Expression of Mobility Group Box 1 Protein in a Polytrauma Model Treated with ECLS at Ground Level and High Altitude

AUTHOR(S)

Lt Col Sams, Valerie G

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

59th Clinical Investigations and Research Support
1100 Wilford Hall Loop, Bldg 4430
JBSA – Lackland, TX 78236-9908
210-292-7141

SPONSOR/MONITOR'S ACRONYM(S)

MHSRS

ABSTRACT

Approved for public release. Distribution is unlimited.

MHSRS 2018, Kissimmee, FL, 20-23 August 2018
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
Expression of high mobility group box 1 protein in a polytrauma model treated with ECLS at ground level and high altitude

Jae Hyek Choi¹, PhD, DVSc, Teryn Roberts¹, MS, Kyle Sieck¹, BS, George Harea¹, BS, Vitali Karaliou¹, MD, Daniel Wendorff¹, BS, Brendan Beely¹, RRT, Leopoldo Cancio², MD, Valerie Sam⁴, MD, Andry Batchinsky¹, MD

¹The Geneva Foundation, Tacoma WA, ²U.S. Army Institute of Surgical Research, JBSA Ft. Sam Houston, TX, ³59th Medical Wing, JBSA Lackland Air Force Base, TX

The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the Department of the Air Force, the Department of Defense, or The Geneva Foundation.

Introduction

- Acute respiratory distress syndrome (ARDS) is the most severe form of acute lung injury, characterized by acute onset of hypoxemia, bilateral radiographic pulmonary infiltrates without cardiogenic pulmonary edema, and may lead to sepsis and multi-organ failure.
- Injuries incurred in austere environments, particularly in the combat setting, require immediate evacuation with en-route care. Extracorporeal membrane oxygenation (ECMO) may be used to support ARDS patients during transport, including during aeromedical evacuation.
- High mobility group protein box 1 (HMGB1) is an important indicator of damage-associated molecular pattern (DAMP) expression and disease progression in ARDS.
- HMGB1 has been identified as a mediator of ARDS and is expressed in blood following activation of damaged cells.
- Little is known regarding HMGB1 expression in a pulmonary contusion model of ARDS supported by ECLS at ground level.
- Altitude change effect on HMGB1 expression during air transportation is also unknown.

Hypothesis

We hypothesized that HMGB1 expression in systemic blood increases following chest contusion and that HMGB1 expression is affected by changes in altitude to a greater extent in injured animals supported by ECLS versus healthy animals on ECLS undergoing the same altitude exposure.

Methods

- Female Yorkshire pigs (54.17 ± 1.27 kg) (n=15) were anesthetized and received arterial and venous catheters, followed by tracheostomy.
- Following baseline measurements, animals were cannulated and veno-venous ECMO was initiated (Cardiohelp, Maquet Gmbh, Gettinge Group, Rastatt, Germany), via an Avalon 23 Fr. catheter inserted into the right jugular vein.
- Blood flow was 1.2-3 L/min and sweep gas flow ranged at 4-8L/min. Continuous heparinization was started at cannulation and titrated to 30-50% higher than baseline ACT levels.
- Animals were then transported via a standard NATO litter fitted with a next-generation medical equipment rail kit (MERK, Smed Technologies, Cummings, GA) to an adjacent building housing hypobaric chambers.
- The altitude simulation profile consisted of the multiple levels of simulated atmospheric exposure, and is depicted in Figure 2.
- Altitude exposure occurred in healthy state on Day 1, and injured state on Day 2.
- Injury consisted of bilateral pulmonary contusions using a modified captive-bolt stunner (Model ML, Karl Schermer, Packers Engineering, Omaha, NE) and chest tube placement.
- HMGB1 ELISA (IBL international, STS1011, NC, US) was utilized to analyze the level of HMGB1 in the blood at each time-point.
- Plasma free hemoglobin (pfHb) was measured in real time by spectrophotometer method.
- Plasma total protein concentration (PTPC) was measured by Pierce™ BCA protein assay kit (Thermo scientific, Rockford, IL, US)
- Post-mortem lung tissue samples were fixed by 10% normal buffered formalin and paraffin embedded, thickness 4 µm sliced tissues were stained by Hematoxylin & Eosin or primary antibody immunohistochemistry for HMGB1 and TLR4 (abcam, CA, US).

Results

- Figure 3. Post-mortem Image of Lungs after Bilateral Pulmonary Contusion Treated with ECMO
- Figure 4. Post-Mortem Expression of hmgb1, TLR4 after Bilateral Pulmonary Contusion Treated with ECMO
- Figure 5. Histology image and diffused alveolar damage score in a bilateral pulmonary contusion
- Figure 6. Dramatic change of HMGB1 protein, pfHb and PTPC in a bilateral pulmonary contusion treated with ECMO at ground level and high altitude during en-route care.

Conclusion

- High altitude does not alter HMGB1, pfHb and PTPC to expression in uninjured state on ECLS. Pulmonary contusion causes a transient increase in HMGB1 and pfHb levels. The level of HMGB1 and pfHb of early died animals were significantly higher than survived group. Beside assessment of HMGB1 and pfHb confirms injury and may provide a useful monitoring capability during en-route care, and should be a part of precision medicine lab-on-a-chip type assays in the future.

Acknowledgements

This study was funded by the United States Air Force, and administered through the 59th MDW via The Geneva Foundation under Contract #FA8650-15-C-6692, PI: Dr. Andry Batchinsky, MD. The experiments reported herein were conducted according to the principles set forth in the National Institute of Health Publication No. 80-23, Guide for the Care and Use of Laboratory Animals and the Animal Welfare Act of 1966, as amended.