NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

USING APACHE SPARK TO SPEED ANALYSIS OF ADS-B AIRCRAFT-TRACKING DATA TECHNIQUES

by

Jim Z. Zhou

June 2018

Thesis Advisor: Neil C. Rowe
Second Reader: Arijit Das

Approved for public release. Distribution is unlimited.
THIS PAGE INTENTIONALLY LEFT BLANK
Using Apache Spark to Speed Analysis of ADS-B Aircraft-Tracking Data Techniques

Abstract

The U.S. Navy is exploring the feasibility of using a big-data platform and machine-learning algorithms to analyze combat-identification data. Combat identification involves a large number of remote sensors that report back data for aggregation and analysis. In this thesis, we used a sample of ADS-B aircraft-tracking data to test big-data methods for machine-learning methods developed previously. We showed large speed improvements in the analysis setup over the previous single-processor methods, and a lesser speed improvement for machine-learning based anomaly analysis.

Subject Terms
- Big data
- Machine learning
- Apache Spark
- ADS-B
USING APACHE SPARK TO SPEED ANALYSIS OF ADS-B AIRCRAFT-TRACKING DATA TECHNIQUES

Jim Z. Zhou
Civilian, Naval Postgraduate School
BS, Naval Postgraduate School, 2003

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2018

Approved by: Neil C. Rowe
Advisor

Arijit Das
Second Reader

Peter J. Denning
Chair, Department of Computer Science
ABSTRACT

The U.S. Navy is exploring the feasibility of using a big-data platform and machine-learning algorithms to analyze combat-identification data. Combat identification involves a large number of remote sensors that report back data for aggregation and analysis. In this thesis, we used a sample of ADS-B aircraft-tracking data to test big-data methods for machine-learning methods developed previously. We showed large speed improvements in the analysis setup over the previous single-processor methods, and a lesser speed improvement for machine-learning based anomaly analysis.
TABLE OF CONTENTS

I. **INTRODUCTION** ... 1

II. **RELATED WORK** ... 5
A. **COMBAT IDENTIFICATION** ... 5
B. **ADS-B** ... 5

III. **METHODS** ... 7
A. **BIG-DATA METHODS** ... 7
B. **LINEAR MODELING** ... 9
C. **ADS-B DATA** ... 9

IV. **EXPERIMENTS** ... 13
A. **CLUSTER HARDWARE AND SOFTWARE** .. 13
B. **LOADING THE ADS-B DATA** .. 14
C. **PREPROCESSING THE DATA** ... 15
D. **ANOMALY DETECTION** .. 17

V. **RESULTS** .. 19

VI. **CONCLUSION AND RECOMMENDATIONS** .. 23

APPENDIX ... 25
A. **MAKING ADS-B BINS** ... 25
B. **FIND SPEED TREND** ... 29
C. **FIND AIRCRAFT TRACKS** .. 31
D. **FIND ANOMALOUS AIRCRAFT** .. 34

LIST OF REFERENCES ... 41

INITIAL DISTRIBUTION LIST ... 45
LIST OF FIGURES

Figure 1. Information exchange between combat-identification server and aircraft. Adapted from Hinson, Summitt, and Shepko (2009)2

Figure 2. The Hadoop system. Adapted from Achari (2015)8

Figure 3. ADS-B receiving station block diagram. Source: Nickels (2014)10

Figure 4. Python and PySpark processing-time comparison on the ADS-B sample ..19

Figure 5. Cloudera monitoring chart of cluster CPU utilization for processing of twelve days of data ...21
LIST OF TABLES

Table 1. ADS-B data field descriptions. Source: ADS-B Exchange (n.d.-b)11
Table 2. Cloudera cluster servers’ hardware configurations..13
Table 3. Comparison of different data sizes on CPU load, Disk IO and Network IO ...20
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS-B</td>
<td>Automatic Dependent Surveillance – Broadcast</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>HDFS</td>
<td>Hadoop Distributed File System</td>
</tr>
<tr>
<td>HPC</td>
<td>High-Performance Computing</td>
</tr>
<tr>
<td>JSON</td>
<td>JavaScript Object Notation</td>
</tr>
<tr>
<td>LLA</td>
<td>Lexical Link Analysis</td>
</tr>
<tr>
<td>MR</td>
<td>MapReduce</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Neil Rowe, who believed in me while completing this thesis and gave guidance, direction and suggestions throughout the process. I would like to thank Professor Arijit Das, who provided the hardware for this thesis and guided and helped me while writing this thesis. I would also like to thank the Graduate Writing Center coaches and thesis processors for their help and greatly appreciated assistance.

Finally, to my wife and daughter, who were patient and supportive all throughout this effort.
I. INTRODUCTION

Decision-making is critical to Navy missions to maximize effectiveness and to minimize casualties during the mission (Joint Chiefs of Staff, 1998). A combat-identification system identifies friendly, hostile, and neutral entities in a battlespace. During Operation Desert Storm, two friendly Black Hawk helicopters shot down, which suggested improvement in the combat-identification system (Government Accountability Office, 1995). This thesis looks at using a big-data platform to process aircraft data for combat-identification purposes.

Accurately and quickly identifying aircraft is difficult because they move very fast compared to other targets. In combat, assuming that a vehicle will be cooperative does not hold true always, which makes the task of combat identification a challenge. In addition, networks used in combat-identification systems can be overwhelmed with data from sensors and can malfunction. Much aircraft data collects via satellite and radar, which monitor (via sensors) the complete flight path. This leads to an overabundance of data that handles by combat-identification platforms operating in time-critical scenarios. Large amounts of data could be sent to systems designed for big-data analysis, but transmitting that data would require a large bandwidth which is difficult to obtain in the Navy. Inadequate data in combat identification can cause bad decisions, as it is hard to judge the value of data out of context.

Figure 1 shows a typical combat-identification scenario with a centralized combat-identification server which communicates via a limited link bandwidth to aircraft, tanks, and radar equipment. The figure shows how combat-identification data transfers from variety of combat-identification sensors to a server. Link-16 is a tactical communication link that is often used for these data transfers. However, combat-identification functioning in a purely centralized fashion would be a single point of failure, so an adversary could attack it to disrupt the entire process of combat identification.
Today the U.S. military has many combat-identification sensors around the world, and their total data volume often overwhelms combat-identification systems (Hinson, Summitt, & Shepko, 2009). To process information more rapidly, a distributed-processing solution (Gebara, Hofstee, & Nowka, 2015) might be a good choice. Distributed processing uses high-performance computing (HPC) hardware, but this is not very cost-effective because it requires custom hardware, software, and programming techniques. A commodity solution for parallel processing with much of community support is the Hadoop Distributed File System (HDFS). It comes from the Apache Software Foundation, a non-
profit organization that promotes open-source software. Its big-data ecosystem consists of a distributed file system HDFS, software applications, and a programming environment for software developers. It uses a divide-and-conquer model wherein data is distributed across nodes of a cluster, processing is done at each node, and the data from each node is aggregated for the result.

