AWARD NUMBER: CDMRPL-16-0-DM160469

TITLE: THE PAP SMEAR CHALLENGE: COMPARING CLINICAL PERFORMANCE OF A NOVEL "MOLECULAR PAP" BASED ON NEXT-GENERATION SEQUENCING TO TRADITIONAL CERVICAL CANCER SCREENING

PRINCIPAL INVESTIGATOR: COL JANE SHEN-GUNther

ORGANIZATION: BROOKE ARMY MEDICAL CENTER (BAMC)
Fort Sam Houston, TX 78234

REPORT DATE: April 2018

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE April 2018
2. REPORT TYPE ANNUAL
3. DATES COVERED 1 Apr 2017 - 31 Mar 2018
4. TITLE AND SUBTITLE THE PAP SMEAR CHALLENGE: COMPARING CLINICAL PERFORMANCE OF A NOVEL "MOLECULAR PAP" BASED ON NEXT-GENERATION SEQUENCING TO TRADITIONAL CERVICAL CANCER SCREENING

5a. CONTRACT NUMBER
5b. GRANT NUMBER CDMRPL-16-0-DM160469
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S) JANE SHEN-GUNTER, MD, PHD, COL, MC, US ARMY

E-Mail: jane.shengunther.mil@mail.mil

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US ARMY BROOKE ARMY MEDICAL CENTER (BAMC)
ATTN: MCHE-CI
3698 CHAMBERS PASS
FORT SAM HOUSTON, TX 78234-6315

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR’S ACRONYM(S)
11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT Objective: The "Molecular Pap" is an integrated panel of biomarkers based on Human Papillomavirus (HPV) deep sequencing and quantitative DNA methylation of 3 human genes by pyrosequencing. To validate our biomarker panel and predictive model for Pap smear classification, we proposed to collect 700 Pap smear samples from each of 6 diagnostic categories for HPV genotyping and methylation quantification for direct comparison to traditional cervical cancer screening (cytology +/- cobas® HPV).

Methods: This prospective, cross-sectional study uses residual liquid-based cytology samples for HPV genotyping and epigenetic analysis by pyrosequencing. A total of 2,682 Pap samples have been collected to date and have undergone various stages of DNA extraction, HPV DNA amplification, Sanger and deep sequencing, and bioinformatics analysis.

Results: NA. Study is on-going.

Accomplishments (Year 1): Pap sample collection has reached 70% of target accrual and molecular analyses are in-progress. Four contracts for supplies, software, cloud-based bioinformatics and computing have been awarded. The development of a real-world, automated, data science pipeline for multiple types of genomics data has been initiated.

15. SUBJECT TERMS Human Papillomavirus, HPV, HPV genotyping, Deep sequencing, DNA methylation, Pap smear, Pyrosequencing, Molecular diagnostics, Molecular biomarkers, Virome, NILM, ASCUS, LSIL, HSIL.

16. SECURITY CLASSIFICATION OF:
 a. REPORT Unclassified
 b. ABSTRACT Unclassified
 c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT Unclassified

18. NUMBER OF PAGES 14

19. NAME OF RESPONSIBLE PERSON USAMRMC
19b. TELEPHONE NUMBER (include area code)
Table of Contents

1. Introduction.. 1
2. Keywords... 1
3. Accomplishments... 1
4. Impact.. 3
5. Changes/Problems... 4
6. Products... 5
7. Participants & Other Collaborating Organizations.................... 6
8. Special Reporting Requirements... 9
9. Appendices... 10
1. **INTRODUCTION:** The “Molecular Pap” is an integrated panel of biomarkers based on Human Papillomavirus (HPV) deep sequencing and quantitative DNA methylation of 3 human genes by pyrosequencing. To validate our biomarker panel and predictive model for Pap smear classification, we proposed to collect 700 Pap smear samples from each of 6 diagnostic categories for HPV genotyping and methylation quantification for direct comparison to traditional cervical cancer screening (cytology +/- cobas® HPV). Concurrently, a bioinformatics pipeline for automated data collection, analysis, modeling and visualization via a cloud-based computing system will also be developed.

