]
File logging level. You may want to set this to 'none' if you are worried about the
sensor being discovered. [debug, info, warning, critical, none]
logging_level=debug
Debug file size. How big (kB) each file will be before split. Smaller sizes give
feedback faster, but bigger sizes are easier to manage.
logging_size=50

Bluetooth Collection (not implemented)
[bluetooth]
MAC of Bluetooth antenna used for collection. Bluetooth is not supported. Used as a
placeholder.
bluetooth_mac=XX:XX:XX:XX:XX:XX

WiFi Collection
[wifi]
Mode the wifi will be in. This affects the mirror and collection threads
[off,collect,mirror]
mode=collect
MAC of WiFi antenna used for collection. Currently supports only 1. Can use only
first half to denote just manufacturer (example: aa:bb:cc)
antenna_mac=00:25:22
Collection interval in seconds
interval=30
Size in mB of buffer for preferred packets (see bookmarks file). Oldest files will
be removed when full.
size_bookmarks=500
Size in mB of buffer for envelope data (geo, compass, and packet summary data)
size_envelopes=500
Size in mB of all packets captured
size_raw=500
Turn off collection of all packets, used to save space [on, off]
raw_collect=on
Max size in mB of collected files
file_size_interval=10
Raw filter (libcap format), the filter the antenna will use as the basis for
collection. Only packets in this filter will be collected
raw_filter= wlan[0] == 0x80
Bookmark filters (libcap format). Bookmarks are the only packets that are sent
directly to skyport. They are a subset of the raw packets collected.
Multiple filters are allowed. Separate by a new line, be sure to indent each line
with at least one space. Each one requires processing time, so it's not recommended to
do more than 4.
bookmarks_filters=wlan.fc.type_subtype == 4
wlan_mgt.ssid="Stowaway Lounge"
wlan.fc.type == 2
wlan.fc.type_subtype == 8

MirrorMode
[mirror]
The MAC of the attack platform. This device must be within range of the WiFi
interface of the C2 machine
The MAC of the victim.
'All' will forward any traffic destined for the target's MAC address, allowing the
attacker to send spoofed MAC frames. [all,attack_only]
forward_attackside=all
[all,target_only]
forward_targetside=target_only

Telemetry
[telemetry]
[on,off] Store geo data
mode=on
Max size in mB of telemetry data
size=80
Length of time before data is written to a file in seconds
interval=42

Update/Transfer Management
[update]
How often config changes are downloaded (in seconds) from the SFTP server. 0 =
Constant download attempts
download_wait=5
Time to wait (in seconds) after a data upload completes before initiating another. 0
= Constant upload attempts
upload_wait=0
Changing to 'shutdown' notifies all operating threads they need to shutdown. A
gentle way to shut down. Off is maintained when all the threads are done.
[on,shutdown,off]
skypie_operation=on

A.3 skyport Default Configuration File (skyport-config.txt)

Similar to skypie, skyport also has a configuration file used to control its
behavior. The contents of the default file are shown below.

Config file for the Skyport analyzer.
[fileserver]
Username for account that has privilege over all the sensors
name=sensors
sftp_port=2222
A.4 Geodesic Intersection Algorithm by Charles F. F. Karney (intersect-skypie.cpp)

```
// INTERSECT2 - modified for interfacing with Skypie

// Author: Charles F. F. Karney
// Algorithm from paper:
// Geodesics on an ellipsoid of revolution,

// Find intersection of two geodesics
// Compile with, e.g.,
// g++ -o intersect -I/usr/local intersect.cpp -lGeographic -Wl,-rpath=/usr/local/lib

// From:
https://sourceforge.net/p/geographiclib/discussion/1026621/thread/21aaff9f/

/*
Here's an example of its operation. Note that the 4 points must be in the same hemisphere centered at the intersection point for the gnomonic projection to be defined.

Line A: Istanbul - Washington
Line B: Reyjkavik - Accra

./intersect 42 29 39 -77 64 -22 6 0
*/

#include <iostream>
#include <iomanip>
#include <GeographicLib/Gnomonic.hpp>
#include <GeographicLib/Geodesic.hpp>

class vector3 {
public:
    double _x, _y, _z;
```
vector3(double x, double y, double z = 1) throw() {
 _x(x), _y(y), _z(z) {}
}