Machine-learning algorithms do many repetitive calculations in which intermediate calculations written to memory or storage, and read back many times. This kind of analysis happens in big-data contexts with the standard programming paradigm known as MapReduce (MR), in which data is mapped to nodes, shuffled based on the key values, and aggregated in the reduce phase. This whole process creates many reads and writes using disk input/output (disk I/O), which can slow down the machine learning. Gollapudi (2016) provides some further background about machine-learning algorithms.

Most commercial and non-commercial aircraft now have transponders for Automatic Dependent Surveillance – Broadcast (ADS-B) data format (Federal Aviation Administration, 2010). A typical active aircraft produces approximately 40 GB of data every day (ADS-B Exchange, n.d.-a). Anomalous behavior occurs when aircraft fly outside of the normal altitude, speed, location, and turn radius values. Automated detection of anomalies uses various techniques including machine learning. In recent years with advancement of computing technologies, machine learning becomes increasingly feasible (Rowe, Das, & Zhou, 2018).

The research questions we will address are:

- How much faster can Apache Spark perform in a cluster of a few nodes compared to a single-node server?
- How well can the anomaly-detection techniques apply to the ADS-B data set?

This thesis used a sample of the publicly available ADS-B data which is similar to the military combat-identification aircraft data that is the ultimate subject of this work. Both have latitude, longitude, altitude, timestamp, speed, etc. We compared the time spent
on a machine running a program in the Python programming language on a single processor with programs to do the same things using PySpark, a Python-compatible Spark distributed-programming language.

Chapter II discusses related work about ADS-B and other attempts to solve the combat-identification problem. Chapter III introduces ADS-B, the data studied for this research, and Apache Spark, the system used to process the ADS-B data. It also introduces machine learning. Chapter IV describes our methods, and Chapter V discusses findings. Lastly, Chapter VI presents conclusions and suggestions for further study.
II. RELATED WORK

This chapter will explore previous work on the topics of combat identification, ADS-B, and big-data clusters.

A. COMBAT IDENTIFICATION

Ten to twenty percent of casualties in military operations reported, caused by friendly fire (Ministry of Defence, 2002; Defense Science Board, 1996). During Operation Desert Storm the rate was 24 percent (United States General Accounting Office, 2001). To better identify targets (friend, foe, and neutral), the General Accounting Office recommended the Department of Defense (DoD) develop an enterprise architecture for combat identification. However, there are many challenges in developing and implementing these systems.

Much analysis can be done if relevant data can be collected in a centralized locations or set of locations. Van Gosliga and Jansen (2003) used a machine-learning technique as known as a Bayesian network to analyze combat-identification data. A Bayesian network uses probabilities based on prior knowledge of factors. Combat-identification data includes factors such as altitude, speed, location, and state information. If some data is missing, it can be estimated by prediction. However, collecting large quantities of data on a single site can be a challenge.

B. ADS-B

A sample of ADS-B data tested our machine-learning techniques and processes. ADS-B gives aircraft data similar to military-aircraft data and is open-source. Sun, Ellerbroek and Hoekstra (2016) noted a number of errors in ADS-B data which make it troublesome to process. They extracted the ADS-B data for individual flights, and then used fuzzy logic to analyze it. They used the fields of aircraft identification number, timestamp, latitude, and speed. They used MongoDB (NoSQL database) for the storage of data, run on a solid-state disk (SSD).
Tabassum, Allen and Semke (2017) showed that, more than errors, missing values will highly affect the data accuracy. Removing them will improve performance of separation-detection and collision-detection algorithms for manned and unmanned aircraft. There is a discussion of NextGen, which is a newer system that assures safety.

The data we are using is large since it contains a record for every major aircraft in the air every second. Gebara et al. (2015) showed that to do successful big-data processing, scalability, resilience, and ease of programming are needed. The Apache HDFS operates nodes in a failsafe mode to meet the resiliency requirement. A Hadoop cluster can scale up to a few hundred nodes. Hadoop also provides the MapReduce toolset for programmers to build applications. Apache Spark uses in-memory processing techniques to achieve even faster speed with big data. The speed of the network interconnection between Hadoop nodes improves with faster interconnect.

Salcido, Kendall and Zhao (2017) used lexical link analysis (LLA) to analyze ADS-B data. LLA is a text mining method that finds relationships and associations within the data. They used a Hadoop cluster for parallel processing due to the large data sizes, and got encouraging results. This inspired us to try a similar approach with a different set of analysis algorithms for aircraft data.
III. METHODS

This chapter will introduce big-data technology and explain its application to the current problem. Using any new technology comes with the price of new hardware and software, so costs must be kept manageable. One also must use the right tools to solve the problem at hand.

A. BIG-DATA METHODS

The legacy architecture to process large amounts of data is high-performance computing (HPC) which involves specialized hardware and custom software. Programming algorithms in HPC involve management of the data flow by manual program writing. Overall, HPC is difficult for teams with limited budgets wanting to solve large data problems. In contrast, “big-data” computing uses commodity hardware and automated data movement.

One big-data approach, Google File System, originated from Google’s proprietary technology to process large amounts of data that could not be handled by a traditional hardware/software architecture (Ghemawat, Gobioff, & Leung, 2003). Google File System uses the MapReduce idea discussed in section II.B. It works well for tasks where the processing is alike for all the data and not context-dependent, so data can be partitioned arbitrarily for processing. In addition to “divide and conquer,” the end user of Google File System does not have to manage the nodes or data movement, which is all handled by the system. Automatic workload distribution is also done so faster nodes are tasked with more work. The cluster of nodes can be easily scaled (data growth) without installation of any new software. This technology is proprietary, and involves expensive licensing costs (Shen, Wu, Li, & Liu, 2016).

Yahoo created an open-source version of Google File System called the Hadoop Distributed File System (HDFS) (Shvachko, Kuang, Radia, & Chansler, 2010). Open-source projects provide technology at a lower cost, and provide a large pool of developers who can write, test, and deliver a finished product at minimal cost. Due to rising costs of
in-house and proprietary software development, the DoD is increasingly using open-source licensing.

The early version of HDFS, known as Map-Reduce, was very intensive in file input/output, meaning data read from disk, processed in memory, and then written back. This meant that program ran slowly because a disk is significantly slower than memory. The community improved on HDFS with Apache Spark (Ganelin et al., 2016). Spark uses intelligent data management to store as much as possible in memory for as long as possible. Figure 2 summarizes HDFS, Map-Reduce, and Spark as used in our research. Yet Another Resource Manager (YARN) is part of HDFS and manages the load distribution across nodes.

Figure 2. The Hadoop system. Adapted from Achari (2015).