2. **KEYWORDS:** Human Papillomavirus, HPV, HPV genotyping, Deep sequencing, DNA methylation, Pap smear, Pyrosequencing, Molecular diagnostics, Molecular biomarkers, Virome, NILM, ASCUS, LSIL, HSIL.

3. **ACCOMPLISHMENTS:**

 ▪ **What were the major goals of the project?**

 Major goals of the project:

 a. CY17 Goals: Expand the applicability of the “Molecular Pap”
 i. Obtain IRB protocol approval.
 ii. Collect Pap smear samples from BAMC Cytopathology Laboratory.
 iii. Determine HPV genotype(s) by next-generation sequencing.
 iv. Quantify DNA methylation of 3 tumor suppressor genes.

 b. CY18-19 Goals: Compare clinical performance of the “Molecular Pap” to traditional Pap/HPV screening
 i. Use biomarkers & predictive modeling to classify Pap smears.
 ii. Compare “Molecular Pap” results to traditional Pap/HPV screening.
 iii. Implement bioinformatics pipeline via cloud computing.

 ▪ **What was accomplished under these goals?**

 Major activities accomplished:

 a. Research regulatory activities
 i. BAMC IRB protocol submitted: 07 MARCH 2017
 ii. BAMC IRB protocol approved: 09 JUNE 2017
 iii. ORP HRPO protocol submitted: 12 JUNE 2017
 iv. ORP HRPO protocol approved: 12 JULY 2017
b. Services contract activities
 i. Services contract for HPV next-gen sequencing (NGS) approved by MTF: 7 MAY 2017
 a) Services Contract awarded to Lucigen Corporation for HPV NGS (2,016 samples): 07 AUG 2017.
 b) POP: 15 AUG 17 TO 14 AUG 2018.

 ii. Laboratory Supplies Contract approved by MTF: 07 MAY 2017
 b) POP: 21 AUG 2017 TO 20 AUG 2018.

 a) Software contract awarded to Qiagen Bioinformatics for CLC Genomics Workbench & Microbial Genomics: 23 APR 2018
 b) POP: 25 APR 2018 TO 24 APR 2010.

 b) Software & IT Services contract awarded to Wolfram Solutions for Cloud-based bioinformatics pipeline development and automation: 10 APR 2018.
 c) POP: 10 APR 2018 TO 9 APR 2019.

c. BAMC DCI Biomedical laboratory activities
 i. Pap smear samples collected to date (24 APR 18): N = 2,682

 ii. Pap smear samples extracted of total DNA to date (24 APR 18): N = 2,136

 iii. PCR for HPV DNA detection in genomic DNA derived from Pap samples to date (24 APR 18): N = 2,071

 iv. Plates (96 samples/plate) sent for NGS to date (24 APR 18): N = 5 (successful results received)

 v. Plates (96 samples/plate) sent for Sanger sequencing to date (24 APR 18): N = 4
vi. Optimizing pyrosequencing lab workflow on PyroMark Q48 instrument: on-going.

- **What opportunities for training and professional development has the project provided?**

 Army active duty laboratory technicians (N= 3) and laboratory manager (N = 1) assigned to BAMC Dept. of Clinical Investigation have learned numerous molecular biology techniques, processes, instrumentation, and informatics as a results of this project. Furthermore, our two doctoral-level scientists (contract microbiologist & cancer biologist/experimental therapeutics) working on the current project have grown professionally by broadening their scope and knowledge in virology, oncology, genomics, deep sequencing, pyrosequencing, bioinformatics, and cloud-based computing.

