In Vivo Detection of Gaseous Microemboli during AE using Cardiohelp ECLS

Lt Col Sams, Valerie G

Approved for public release. Distribution is unlimited.

MHSRS 2018, Kissimmee, FL, 20-23 August 2018
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.

Standard Form 298 Back (Rev. 8/98)
In-Vivo Detection of Gaseous Microemboli during Aeromedical Evacuation using the Cardiohelp Extracorporeal Life Support System

George Harea, BS¹; Brendan Beely, RRT¹,²; Vitali Karaliou MD¹; Teryn Roberts, MS²,³; Jae-Hyek Choi, PhD, DvSC²; Andriy Batchinsky, MD²-³

¹The Geneva Foundation, Tacoma, WA; ²University of the Incarnate Word School of Osteopathic Medicine, San Antonio, TX; ³Morsani College of Medicine, University of South Florida, Tampa, FL; ⁴R Adams Cowley Shock Trauma Center, Baltimore, MD; ⁵United States Army Institute of Surgical Research, JBSA Ft. Sam Houston, TX; ⁶59th Medical Wing, Joint Base San Antonio, San Antonio, TX

August, 2018
Kissimmee, FL
The views presented here are the private views of the author(s) and are not to be construed as the official views or policies of the U.S. Air Force, the U.S. Department of Defense, or The Geneva Foundation.

This study was funded by the United States Air Force, and administered through the 59th MDW via The Geneva Foundation under Contract #FA8650-15-C-6692, PI Dr. Andriy Batchinsky, MD.

This study has been conducted in compliance with the Animal Welfare Act, the implementing Animal Welfare Regulations, and the principles of the Guide for the Care and Use of Laboratory Animals.
• Decompression Sickness

• “The Bends”

• Henry’s Law / Boyle’s Law

• Extracorporeal Life Support (ECLS) patients are also at risk for injuries caused by gaseous microemboli (GME or “bubbles”) at both ground level and at altitude

• Note: terms GME and bubbles are used interchangeably

https://www.divein.com/guide/scuba-diving-and-health-decompression-sickness/ (better citation)
Why are bubbles bad?

• Mechanical tissue damage
 • Embolisms
 • Gaps between endothelial cells
 • Increased thickness of arteries
 • Ischemia

• Activates coagulation cascade
 • Platelet aggregation
 • Thrombin production

• Inflammatory response

Win et al. 2008
• Cannulation procedure

• ECLS system

• Operator interventions on the ECLS patient

• Lung injury

• Environmental changes
 • Pressure - Boyle’s Law / Henry’s Law

Undar et al. 2007; Win et al. 2008

https://www.researchgate.net/figure/221823845_fig1_Fig-1-Schematic-drawing-of-the-Avalon-catheter-and-correct-positioning
Detection in circulating fluids using ultrasound techniques

- Ultrasound waves are scattered by particles in blood
- Bubbles produce a stronger signal than blood cells

Emboli Detection and Classification (EDAC) processes these signals and returns bubble counts and size ranges
• Our objective was to assess in-vivo detection of GME in the Cardiohelp ECLS system during aeromedical evacuation using the Emboli Detection and Classification Quantifier (EDAC™)

• (Terumo Cardiovascular Systems Corp., Ann Arbor, MI)
• We hypothesized that there will be an increase in GME counts as a result of trauma, changes in altitude and ECLS
METHODS

- Cardiohelp HLS Advanced 7.0 Set
- EDAC GME Detector

ECLS Circuit Preparation

Animal Prep and Cannulation

Execution of Flight Profile (Day 1)

Overnight ICU Stay then Injury

Execution of Flight Profile (Day 2)
METHODS

- Anesthetized swine received VV ECLS
- 23F veno-venous Avalon catheter in right jugular vein (n=13).
- No injury on 1st day.
METHODS

- Flight profile detailing operating altitudes
- Day 1 Flight is uninjured state
- EDAC measurements indicated by red highlights
- Two EDAC recordings per altitude level

ECLS Circuit Preparation

Animal Prep and Cannulation

Execution of Flight Profile (Day 1)

Overnight ICU Stay then Injury

Execution of Flight Profile (Day 2)
METHODS

- Flight profile detailing operating altitudes
- Day 1 Flight is uninjured state
- EDAC GME Detector (A) with two transducers: pre-ML- upper panel and post ML- lower panel (B).
METHODS

- After flight, transport back to ICU for overnight stay
- Morning of Day 2, animal receives bilateral pulmonary contusion using modified captive bolt stunner
- Transport back to altitude chambers
METHODS

- Day 2
- Flight repeated with animal in injured state
- EDAC measurements indicated by red highlights

Execution of Flight Profile (Day 1)