HDFS and Spark coexist in the same platform, so a programmer who implements the algorithms has to decide which to pick. HDFS gives access to files on disk, read and processed, while Spark takes over management of files instead giving a dataframe (tabular view of the data) to the programmer. This means a significant change of paradigm when it comes to implementing algorithms.
B. LINEAR MODELING

This research used a linear model, mathematically represented as:

\[y = w_1 \ast k_1 + w_2 \ast k_2 + \ldots + w_{11} \ast k_{11} \]

The w’s represent the weights applied on each factor and the k’s represent the factors. This work implemented a model with seven factors related to aircraft speed, altitude, commerciality, and operator (Rowe et al., 2018).

The z-transform was used to normalize factors that had varying ranges, and involved subtracting the average from each data point and dividing by its standard deviation (Sun et al., 2016). A sigmoid function \(f(x) = \frac{1}{1+e^{-x}} \) was then applied to the factors to put them in a range of 0 to 1.

C. ADS-B DATA

A sample from the Automatic Dependent Surveillance – Broadcast (ADS-B) database was used in this research. A full combat-identification system would use additional sources of data. ADS-B is publicly available on a server (data exchange), and can be retrieved in the open data standard JavaScript Object Notation (JSON). We used ADS-B data in our work, as it is similar to Navy combat-identification aircraft data which contains latitude, longitude, altitude, and other fields that define an aircraft track. Figure 3 shows ADS-B and how its data is available. The ADS-B exchange is a comprehensive (worldwide) repository.
ADS-B data is not always consistent. Data points were missing, some tracks were not contiguous, and some tracks only appeared for a short period (Tabassum et al., 2017). We chose the following fields for our work.
Table 1. ADS-B data field descriptions. Source: ADS-B Exchange (n.d.-b).

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAO</td>
<td>six-digit hex</td>
<td>The code that uniquely identifies each aircraft.</td>
</tr>
<tr>
<td>Alt</td>
<td>integer</td>
<td>The altitude in feet at standard pressure.</td>
</tr>
<tr>
<td>Lat</td>
<td>float</td>
<td>The aircraft’s latitude.</td>
</tr>
<tr>
<td>Long</td>
<td>float</td>
<td>The aircraft’s longitude.</td>
</tr>
<tr>
<td>PosTime</td>
<td>units: epoch milliseconds</td>
<td>The time of reporting of the data.</td>
</tr>
<tr>
<td>Spd</td>
<td>knots, float</td>
<td>The ground speed in knots.</td>
</tr>
<tr>
<td>Trak</td>
<td>degrees, float</td>
<td>Aircraft’s track angle across the ground clockwise from 0° north.</td>
</tr>
<tr>
<td>Op</td>
<td>string</td>
<td>The name of the aircraft operator (owner).</td>
</tr>
<tr>
<td>Cou</td>
<td>string</td>
<td>The aircraft country registration.</td>
</tr>
<tr>
<td>Type</td>
<td>string</td>
<td>Aircraft type, e.g., B777.</td>
</tr>
</tbody>
</table>
IV. EXPERIMENTS

The experiments in this research used a cluster of three Dell servers. They were configured to run Cloudera Hadoop Distribution upgraded with Spark software. The ADS-B data downloaded from the exchange and moved to the cluster. Spark organized the ADS-B files as a dataframe (equivalent to a database table) for running machine-learning algorithms in the PySpark package in the Python programming language.

A. CLUSTER HARDWARE AND SOFTWARE

The three Dell servers had different memory, CPU, and disk configurations, and each was configured and mounted on a single rack. The operating systems for these servers were Red Hat Enterprise Linux 7. The servers networked via network interface cards (1 GB speed) through an Ethernet switch. The Hadoop Distributed File System (HDFS) installed on top of the Linux file system (Das & Plunket, 2015). We used a vendor-supported version of HDFS (Cloudera). YARN software distributed the processing load and available disk space so that less powerful servers in the cluster were tasked less compared to the more powerful servers (Murthy, 2012).

Table 2. Cloudera cluster servers’ hardware configurations

<table>
<thead>
<tr>
<th></th>
<th>CPU</th>
<th>Memory</th>
<th>Hard Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell PowerEdge R630</td>
<td>Intel® Xeon ® 1.6 GHz processor speed with 8 cores</td>
<td>384GB</td>
<td>3TB (6 x 500GB) Samsung Solid State Drive</td>
</tr>
<tr>
<td>Dell PowerEdge R230</td>
<td>Intel® Xeon ® 3.5 GHz processor speed with 12 cores</td>
<td>64GB</td>
<td>2 TB (4 x 500GB) Samsung Solid State Drive (SSD)</td>
</tr>
<tr>
<td>Dell PowerEdge R230</td>
<td>Intel® Xeon ® 3.5 GHz processor speed with 12 cores</td>
<td>64GB</td>
<td>2 TB (4 x 500GB) Samsung Solid State Drive (SSD)</td>
</tr>
</tbody>
</table>
The cluster we tested used solid-state drives rather than the slower mechanical spinning disks. Previous work at the Naval Postgraduate School has shown that the biggest processing bottleneck was the sequence of data transfers to the disk. HDFS is very disk-intensive so this helped speed up processing (Das & Annamalai, 2015).

Memory size affected processing speed considerably for our tasks because data used repeatedly is better to keep in memory than on disk. Memory is expensive, so as a tradeoff one server configured with 384 GB of memory compared to 64GB for the others. HDFS YARN recognized this and allocated more tasks to the large-memory server. After the hardware was configured and tested with Cloudera HDFS, Apache Spark was installed (Cloudera, n.d.), followed by the Python package PySpark2.

B. LOADING THE ADS-B DATA

Data was downloaded from the website ADS-B Exchange (https://adsbexchange.com/data). Data from the website is available in zip-compressed JSON format. This exchange records around 11 million records per day, about every second for major aircraft and less often for non-major aircraft. For this research, Prof. Rowe chose a single day of the month from each of the 12 months. The files loaded to HDFS were replicated three times (the default redundancy of HDFS). 1TB (948GB) was used to store the data.

Files in HDFS can be processed with programming languages like Java and Python. Spark is the next generation of HDFS processing that uses memory store, and can be programmed with PySpark. Spark does not give the user direct access to files, but manages it internally using a combination of available memory and disk, and then provides a dataframe for the user to work with. A dataframe is like a database table and requires Structured Query Language (SQL) to access it (Xin, Armbrust, & Liu, 2015). To load data into Spark, the data format is changed from JSON to Parquet. Parquet is a tabular storage system (Apache, n.d.-b; Chen, 2016). It has advantages, for example, when finding the average over a single column since it only reads data for one column. Our experiments required roughly 24 minutes to load 762 GB of data.
C. PREPROCESSING THE DATA

Not all fields of ADS-B data were used in our work, so they were preprocessed to extract the data shown in Table 1. There were still some faulty data like blanks, and invalid data values (Tabassum et al., 2017) which needed to be excluded. The following PySpark command extracts these fields from a dataframe df to create a new dataframe df1:

```python
df1 = df.select('Icao', 'Alt', 'Lat', 'Long', 'Spd', 'Trak', 'PosTime', 'Op', 'Cou') .na.drop(subset=['Icao'])
```

The na.drop command drops any row with a null ICAO value.