- **How were the results disseminated to communities of interest?**

 Nothing to Report

- **What do you plan to do during the next reporting period to accomplish the goals?**

 a. Implement bioinformatics pipeline via cloud computing

 i. Establish account with Amazon Web Services (AWS) GovCloud
 ii. Establish bioinformatics workflow between AWS GovCloud S3 data storage and CLC Genomics platforms (CLC Genomics Cloud Engine, CLC Genomics Workbench (WB), and CLC Microbial Genomics plugin).
 iii. Establish cloud-based data science workflow and analytics via Wolfram Solutions to include setup of real-world data science pipeline starting with curation of computable data, statistical analysis, predictive analytics, classification algorithms, and ending with results in written and graphical forms.

 b. BAMC DCI Biomedical laboratory activities

 i. Continue Pap smear sample collection to reach target accrual numbers.
 ii. Continue HPV genotyping and pyrosequencing per protocol.

4. **IMPACT:**
• **What was the impact on the development of the principal discipline(s) of the project?**

 Nothing to Report

• **What was the impact on other disciplines?**

 Nothing to Report

• **What was the impact on technology transfer?**

 USAMRMC Technology Transfer Office is currently working on licensing the *Molecular Pap*. Through their work, the *Molecular Pap* was selected as one of the 100+ cancer inventions to create high-impact startups through the Freedom from Cancer Startup Challenge in 2017-2018 (https://www.freedomfromcancerchallenge.org/). A team of scientists, entrepreneurs and business leaders from the University of Pennsylvania formed a team to pitch the *Molecular Pap* in this startup competition. The challenge is currently on-going. (See Appendix B for Press Release)

• **What was the impact on society beyond science and technology?**

 Nothing to Report

5. **CHANGES/PROBLEMS:**

 • **Changes in approach and reasons for change**

 Nothing to Report

 • **Actual or anticipated problems or delays and actions or plans to resolve them**

 Nothing to Report

 • **Changes that had a significant impact on expenditures**

 Nothing to Report
• Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents

None

• Significant changes in use or care of human subjects

None

• Significant changes in use or care of vertebrate animals.

NA

• Significant changes in use of biohazards and/or select agents

NA

6. PRODUCTS:

• Publications, conference papers, and presentations

Nothing to Report

• Journal publications.

Nothing to Report

• Books or other non-periodical, one-time publications.

Nothing to Report

• Other publications, conference papers, and presentations.

Nothing to Report

• Website(s) or other Internet site(s)

Nothing to Report
Technologies or techniques

Nothing to Report

Inventions, patent applications, and/or licenses

The current project seeks to expand the applicability of the Molecular Pap to other cytological categories not previously tested. The molecular markers of the Molecular Pap, i.e. HPV genotype and ADCY8, CDH8, and ZNF582 promoter methylation discovered in our previous project and the methods for Pap smear classification have been submitted to the World International Patent Organization (WIPO) for an international patent application (below). The application is currently in the second or “National” phase.

Shen-Gunther J, inventor.
United States Army, assignee.
Title: Methods for molecularly characterizing cervical cell samples.
United States Provisional Application 62/212,555. 2015 Sep 1.
WIPO Pub. No. WO/2017/040491 Publication Date: 2017 Sep 03

Other Products

Biospecimen collections:

- Genomic DNA derived from cervical cytology (N = 2,682)
- HPV DNA of various genotypes derived from cervical cytology

Research materials: unique PCR primers developed for pyrosequencing

Bioinformatics: pipeline for HPV genotyping and metagenome analysis

Data or databases:

- HPV DNA sequences and genotyping data
- Pyrosequencing data categorized by cervical pathology
- HPV BLAST reference database created for CLC Genomics workbench

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS
What individuals have worked on the project?

