Novel Delivery System of Autologous Mesenchymal Stem Cells (MSC) utilizing fabricated scaffold for Bone Regeneration of Compromised Wounds in a Swine Model (Sus scrofa).
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master’s thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSOR/MONITOR’S ACRONYM(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR’S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR’S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
Novel Delivery System of Autologous Mesenchymal Stem Cells (MSC) utilizing fabricated scaffold for Bone Regeneration of Compromised Wounds in a Swine Model (Sus scrofa)

Michael Sippel, MD
Research Fellow, Institute of Surgical Research
Surgical Resident, UT Health San Antonio

Juan Taboas, PhD
Assistant Professor, Swanson School of Engineering University of Pittsburgh.
Assistant Professor in the Clinical and Translational Science Institute.

Col. Erik Weitzel, MD
Director of RESTOR
Deputy Commander, Institute of Surgical Research
The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the Department of Defense, Department of the Army, Department of the Air Force or its Components.

The experiments reported herein were conducted according to the principles set forth in the National Institute of Health Publication 80-23, Guide for the Care and Use of Laboratory Animals and the Animal Welfare Act of 1966, as amended.
Background

- Military personnel are substantially burdened with traumatic extremity bone injury
- Traumatic critical bone injuries are often treated with limb amputation or result in significant loss of function
- No ideal therapy is available to regenerate large bone volumes in compromised wounds
- Traumatic wounds are sub-optimal for bone regeneration
- There is a need for preclinical investigation of a new biologic device designed to regenerate large volumes of bone in compromised wounds
Social Implications

Military Impact

• Congressional estimation ≥ 1500 total American soldier traumatic limb amputations in Afghanistan and Iraqi confrontations

• Estimated life time costs of care for amputees > $600 billion*

Civilian Impact

• Traumatic injury 2nd leading cause for extremity amputation

• Estimated > 700,000/year†

• In 2013 yearly hospital charges of $8.7 billion
Fracture Healing

- Injury/Inflammation
- Soft Callus Formation
- Hard Callus formation
- Remodeling
The Biologic Device

- 1. Hydrogel carrier for cytokines and MSCs
- 2. Nanoparticles for prolonged cytokine delivery
- 3. Chondrogenic and immunomodulatory cytokines
- 4. Porous scaffold providing mechanical support
Hypothesis

Application of this novel biologic device for the treatment of a comminuted fracture or injuries resulting in a significant bone defect will mitigate hypoxia and non-union.
Objectives

• Develop a porcine model of comminuted fracture and critical bone defect for the optimization of bone regeneration
• Further the treatment of extremity bone injury
• Determine the immunomodulatory effects of the selected cytokines and MSCs with regards to bone regeneration.
Objectives

• Cytokines vs. MSCs in local immunomodulation. Are MSCs essential to repair?
• Efficacy results of the coacervate drug delivery
• Skeletogenic results of the hydrogel – possible application as a tissue glue to promote repair of numerous bone injuries
• Bone regeneration results of the integrated scaffold device
Methods

- Yucatan Swine, Female
- Injectable Device and Implantable device groups
- Survival Endpoints: 1 month and 5 months
- Biosamples/Data Collection
 - Xrays: POD 0, and biweekly until end point
 - Blood sampling for inflammatory markers and Immune cell populations
 - Flow cytometry- Immune cell characterization
 - Cytokine profiling: Identify whether the systemic cytokine response is fibrotic (i.e. Th1 including IFN-γ, TNF-α) versus reparative (e.g. Th2, including IL-10, IL-13).
Methods

• Immunohistochemistry
 • Lymphocyte subsets
 • M1 and M2 Macrophage Phenotyping

• Histology
 • Safranin O / Fast Green / Hematoxylin staining for cartilage
 • Eosin / Hematoxylin for bone, and Masson’s Trichrome for fibrous tissue and the phases of development of bone.

• Transcriptome: comprehensive analysis of growth factor, cytokine, and immune cell gene expression markers using a gene chip.
 • RT-PCR : precisely quantify the expression difference of genes identified in the array.