For anomaly detection, more dataframes must be created. The data was averaged in bins based on latitude and longitude. The original prototype processing in Python read and did calculations row by row for each file. With Spark, we used SQL commands on a dataframe. The code first adds a bin identifier to each row of data and then uses the GROUP BY construct to aggregate properties for that bin. Spark knows where it has stored the data in memory or disk, and on which server, and how to run the logic in parallel across each server, so the end user does not need to specify it.

Another programming feature used was user-defined functions (UDFs) (Apache, n.d.-a). Below an UDF is defined to square the data in a dataframe and display it. SQL cannot use complex data manipulation constructs, so UDFs are necessary for them.

Step 1 (Register an UDF):

```
Def squared(s)
    Return s * s

sqlContext.udf.register("squareWithPython", squared)
```

Step 2 (Use the UDF with a dataframe):

```
From pySpark.sql.functions import udf
squared_udf = udf(squared, LongType())
display(df.select("id", squared_udf("id").alias("id_squared")))
```
The following example shows how to create a column of latitude bins. First, we create a user-defined function that rounds the latitudes.

```python
udf('int')

def round_lat(lat):
    return round(lat)
```

Second, we add the latitude as a column in the data frame.

```python
df = df.withColumn('lat_bin', round_lat(df.Lat))
```

Then we use the SQL “groupby” command to aggregate the latitudes.

```python
aircraft_avg_df = df.groupby('lat_bin')
```

A separate process collected data for each track and summarized it. The ICAO number (unique aircraft identifier) was used to sort the dataframe by the “orderby” SQL command. Aggregate calculations including the mean, average, maximum, and minimum were done by the “window.partitionby” with SQL. This is a step-by-step process, and a new column was added each time to the dataframe using the “withcolumn” SQL command. The “withcolumn” combined with a user-defined function to do computations on columns, like frequency calculation on airline operator. We had nine user-defined functions.

In more detail, we first sorted the data by ICAO to separate out each aircraft:

```python
my_window = Window.partitionBy('Icao').orderBy("PosTime")
```

Next, for each ICAO we segmented tracks if the time between two consecutive records was more than one hour:

```python
df2 = df1.withColumn("trek", new_trek(df1.diff, df1.Icao))
```

Next, we separated each track using “window.partitionby”.

```python
trek_window = Window.partitionBy('trek'). orderBy('PosTime')
```

Finally, for each track, we computed the key statistics of the starting, ending, and peak altitude, and the associated locations and times. This then permitted us to calculate the
whole trip duration, average latitude-longitude deviation from a straight line, and average altitude deviation. The full code is in the Appendix.

D. ANOMALY DETECTION

Unusual flight paths indicate anomalous behavior for aircraft, and these could represent military threats. There are twelve anomaly factors that we have identified (Rowe et al., 2018). At the time of completion of our work, we had used seven of those, all weighted equally in a sum. Although the factors are separately summed for each aircraft record, some data comes from aggregation tables discussed earlier for latitude-longitude bins, speeds, times, and operators.
V. RESULTS

The original single-threaded Python code ran on a Linux server with 512 GB of memory. Our experiments tested the degree to which using the HDFS/SPARK cluster resulted in a speedup of processing. Figure 4 shows the relative processing times of five key parts of the analysis of the aircraft data.

Figure 4. Python and PySpark processing-time comparison on the ADS-B sample
In the first step, aircraft data (for twelve days) in JSON format was loaded into Spark and the relevant fields were extracted. The next two calculations calculated averages as a function of time and speed. The aircraft track calculation was done next, followed by anomaly detection on each aircraft record. All the calculations compared traditional Python programs versus PySpark Python programs with database support. The PySpark code showed speedups ranging from one hundred to two.

The Cloudera HDFS provides a visualization tool to view resource usage, disk input/output, CPU usage, and network traffic between server nodes. To provide a comparison, four different size data files for one day, three days, seven days, and twelve days were tested. The process time, CPU load, disk input/output, and network traffic were all proportional to the amount of data, which is encouraging for this approach. Table 3 shows statistics where IO (input/output) is measured in megabytes per second.

<table>
<thead>
<tr>
<th>Data size</th>
<th>Process time (minute)</th>
<th>CPU load</th>
<th>Disk IO (M/S)</th>
<th>Network IO (M/S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One day (38GB)</td>
<td>9.75</td>
<td>50%</td>
<td>525</td>
<td>7</td>
</tr>
<tr>
<td>Three days (110GB)</td>
<td>32.45</td>
<td>50%</td>
<td>572</td>
<td>28</td>
</tr>
<tr>
<td>Seven days (260GB)</td>
<td>86</td>
<td>50%</td>
<td>572</td>
<td>47</td>
</tr>
<tr>
<td>Twelve days (316GB)</td>
<td>143</td>
<td>30%</td>
<td>572</td>
<td>75</td>
</tr>
</tbody>
</table>

Figure 5 is a sample of Cloudera Cluster CPU monitoring chart; the horizontal axis is time and the vertical axis is percentage of CPU usage. The dotted line is the peak value and the solid blue line is the mean average value. This plot shows the reading of the JSON data, extraction, and loading into a dataframe.
Figure 5. Cloudera monitoring chart of cluster CPU utilization for processing of twelve days of data
VI. CONCLUSION AND RECOMMENDATIONS

This research compared traditional computing to a distributed big-data implementation using HDFS/Spark for a combat-identification problem. Experiments showed that the HDFS/Spark architecture does provide a significant speedup in computation time. For initial data extraction, HDFS/Spark was 22 times faster, and for aggregations over columns, HDFS/Spark was 35 and 71 times faster. For simplified anomaly calculation, HDFS/Spark was 11 times faster, but for track computations, HDFS/Spark was only 2.7 times faster. The last two reflect the added computational complexity of their tasks.

The next step is to study increasing data sizes and numbers of processors to see how the speedup will scale up. All programming in these experiments was Python, and it could improve speed to recode all the algorithms in Scala, which natively uses the Java Virtual Machine (JVM). The speed could also improve by use of the Spark machine-learning library.
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf, avg, desc, col, expr, when
import time, math
import pyspark.sql.functions as func
UDFs' are pyspark user defined functions
Use udf to define a round-latitudes
@udf('int')
def round_lat(lat):
 return round(lat)
Use udf to define a round-longitudes udf
@udf('int')
def round_lon(lon):
 return round(lon)
############ Use udf to define x velocity ##############
@udf('float')
def vx(spd, trak):
 return (spd*math.cos(math.radians(trak)))
############ Use udf to define y velocity ##############
@udf('float')
def vy(spd, trak):
 return (spd*math.sin(math.radians(trak)))
############## udf alt_adj_spd #########################
@udf
def alt_adj_spd(alt, spd):
 if (alt < 50000) and (alt >= 0.0):
 adjustment = 450*(1-math.exp(-0.000092*alt))
 else:
 adjustment = 450
 if (adjustment > 0.00001) and (alt >= 0.0) and (spd >= 0.0):
 adjustedspd = spd/(450*(1-math.exp(-0.000092*alt)))
 else:
 adjustedspd = 0.0
 return 10*math.log(adjustedspd+1)
######## add airlinenames #######
airlinenames = ['airline',' air','air ','airways','express','virgin',
'ryanair','easyjet','lufthansa','alitalia','qantas',
'american eagle','aer lingus','finnair','cityhopper',
'tap portugal','eurowings','regional','aeroméxico',