1. ECLS Circuit Preparation
2. Animal Prep and Cannulation
3. Execution of Flight Profile (Day 1)
4. Overnight ICU Stay then Injury
5. Execution of Flight Profile (Day 2)
<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
<th>Phase 5</th>
<th>Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDAC</td>
<td>Disconnected</td>
<td>Connected</td>
<td>Connected</td>
<td>Connected</td>
<td>Connected</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>2 liters/min</td>
<td>0 liters/min</td>
<td>2 liters/min</td>
<td>2 liters/min</td>
<td>2 liters/min</td>
</tr>
<tr>
<td>Recording Time</td>
<td>3 minutes Pre and Post</td>
</tr>
<tr>
<td>Expected Results</td>
<td>0 bubbles</td>
<td>0 bubbles</td>
<td>Some bubbles</td>
<td>A lot of bubbles due to injection</td>
<td>Fewer bubbles</td>
</tr>
</tbody>
</table>

METHODS

```
<table>
<thead>
<tr>
<th>Channel 1 - Channel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E-4</td>
</tr>
<tr>
<td>9E-3</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>cc / Sec.</td>
</tr>
<tr>
<td>Emboli / Sec.</td>
</tr>
<tr>
<td>Range (cm)</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>
```
• Statistics

• Using SAS 9.3 (Cary, NC) and an alpha of 0.05 for significance, a Two Sample test for equivalence was conducted comparing pre- and post-membrane bubble counts for each phase

• Followed by an independent variable test to compare between groups for each pre- and post-membrane measurement at each bubble size range.
• No difference between uninjured and injured conditions
• No difference between pre and post membrane for any size ranges
RESULTS

<table>
<thead>
<tr>
<th>Ground</th>
<th>5K</th>
<th>8K</th>
<th>8K to 30K</th>
<th>30K</th>
<th>30K to 5K</th>
<th>5K-2</th>
<th>Ground-2</th>
</tr>
</thead>
</table>

- Injured animals show increase in post-membrane GME compared to uninjured above 200um GME diameter

![Graph showing GME count across different diameter ranges](image)

- * difference from baseline within the same injury group
- † difference between pre- and post- detector locations
- ‡ difference between uninjured and injured
- § difference from previous altitude
RESULTS

- 10-fold GME increase vs. Ground level for uninjured animals in the smallest two size ranges

<table>
<thead>
<tr>
<th></th>
<th>Ground</th>
<th>5K</th>
<th>8K</th>
<th>8K to 30K</th>
<th>30K</th>
<th>30K to 5K</th>
<th>5K-2</th>
<th>Ground-2</th>
</tr>
</thead>
</table>

* difference from baseline within the same injury group
† difference between pre- and post- detector locations
‡ difference between uninjured and injured
§ difference from previous altitude
10-fold increase in GME vs. Ground level for uninjured pre-membrane at all size ranges
Similar increase seen in uninjured post membrane but only for the smallest 3 size ranges
Reduction in GME counts post membrane for GME sizes larger than 200um
 RESULTS

- 10- to 100-fold increase in GME counts for all diameter ranges vs Ground
RESULTS

- 10- to 100-fold increase in GME counts for all diameter ranges vs Ground

<table>
<thead>
<tr>
<th></th>
<th>Ground</th>
<th>5K</th>
<th>8K</th>
<th>8K to 30K</th>
<th>30K</th>
<th>30K to 5K</th>
<th>5K-2</th>
<th>Ground-2</th>
</tr>
</thead>
</table>

* difference from baseline within the same injury group
† difference between pre- and post- detector locations
‡ difference between uninjured and injured
§ difference from previous altitude
RESULTS

- GME counts for uninjured pre-membrane at all size ranges, and uninjured post membrane under 200um remain elevated vs. Ground

<table>
<thead>
<tr>
<th>Ground</th>
<th>5K</th>
<th>8K</th>
<th>8K to 30K</th>
<th>30K</th>
<th>30K to 5K</th>
<th>5K-2</th>
<th>Ground-2</th>
</tr>
</thead>
</table>

* difference from baseline within the same injury group
† difference between pre- and post- detector locations
‡ difference between uninjured and injured
§ difference from previous altitude
RESULTS

- No differences between Ground and Ground-2 in both uninjured and injured animals in all ranges
This is the first report of GME detection in a modern ECLS device during aeromedical evacuation of subjects with ARDS at ground and various altitudes.

Ascent to 8 and more so to 30K led to sustained elevation of GME levels in all ranges vs. ground level.

There was no significant difference in GME counts between uninjured and injured states.

GME ≥ 100um were not significantly increased possibly due to the presence of the ML.

ML may trap larger GME and prevent them from re-entering the animal’s systemic circulation.

GME may be an important contributor to end organ damage during transport of subjects at altitudes above 8K feet.