• Micro-CT of the regenerate tissue for 5 month animals
Experimental Groups

Injectable Device = 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Time-points & Replicates</th>
<th>Cipher Name</th>
<th>Scaffold</th>
<th>Hydrogel</th>
<th>IL-10 in coacervate</th>
<th>IL-10 no coacervate</th>
<th>TGFB in coacervate</th>
<th>MSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>Empty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>Long</td>
<td>True</td>
<td>1 ug/ml</td>
<td>1 ug/ml</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>Burst</td>
<td>True</td>
<td>1 ug/ml</td>
<td>1 ug/ml</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>IL-only</td>
<td>True</td>
<td>1 ug/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>Control3</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Implantable Device = 2

<table>
<thead>
<tr>
<th>Group</th>
<th>Time-points & Replicates</th>
<th>Cipher Name</th>
<th>Scaffold</th>
<th>Hydrogel</th>
<th>IL-10 in coacervate</th>
<th>IL-10 no coacervate</th>
<th>TGFB in coacervate</th>
<th>MSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>Empty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>MSC</td>
<td>True</td>
<td>1 ug/ml</td>
<td>1 ug/ml</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>Long</td>
<td>True</td>
<td>1 ug/ml</td>
<td>1 ug/ml</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>Burst</td>
<td>True</td>
<td>1 ug/ml</td>
<td>1 ug/ml</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>Golden</td>
<td>True</td>
<td>1 ug/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>Infuse</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>Control1</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 M = A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 M = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Control2</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hydrogel

- Carrier for the cytokines and MSCs and controls the MSC differentiation.
- Preserve and promote cytokine activity via the hydrated environment and direct binding of the cytokines.
- Promotes MSC chondrogenesis and endochondral ossification through
 - Hydrophilic nature
 - Support of spherical cell shape
 - Enhancement of the chondrocyte phenotype.
Nanoparticles

- Coacervates (aggregates of colloidal droplets) of heparin and a synthetic polymer
- Bind the cytokines via charge interactions
- Stabilize and protect the cytokines and prolong their release.
Cytokines

- Transforming growth factor beta-3 (TGF\(\beta\)-3) and interleukin-10 (IL-10).
- TGF\(\beta\)-3 is a potent inducer of chondrogenesis by MSCs.
- Both IL-10 and TGF\(\beta\)-3 serve to modulate the immune response
 - Promotes alternate activation of macrophages (M2 phenotype) and a more non-fibrotic healing response
Scaffold

- Porous scaffold is made from the same polymers as the hydrogel
- Provides structural integrity to the implantable device in large defects.
Experimental Model

- 2 bone injury models in Yucatan swine
 - Comminuted fracture model
 - Critical bone defect models
Scaffold Placement
Technology Overview

• MSCs and immunomodulatory cytokines make the wound environment more conducive to regeneration while the hydrogel creates an anti-fibrotic barrier.
• The hydrogel and a chondrogenic cytokine drive cartilage formation by the MSCs.
• Neocartilage is similar to the cartilage callus formed during limb fracture healing and undergoes endochondral ossification to produce bone in wounds with compromised vascularity.
How will this technology be used?

• **Injectable device** – forward surgical care (percutaneous injection)
 • stabilize bone fragments in comminuted fractures
 • prevent fibrous tissue ingrowth
 • rapidly initiate regeneration.

• **Implantable device** - used in the operating theater
 • promote bone formation
 • minimize non-union when conventional autografts and bone fillers are contraindicated
Summary

• There is a clear need for technology capable of bone regeneration on critical bone defects in traumatic wounds
• This technology has the potential to mitigate inflammatory processes driving fibrosis and inadequate bone healing
• Injectable device has the potential application for point of care treatment
• Potential to provide reconstructive options when autologous bone is not available
• Broad implications across entire reconstructive and orthopedic surgery fields
Thank You

Warrior Medics – Mission Ready – Patient Focused

RESTOR
Col Michael Davis
Col Erik Weitzel
CPT Samuel Tahk
Dr. Matthew Wordsworth
Mr. Raul Corpus
Ms. Jennifer Cox
Dr. Warren C. Breidenbach
Dr. Margaux Salas
Dr. Bijaya K. Parida

University of Pittsburgh
Dr. Jaun Taboas (PI)
Dr. Alejandro Almarza

Wake Forest
Dr. Vijay Gorantla

CRD, San Antonio
Dr. Pedro Rico
LTC Christensen DVM

59 Med Wing USAF
Mr. JR Spencer
LTC Harris
Dr. Ben Antebi