APPENDIX

A. MAKING ADS-B BINS

from pyspark.sql import SparkSession
from pyspark.sql.functions import udf, avg, desc, col, expr, when
import time, math
import pyspark.sql.functions as func
UDFs' are pyspark user defined functions
Use udf to define a round-latitudes
@udf('int')
def round_lat(lat):
 return round(lat)
Use udf to define a round-longitudes udf
@udf('int')
def round_lon(lon):
 return round(lon)
############ Use udf to define x velocity ##############
@udf('float')
def vx(spd, trak):
 return (spd*math.cos(math.radians(trak)))
############ Use udf to define y velocity ##############
@udf('float')
def vy(spd, trak):
 return (spd*math.sin(math.radians(trak)))
############## udf alt_adj_spd #########################
@udf
def alt_adj_spd(alt, spd):
 if (alt < 50000) and (alt >= 0.0):
 adjustment = 450*(1-math.exp(-0.000092*alt))
 else:
 adjustment = 450
 if (adjustment > 0.00001) and (alt >= 0.0) and (spd >= 0.0):
 adjustedspd = spd/(450*(1-math.exp(-0.000092*alt)))
 else:
 adjustedspd = 0.0
 return 10*math.log(adjustedspd+1)
######## add airlinenames #######
airlinenames = ['airline',' air','air ','airways','express','virgin',
'ryanair','easyjet','lufthansa','alitalia','qantas',
'american eagle','aer lingus','finnair','cityhopper',
'tap portugal','eurowings','regional','aeroméxico',

25
'icelandair','egyptair','transavia','cityjet',
'connection','tunisair','citilink']

############ udf for airline ############
@udf('int')
def airline_operator(opname):
 for airlinename in airlinenames:
 if (opname.find(airlinename) > -1):
 return 1
 return 0

############ udf for non_airline ############
@udf('int')
def non_airline_operator(opname):
 for airlinename in airlinenames:
 if (opname.find(airlinename) > -1):
 return 0
 return 1

udf for oplogfreqs
@udf('float')
def oplogfreqs(cnt):
 global totalcnt
 if (cnt == 0 or totalcnt == 0):
 return 0.0
 else:
 return (-math.log(cnt/totalcnt))

Start the Spark session
spark = SparkSession.builder.appName("Find Anomalous Aircrafts").getOrCreate()
spark.sparkContext.setLogLevel("ERROR")
start_time = time.time()
Reading one year(one day a month for 12 months) JSON data
df = spark.read.json("/user/jim/adsb/2017")
select the fields of interest and drop nulls
df = df.select('Icao', 'Alt', 'Lat', 'Long', 'Spd', 'Trak', 'PosTime', 'Op', 'Cou').na.drop(subset=['Icao']).na.drop(subset=['Lat']).
 filter((df.Lat > -90.1) & (df.Lat < 90.1) & (df.Long > -180.1) & (df.Long < 180.1) &
 (df.Spd > -1.0) & (df.Spd < 4000) & (df.Alt > -1.0) & (df.Alt < 100000) &
 (df.Trak >= 0.0) & (df.Trak < 360.0001) & (df.PosTime != 0)).
 withColumn('PosTime', (df.PosTime/1000).cast('timestamp')).
 orderBy("Icao", "PosTime")

add lat_bin and lon_bin columns
df = df.withColumn('lat_bin', round_lat(df.Lat)).
 withColumn('lon_bin', round_lon(df.Long))

df = df.withColumn('lat_bin', round_lat(df.Lat)).withColumn('lon_bin',
 round_lon(df.Long))

add columns airlines and non_airlines
df = df.withColumn('airlines', airline_operator(df.Op)).withColumn('non_airlines',
 non_airline_operator(df.Op))

add airline_vx non_airline_vx airline_vy non_airline_vy columns
airline_vx = when(df.airlines == 1, vx(df.Spd, df.Trak)).otherwise(0.0)
non_airline_vx = when(df.airlines == 0, vx(df.Spd, df.Trak)).otherwise(0.0)
airline_vy = when(df.airlines == 1, vy(df.Spd, df.Trak)).otherwise(0.0)
non_airline_vy = when(df.airlines == 0, vy(df.Spd, df.Trak)).otherwise(0.0)
df = df.withColumn('airline_vx', airline_vx).withColumn('non_airline_vx',
 non_airline_vx).

 withColumn('airline_vy', airline_vy).withColumn('non_airline_vy',
 non_airline_vy)

add altitude for airline and altitude for non_airline columns
airline_alt = when(df.airlines == 1, df.Alt).otherwise(0)
non_airline_alt = when(df.airlines == 0, df.Alt).otherwise(0)
df = df.withColumn('airline_alt', airline_alt).withColumn('non_airline_alt',
 non_airline_alt)

add columns for airline_alt_adj_spd and non_airline_alt_adj_spd columns
airline_alt_adj_spd = when(df.airlines == 1, alt_adj_spd(df.Alt,
 df.Spd)).otherwise(0)
non_airline_alt_adj_spd = when(df.airlines == 0, alt_adj_spd(df.Alt,
 df.Spd)).otherwise(0)
df = df.withColumn('airline_alt_adj_spd',
 airline_alt_adj_spd).withColumn('non_airline_alt_adj_spd',
 non_airline_alt_adj_spd)

totalcnt = float(df.count())

create a dataframe for groupby op and counts
oplogfreq_df = df.groupby('Op').agg(func.count('Op').cast('float').alias('cnt'))

add another column oplogfreq
oplogfreq_df = oplogfreq_df.withColumn('oplogfreq',
 oplogfreqs(oplogfreq_df.cnt))