<table>
<thead>
<tr>
<th>Name:</th>
<th>Andrea Garcia, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>Sub-Investigator and Research Staff:</td>
</tr>
<tr>
<td></td>
<td>Contract Biological Research Scientist with expertise in cancer/molecular biology, experimental therapeutics and bioinformatics</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td>NA</td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>10</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>Responsibilities: Cytology sample processing, cellular and molecular testing and analysis (DNA extraction, PCR, next-generation sequencing (NGS), and pyrosequencing), de-identified data analysis and manuscript preparation.</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>Defense Health Program (DHP)</td>
</tr>
<tr>
<td></td>
<td>Clinical Trial Infrastructure Support funds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Jane Shen-Gunther, MD, PhD, COL, MC, US ARMY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td>https://orcid.org/0000-0002-0876-9338</td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>14</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>Responsible for identifying patient records and samples applicable for study and de-identifying information; responsible for project oversight and coordination of all activities outlined in protocol and required IRB documentation. Conduct cellular and molecular testing and analysis of specimens (DNA extraction, PCR, next-generation sequencing (NGS), and pyrosequencing), data analysis and manuscript preparation. Coordinate development of bioinformatics pipeline with commercial entities and collaborators at UTSA and UTHSCSA.</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>DoD US Army – Active Duty physician</td>
</tr>
<tr>
<td>Name:</td>
<td>Qingqing Xia, PhD</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Project Role:</td>
<td>Sub-Investigator and Research Staff:</td>
</tr>
<tr>
<td></td>
<td>Contract Biological Research Scientist with expertise in microbiology and molecular biology</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td>NA</td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>7</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>Responsibilities: Cytology sample processing, cellular and molecular testing and analysis (DNA extraction, PCR, next-generation sequencing (NGS), and pyrosequencing), de-identified data analysis and manuscript preparation.</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>Defense Health Program (DHP) Clinical Trial Infrastructure Support funds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>SPC Edetsira Kouame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>Research Staff:</td>
</tr>
<tr>
<td></td>
<td>Army Laboratory Technician</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td>NA</td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>6</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>Responsibilities: Assist with cytology sample processing, cellular and molecular testing and analysis (DNA extraction, PCR, next-generation sequencing (NGS), and pyrosequencing.</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>DoD US Army – Active Duty Laboratory Technician</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>SPC Taylor Quickley</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>Research Staff:</td>
</tr>
<tr>
<td></td>
<td>Army Laboratory Technician</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td>NA</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>5</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>Responsibilities: Assist with cytology sample processing, cellular and molecular testing and analysis (DNA extraction, PCR, next-generation sequencing (NGS), and pyrosequencing.</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>DoD US Army – Active Duty Laboratory Technician</td>
</tr>
</tbody>
</table>

- **Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last reporting period?**

 Nothing to Report

- **What other organizations were involved as partners?**

 Nothing to Report

 - **Organization Name**
 - **Location of Organization**
 - **Partner's contribution to the project**
 - **Financial support**
 - **In-kind support**
 - **Facilities**
 - **Collaboration**
 - **Personnel exchanges**
 - **Other**

8. **SPECIAL REPORTING REQUIREMENTS**

 - **COLLABORATIVE AWARDS:** NA

9. **APPENDICES:**

 - Appendix A: QUAD CHART
 - Appendix B: TECHNOLOGY TRANSFER
APPENDIX A. QUAD CHART

The Pap smear challenge: Comparing the clinical performance of a novel “Molecular Pap” based on next-generation sequencing to traditional cervical cancer screening.

Pl: COL Jane Shen-Gutheer Org: Brooke Army Medical Center Department of Clinical Investigation Budget Amount: $750,000

Study/Product Aim(s)

Aim 1: Expand the applicability of the “Molecular Pap” based on a panel of molecular biomarkers

Aim 2: Compare the clinical performance of the “Molecular Pap” to traditional Pap/HPV screening

Approach

The “Molecular Pap” is an integrated panel of biomarkers based on Human Papillomavirus (HPV) deep sequencing and quantitative DNA methylation of 3 human genes by pyrosequencing. To validate our biomarker panel and predictive model for Pap smear classification, we propose to collect 700 Pap smear samples from each of 6 diagnostic categories for HPV genotyping and methylation quantification for direct comparison to traditional cervical cancer screening (cytology or papsmear). Concurrently, a bioinformatics pipeline for automated data collection, analysis, modeling and visualization via a cloud-based computing system will also be developed.