vector3 cross(const vector3& b) const throw() {
 return vector3(_y * b._z - _z * b._y,
 _z * b._x - _x * b._z,
 _x * b._y - _y * b._x);
}

void norm() throw() {
 _x /= _z;
 _y /= _z;
 _z = 1;
}

int main(int argc, char *argv[]) {
 double lata1, lona1, lata2, lona2;
 double latb1, lonb1, latb2, lonb2;
 //std::cin >> lata1 >> lona1 >> lata2 >> lona2
 // >> latb1 >> lonb1 >> latb2 >> lonb2;
 if (argc != 9) {
 std::cout << "[-] Needs exactly 8 arguments (four coordinates, defining
 the two lines you want to calculate the intersection of."
 exit(0);
 }
 lata1 = atof(argv[1]);
 lona1 = atof(argv[2]);
 lata2 = atof(argv[3]);
 lona2 = atof(argv[4]);
 latb1 = atof(argv[5]);
 lonb1 = atof(argv[6]);
 latb2 = atof(argv[7]);
 lonb2 = atof(argv[8]);

 const GeographicLib::Geodesic geod(GeographicLib::Constants::WGS84_a(),
 GeographicLib::Constants::WGS84_f());
 const GeographicLib::Gnomonic gn(geod);
 double lat0 = (lata1 + lata2 + latb1 + latb2)/4,
 lon0 = (lona1 + lona2 + lonb1 + lonb2)/4;
 std::cout << std::setprecision(16);
 std::cout << "Initial guess " << lat0 << " " << lon0 << "\n";
 for (int i = 0; i < 10; ++i) {
 double xa1, ya1, xa2, ya2;
 double xb1, yb1, xb2, yb2;
 gn.Forward(lat0, lon0, lata1, lona1, xa1, ya1);
 gn.Forward(lat0, lon0, lata2, lona2, xa2, ya2);
 gn.Forward(lat0, lon0, latb1, lonb1, xb1, yb1);
 gn.Forward(lat0, lon0, latb2, lonb2, xb2, yb2);
 // See Hartley and Zisserman, Multiple View Geometry, Sec. 2.2.1
 vector3 va1(xa1, ya1); vector3 va2(xa2, ya2);
 vector3 vb1(xb1, yb1); vector3 vb2(xb2, yb2);
 // l4 is homogeneous representation of line A1,A2
vector3 la = va1.cross(va2);
vector3 lb = vb1.cross(vb2);
// p0 is homogeneous representation of intersection of la and lb
vector3 p0 = la.cross(lb);
p0.norm();
double lat1, lon1;
qn.Reverse(lat0, lon0, p0._x, p0._y, lat1, lon1);
// std::cout << "Increment " << lat1-lat0 << " " << lon1-lon0 << "\n"; // I removed the output to save time. -CB
lat0 = lat1;
lon0 = lon1;
}
std::cout << "Final result " << lat0 << " " << lon0 << "\n";
double azi1, azi2;
geod.Inverse(latal1, lonal1, lat0, lon0, azi1, azi2);
std::cout << "Azimuths on line A " << azi2 << " ";
geod.Inverse(lat0, lon0, lata2, lona2, azi1, azi2);
std::cout << azi1 << "\n";
geod.Inverse(latb1, lonb1, lat0, lon0, azi1, azi2);
std::cout << "Azimuths on line B " << azi2 << " ";
geod.Inverse(lat0, lon0, latb2, lonb2, azi1, azi2);
std::cout << azi1 << "\n";

Cyber-Attack Drone Payload Development and Geolocation via Directional Antennae

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Commercial drones have made amazing improvements in flight time, flight distance, and payload weight. These same features also offer a unique and unprecedented commodity for wireless hackers—the ability to gain 'physical' proximity to a target without physically having to be near it. This thesis experimentally evaluates the ability of a drone-based attack system to track its targets by passively sniffing Wi-Fi signals from distances of 300 and 600 meters using a directional antenna. Additionally, it identifies collection techniques and processing algorithms for minimizing geolocation errors. This thesis also builds "skype," a software and hardware framework designed for performing remote, directional drone-based collections. The prototype simulates a device that could be built by a motivated threat actor, and the development process evaluates strengths and shortcomings posed by these devices. This research ultimately assist in developing operational drone-borne cyber-attack and reconnaissance capabilities while also enlightening the public of countermoves to mitigate the privacy threats posed by the inevitable rise of the cyber-attack drone.