#oplogfreq_df.write.save('/user/jim/adsb/oplogfreqs', format='parquet',
mode='append')

join two dataframes
df = df.join(oplogfreq_df, ['Op'])

add airline_menu_freq and non_airline_menu_freq columns

add airline_menu_freq and non_airline_menu_freq columns

27
airline_oplogfreqs = when(df.airlines == 1, oplogfreqs(df.cnt)).otherwise(0.0)
non_airline_oplogfreqs = when(df.airlines == 0, oplogfreqs(df.cnt)).otherwise(0.0)
df = df.withColumn('airline_oplogfreqs', airline_oplogfreqs).withColumn('non_airline_oplogfreqs', non_airline_oplogfreqs)

average airline_oplogfreqs, non_airline_oplogfreqs

aircraft_avg_df = df.groupby('lat_bin', 'lon_bin').agg(func.sum('airlines').alias('airline_count'), func.sum('non_airlines').alias('non_airline_count'), func.avg('airline_vx').alias('avg_airline_vx'), func.avg('airline_vy').alias('avg_airline_vy'), func.avg('airline_alt').alias('avg_airline_alt'), func.avg('airline_alt_adj_spd').alias('avg_airline_alt_adj_spd'), func.avg('airline_oplogfreqs').alias('avg_airline_oplogfreqs'), func.avg('non_airline_oplogfreqs').alias('avg_non_airline_oplogfreqs'))

round floating points to 3 decimal place

aircraft_avg_df = aircraft_avg_df.select('lat_bin', 'lon_bin', 'airline_count', 'non_airline_count',
func.round('avg_airline_vx', 3).alias('avg_airline_vx'),
func.round('avg_non_airline_vx', 3).alias('avg_non_airline_vx'), func.round('avg_airline_vy', 3).alias('avg_airline_vy'),
func.round('avg_non_airline_vy', 3).alias('avg_non_airline_vy'), func.round('avg_airline_alt', 3).alias('avg_airline_alt'),
func.round('avg_non_airline_alt', 3).alias('avg_non_airline_alt'),
func.round('avg_airline_alt_adj_spd', 3).alias('avg_airline_alt_adj_spd'),
func.round('avg_non_airline_alt_adj_spd', 3).alias('avg_non_airline_alt_adj_spd'),
func.round('avg_airline_oplogfreqs', 3).alias('avg_airline_oplogfreqs'),
func.round('avg_non_airline_oplogfreqs', 3).alias('avg_non_airline_oplogfreqs'))

aircraft_avg_df.write.save('/user/jim/adsb/adsb_bins_df', format='parquet', mode='append')

elapsed_time = time.time() - start_time
total_time = round(elapsed_time/60, 2)
print("Time : ", total_time, " minutes")
B. FIND SPEED TREND

########## Speed trend ##########
this small file is to read the ADSB dataframe
that was filtered out the important columns
"Icao", 'Alt', 'Lat', 'Long', 'Spd', 'Trak', 'PosTime', 'Op', 'Cou'
then to use the 'Alt' and 'Spd' information to find out
the speed trend with average speed and standard deviation speed output
from pyspark.sql import SparkSession
import pyspark.sql.functions as func
import pyspark.sql.functions

spark = SparkSession.builder.appName("Speed Trend Aircrafts").getOrCreate()
spark.sparkContext.setLogLevel("ERROR")
create a speed_trend dataframe
by reading one year filtered file in parquet format
df = spark.read.parquet("/user/jim/adsb/df/*.parquet")
start_time = time.time()
granularity = 100
udf to define binindex
(udf('int'))
def binindex(alt):
 return int((alt//granularity)*granularity+(0.5*granularity))

create a speed_trend dataframe with only 'alt' and 'spd'
speed_trend_df = df.select('Alt', 'Spd')

add another column as 'binindex'
speed_trend_df = speed_trend_df.withColumn('binindex', binindex(speed_trend_df.Alt))

aggregated function on binindex and added two more columns 'avspeed' and 'sdspeed'
speed_trend_total_df = speed_trend_df.groupby('binindex').agg(func.avg('Spd').alias('avspeed'), func.stddev('Spd').alias('sdspeed')).sort('binindex')
speed_trend_out = speed_trend_total_df.withColumn('avgspeed',
 func.round(speed_trend_total_df['avspeed'], 2))
 .withColumn('stdspeed', func.round(speed_trend_total_df['sdspeed'], 2))
 .drop('sdspeed', 'avspeed')

save speed trend for later usage (find_anomalous_data)
speed_trend_out.write.save('/user/jim/adsb/speed_trend_df', format='parquet',
 mode='append')
speed_trend_out.show()
elapsed_time = time.time() - start_time
#total_time = round(elapsed_time/60, 2)
print("Time : ", elapsed_time/60, " minutes")

B. FIND TIME TREND

############################ Time trend #################################
this small file is to read the ADSB dataframe
that was filtered out the important columns
'Icao', 'Alt', 'Lat', 'Long', 'Spd', 'Trak', 'PosTime', 'Op', 'Cou'
then to use the 'PosTime' information to find out
the time trend with hourly how many events output
from pyspark.sql import SparkSession
import pyspark.sql.functions as func
from pyspark.sql.functions import udf, avg, desc, col, expr, when, round, year, hour
import time, math, sys
spark = SparkSession.builder.appName("Time Trend Aircrafts").getOrCreate()
spark.sparkContext.setLogLevel("ERROR")
start_time = time.time()

create a dataframe by reading saved one month ADSB filtered file
in hdfs on parquet format
df = spark.read.parquet("/user/jim/adsb/df/*.parquet")
time_trend_df = df.select('PosTime', 'Long')

@udf('int')
def longcorr(lon):
 return int((lon/360.0)*24)

time_trend_df = time_trend_df.withColumn("Hour", hour(time_trend_df.PosTime)).sort(desc("Hour"))
time_trend_df.write.save('/user/jim/adsb/time_trend_df', format='parquet', mode='append')
time_trend_df.show(24)
elapsed_time = time.time() - start_time
print("Time : ", elapsed_time/60, " minutes")
FIND AIRCRAFT TRACKS

```python
sqlContext.clearCache()
from pyspark.sql import SparkSession
import pyspark.sql.functions as func
from pyspark.sql.functions import udf, avg, desc, col, expr, when, first, last
import time, math, sys
from pyspark.sql.window import Window
from math import sin, cos, atan2, sqrt, degrees, radians, pi
from geopy.distance import great_circle as distance
from geopy.point import Point
from pyspark.sql.types import FloatType

#### udf to make new trek if
# icao changed or time diff more than an hour
@udf
def new_trek(diff, df_icao):
    global trek_num, icao_g, num
    if (df_icao != icao_g):
        num = num + 1
        trek_num = str(df_icao) + str(num)
        icao_g = df_icao
        return trek_num
    elif(df_icao == icao_g):
        if (diff > timethresh):
            num = num + 1
            trek_num = str(df_icao) + str(num)
            return trek_num
        else:
            trek_num = str(df_icao) + str(num)
            return trek_num
    else:
        trek_num = str(df_icao) + str(num)
        return trek_num

@udf ('double')
def midpoint(a, b):
    a_lat, a_lon = radians(a.latitude), radians(a.longitude)
    b_lat, b_lon = radians(b.latitude), radians(b.longitude)
    delta_lon = b_lon - a_lon
    B_x = cos(b_lat) * cos(delta_lon)
    B_y = cos(b_lat) * sin(delta_lon)
    mid_lat = atan2(
        sin(a_lat) + sin(b_lat),
```
\[
\sqrt{((\cos(a_{lat}) + B_x)^2 + B_y^2)}
\]

\[
\text{mid}_{\text{lon}} = a_{\text{lon}} + \arctan2(B_y, \cos(a_{lat}) + B_x)
\]