Goals/Milestones

CY18 Goals: Compare clinical performance of the “Molecular Pap” to traditional Pap/HPV screening
 ○ Use biomarkers & predictive modeling to classify Pap smears
 ○ Compare “Molecular Pap” results to traditional Pap/HPV screening
 ○ Implement bioinformatics pipeline via cloud computing.

Potential Challenges
 ○ Bioinformatics pipeline development

<table>
<thead>
<tr>
<th>Activities</th>
<th>CY</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collect Pap smear samples for HPV next-gen sequencing & genotyping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantify DNA methylation of 3 tumor suppressor genes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compare “Molecular Pap” results to traditional Pap/HPV screening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop & implement bioinformatics pipeline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated Budget ($K)</td>
<td>$000</td>
<td>$250</td>
<td>$250</td>
<td>$250</td>
<td></td>
</tr>
</tbody>
</table>

Updated: 7 September 2016

Schema

Goals/Milestones

CY10 – 17 Goals: Expand the applicability of the “Molecular Pap”
 ○ Obtain IRB protocol approval
 ○ Collect Pap smear samples from BAMC Cytology Laboratory
 ○ Determine HPV genotype(s) by next-generation sequencing
 ○ Quantify DNA methylation of 3 tumor suppressor genes

Potential Challenges

○ Bioinformatics pipeline development
APPENDIX B. TECHNOLOGY TRANSFER

100+ Cancer Inventions Selected to Create High-Impact Startups through the Freedom from Cancer Startup Challenge

The Center for Advancing Innovation, the world’s largest virtual startup challenge-based accelerator, announced today the 100+ breakthrough cancer inventions that will be commercialized through the Freedom from Cancer Startup Challenge (FCSC).

BETHESDA, MD (PRWEB) JULY 07, 2017

The Center for Advancing Innovation, the world’s largest virtual startup challenge-based accelerator, announced today the 100+ breakthrough cancer inventions that will be commercialized through the Freedom from Cancer Startup Challenge (FCSC).

As CAI’s largest challenge to date, the FCSC has the potential to create as many as 10,000 knowledge-based jobs and 100 oncology-focused startups. The Laura and John Arnold Foundation has committed $1.2 million in funding towards the FCSC. The challenge was also launched with support from MedImmune, the global biologics research and development arm of AstraZeneca.

The breakthrough inventions came from 55 institutions, including the National Institutes of Health (National Cancer Institute, National Heart, Lung, and Blood Institute, and National Institute of Biomedical Imaging and Bioengineering), the United States Army, and more than fifty American universities and hospitals. To identify these breakthrough inventions, CAI reviewed over 120,000 cancer-related patent applications, filed since 2005, and selected the top 1% from a total of 134 research institutions for deep dive due diligence. CAI then shortlisted the most promising 200 cancer-related inventions from a list of 409 technologies, made available for exclusive licensing by 63 research institutions that CAI engaged. From this short list, CAI and a 15-member FCSC invention selections committee cherry-picked 100+ commercially viable inventions to feature in the competition. Members of the selection committee included senior executives from MedImmune, Pfizer, and Novartis, as well as super angels, serial entrepreneurs, venture capitalists, and foundations.

“CAI’s track record in launching Life Sciences startups is outstanding and the FCSC initiative further establishes a new paradigm to kick start new cancer companies and is a force multiplier for the oncology ecosystem. CAI’s systematic modelestablishes the infrastructurerequired for high performing biotech companies - commercially viable inventions, rock star teams and funding - to get treatments to patients faster.” - Jim Greenwood, BIO’s President and CEO. Rosemarie Truman, Founder and CEO of CAI added, “The intentional architecture and engineering of CAI’s commercialization of cancer inventions in this challenge will serve to create a new paradigm to drive positive industry disruption, economic impact, and most importantly, social impact.”