Normalise

\[
\text{mid}_{\text{lon}} = (\text{mid}_{\text{lon}} + 3\pi) \% (2\pi) - \pi
\]

return Point(latitude=degrees(mid_lat), longitude=degrees(mid_lon))

@udf('double')
def dist(x1,y1, x2,y2, x3,y3): # x3,y3 is the point
 px = x2-x1
 py = y2-y1
 something = px*px + py*py
 if (something == 0):
 something = 0.000000001
 u = ((x3 - x1) * px + (y3 - y1) * py) / float(something)
 if u > 1:
 u = 1
 elif u < 0:
 u = 0
 x = x1 + u * px
 y = y1 + u * py
 dx = x - x3
 dy = y - y3
 # Note: If the actual distance does not matter,
 # if you only want to compare what this function
 # returns to other results of this function, you
 # can just return the squared distance instead
 # (i.e. remove the sqrt) to gain a little performance
 dist = math.sqrt(dx*dx + dy*dy)
 return dist

spark = SparkSession.builder.appName("Find Anomalous Aircrafts").getOrCreate()
spark.sparkContext.setLogLevel("ERROR")
df = spark.read.parquet("/user/jim/adsb/df/*.parquet")
start_time = time.time()
my_window = Window.partitionBy('Icao').orderBy("PosTime")
convert postime back to unix time for calculation
unix_time = func.unix_timestamp(df.PosTime)
convert postime back to unix time for calculation
df = df.withColumn('PosTime', unix_time)
df1 = df.withColumn("prev_postime", func.lag(df.PosTime).over(my_window))
df1 = df1.withColumn("diff", func.when(func.isnull(df1.PosTime - df1.prev_postime),
0).otherwise(df1.PosTime - df1.prev_postime))
df1 = df1.withColumn("prev_icao", func.lag(df.Icao).over(my_window))
df1 = df1.withColumn("new_icao", func.when((df1.Icao == df1.prev_icao),
0).otherwise(1))
timethresh = 3600000
num = 0
df2 = df1.withColumn("trek", new_trek(df1.diff, df1.Icao))
trek_window = Window.partitionBy('trek').orderBy('PosTime')
trek_df = df2.groupby('Icao', 'trek').agg(func.max('Alt').alias('max-alt'),
func.max('Spd').alias('max-spd'),
func.min('Spd').alias('min-spd')).sort('Icao')
df4 = df2.select('Icao', 'trek', 'PosTime', 'Lat', 'Long', 'Alt', 'Spd').sort('trek', 'PosTime')
w1 = Window.partitionBy('trek').orderBy('PosTime')
#this will get the last Postime
w2 = Window.partitionBy("trek").orderBy(func.col('PosTime').desc())
w3 = Window.partitionBy("trek").orderBy(func.col('Alt').desc())
df5 = df4.select("trek", *([first(c).over(w1).alias("first_" + c) for c in df4.columns if c != "trek"] +
[first(c).over(w2).alias("last_" + c) for c in df4.columns if c != "trek"] +
[first(c).over(w3).alias("peak_" + c) for c in df4.columns if c != "trek"]))
df5 = df5.withColumn('duration', (df5.last_PosTime -
df5.first_PosTime)).sort(desc('duration'))
avg_spd = df4.groupby('trek').agg(func.avg(df4.Spd).alias('avg_spd'))
#df6.join(avg_spd ,func.col('df6.trek') == func.col('avg_spd.trek')).show()
df6 = df6.filter(df5.duration > 3600000)
df6 = df6.drop('peak_Icao', 'last_Icao')
df7 = df6.join(avg_spd, ['trek'])
df8 = df4.select("trek", "Lat", "Long", *([first(c).over(w1).alias("first_" + c) for c in df4.columns if c != "trek"] +
[first(c).over(w2).alias("last_" + c) for c in df4.columns if c != "trek"] +
[first(c).over(w3).alias("peak_" + c) for c in df4.columns if c != "trek"]))
sort('trek', 'PosTime')
df9 = df8.withColumn('dist', dist(df8.first_Lat, df8.first_Long, df8.last_Lat,
df8.last_Long, df8.Lat, df8.Long))
####average deviation of lat and long
avdev = df9.groupby('trek').agg(func.avg(df9.dist).alias('avdev'))
df10 = df7.join(avdev, ['trek'])
#df6 = df6.distinct().sort('trek').show()
####average deviation of altitude
df10.write.save('/user/jim/adsb/trek_df', format='parquet', mode='append')
#speed_trend_out.show()
elapsed_time = time.time() - start_time
total_time = round(elapsed_time/60, 2)
print("Time : ", total_time, " minutes")

D. FIND ANOMALOUS AIRCRAFT

sqlContext.clearCache()
from pyspark.sql import SparkSession
import pyspark.sql.functions as func
from pyspark.sql.functions import udf, avg, desc, col, expr, when, first, last, lit,
year, hour
import time, math, sys
from pyspark.sql.window import Window
from math import sin, cos, atan2, sqrt, degrees, radians, pi
from geopy.distance import great_circle as distance
from geopy.point import Point
from pyspark.sql.types import FloatType, DoubleType

@udf('double')
def sigmoid(X,AV,SD):
 if (SD > 0):
 D = abs(X-AV)/SD
 Y = D/(D+1)
 return Y
 elif (X > AV):
 return 1.0
 else:
 return 0.0

@udf('double')
def ztrans(X,AV,SD):
 if (SD > 0):
 Y = abs(X-AV)/SD
 return Y
 else:
 return 0.0

@udf('int')
def binindex(alt):
 return int((alt//granularity)*granularity+(0.5*granularity))

@udf('int')
def round_lat(lat):
 return round(lat)
Use udf to define a round-longitudes udf
@udf('int')
def round_lon(lon):
 return round(lon)

airlinenames = ['airline', 'air', 'airways', 'express', 'virgin',
 'ryanair', 'easyjet', 'lufthansa', 'alitalia', 'qantas',
 'american eagle', 'aer lingus', 'finnair', 'cityhopper',
 'tap portugal', 'eurowings', 'regional', 'aeroméxico',
 'icelandair', 'egyptair', 'transavia', 'cityjet',
 'connection', 'tunisair', 'citilink']

@udf('int')
def airline_operator(opname):
 for airlinename in airlinenames:
 if (opname.find(airlinename) > -1):
 return 1
 return 0

@udf('int')
def non_airline_operator(opname):
 for airlinename in airlinenames:
 if (opname.find(airlinename) > -1):
 return 0
 return 1

@udf('int')
def longcorr(lon):
 return int((lon/360.0)*24)

@udf('float')
def norm1(avg_air_vx, avg_air_vy):
 result = (avg_air_vx * avg_air_vx) + (avg_air_vy * avg_air_vx)
 if (result > 0):
 return math.sqrt(result)
 else:
 return 0.0

######### Use udf to define x velocity ###########
@udf('float')
def vx(spd, trak):
 return (spd*math.cos(math.radians(trak)))

######### Use udf to define y velocity ############
@udf('float')
def vy(spd, trak):
 return (spd*math.sin(math.radians(trak)))

@udf('float')
def log_hour_count(count, total):
 result = (count + 0.5)/total
 if (result > 0):
 return -math.log(result)
 else:
 return 0.0

add diff1
@udf('float')
def countfrac_non_airline(airline, non_airline):
 if (airline == 0):
 return 0.0
 else:
 return (airline/(airline + non_airline))

@udf('float')
def countfrac_airline(airline, non_airline):
 if (airline == 0):
 return 0.0
 else:
 return (1-(airline/(airline + non_airline)))

@udf('float')
def cosinedist(avg_air_vx, avg_air_vy, vx, vy, norm1, spd):
 if (spd == 0 or norm1 == 0):
 return 0.0
 else:
 return (1-(abs((avg_air_vx * vx) + (avg_air_vy * vy)) / (norm1 * spd)))

@udf('float')
def math_log(a):
 if (a > 0):
 return math.log(a)
 else:
 return 0.0

@udf('float')
def math_sqrt(a):
 return math.sqrt(a)

udf for abs
@udf('float')
def ab_s(a):
 return abs(a)

@udf('float')
def zdiff(wc, zdiff1, wv, zdiff2, wa, zdiff3, ws, zdiff4, wo, zdiff5, wt, zdiff6, wn, zdiff7):
 return (wc*zdiff1 + wv*zdiff2 + wa*zdiff3 + ws*zdiff4 + wo*zdiff5 + wt*zdiff6 + wn*zdiff7)
spark = SparkSession.builder.appName("Find Anomalous Aircrafts").
getOrCreate()

spark.sparkContext.setLogLevel("ERROR")
start_time = time.time()
df = spark.read.parquet("/user/jim/adsb/df/*.parquet")
granularity = 100
wc = 0.2
wv = 0.2
wa = 0.2
ws = 0.2
wo = 0.2
wt = 0.2
wn = 0.2
wdl = 0.2
wda = 0.2
wda = 0.2
wbd = 0.2
add another column as 'binindex'
df = df.withColumn('binindex', binindex(df.Alt))
speed_df = spark.read.parquet("/user/jim/adsb/speed_trend_df/*.parquet")
oplogfreq_df = spark.read.parquet("/user/jim/adsb/oplogfreqs/*.parquet")
load the lat and long bins
bins_df = spark.read.parquet("/user/jim/adsb/adsb_bins_df/*.parquet")
time_df = spark.read.parquet("/user/jim/adsb/time_trend_df/*.parquet")
add a column diff4 adjusted-speed average difference
df = df.join(speed_df, ["binindex"])
df = df.withColumn('diff4', sigmoid(df.Spd, df.avgspeed, df.stdspeed))

add lat_bin and lon_bin columns
df = df.withColumn('lat_bin', round_lat(df.Lat)).
 .withColumn('lon_bin', round_lon(df.Long))
df = df.join(bins_df, ["lat_bin", "lon_bin"])
add zdif4 column
df = df.withColumn('zdif4', ztrans(df.diff4, lit(0.358), lit(0.217)))
add airline
 df = df.withColumn('airlines', airline_operator(df.Op)).withColumn('non_airlines',
 non_airline_operator(df.Op))
 df = df.withColumn('diff3', diff3)
 df = df.withColumn('diff4', diff4)
 df = df.withColumn('diff3', diff3)
 df = df.withColumn('diff4', diff4)
 df = when(df.airlines == 1, sigmoid(df.Alt, df.avg_airline_alt, lit(10000)))
 .otherwise(sigmoid(df.Alt, df.avg_non_airline_alt, lit(10000)))
 df = df.withColumn('diff3', diff3)
 df = df.withColumn('diff4', diff4)
 df = when(df.airlines == 1, countfrac_airline(df.airline_count, df.non_airline_count))
 .otherwise(countfrac_non_airline(df.airline_count, df.non_airline_count))
df = df.withColumn('diff1', diff1)
df = df.join(oplogfreq_df, "Op")
c = bins_df.groupBy().sum().rdd.map(lambda x: x[2]).collect()
totalcountc = int(c[0])
n = bins_df.groupBy().sum().rdd.map(lambda x: x[3]).collect()
totalcountn = int(n[0])
num_nunempty_bins = bins_df.where((bins_df.airline_count) +
(bins_df.non_airline_count) > 0).count()
log_total_count_commercial = math.log(totalcountc/num_nunempty_bins)
log_total_count_noncommercial = math.log(totalcountn/num_nunempty_bins)
diff7 = when(df.airlines == 1, sigmoid(lit(log_total_count_commercial),
math_log(1+df.airline_count), lit(1))).
otherwise(sigmoid(lit(log_total_count_noncommercial),
math_log(1+df.non_airline_count), lit(1)))

diff5 = when(df.airlines == 1, sigmoid(df.oplogfreq, df.avg_airline_oplogfreqs,
lit(1))).
otherwise(sigmoid(df.oplogfreq, df.avg_non_airline_oplogfreqs, lit(1)))

diff6 = sigmoid(log_hour_count(time_df.hour_lon_count, lit(total_time_count)),
log_hour_count(time_df.hour_lon_count, lit(total_time_count)),
lit(maxhourlog), lit(3.0))

diff2 = when(((df.norm1 > 0.0) & (df.Spd > 0.0)), cosinedist(df.avg_airline_vx,
df.avg_airline_vy, df.airline_vx, df.airline_vy, df.norm1, df.Spd)).otherwise(0.0)

def = df.withColumn('zdiff1', ztrans(df.diff1,lit(0.347),lit(0.217)))
def = df.withColumn('zdiff2', ztrans(df.diff2,lit(0.238),lit(0.285)))
df = df.withColumn('zdiff5', ztrans(df.diff5,lit(0.522),lit(0.215)))
df = df.withColumn('zdiff6', ztrans(df.diff6,lit(0.203),lit(0.093)))
df = df.withColumn('zdiff7', ztrans(df.diff7,lit(0.589),lit(0.178)))
df = df.withColumn('zdiff', zdiff(lit(wc), df.zdiff1, lit(wv), df.zdiff2,
 lit(wa), df.zdiff3, lit(ws), df.zdiff4, lit(wo), df.zdiff5, lit(wn),
 df.zdiff6, lit(wn),
 df.zdiff7))
 df = df.select('Icao', 'Alt', 'Lat', 'Long', 'Spd', 'Trak', 'PosTime', 'Op', 'Cou',
 func.round('zdiff',3).alias('zdiff'))
 #only get the data above the 2.5 threshold
 df = df.filter("zdiff > 2.5")
 df.write.save('/user/jim/adbs/anomalous_df', format='parquet', mode='append')
 elapsed_time = time.time() - start_time
 total_time = round(elapsed_time/60, 2)
 print("Time : ", total_time, " minutes")
THIS PAGE INTENTIONALLY LEFT BLANK
LIST OF REFERENCES

42

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California