AWARD NUMBER:     W81XWH-17-1-0129

TITLE: Targeting the Cell Surfaceome of Aggressive Neuroendocrine Prostate Cancer

PRINCIPAL INVESTIGATOR:     John K. Lee, M.D., Ph.D.

CONTRACTING ORGANIZATION:     University of California, Los Angeles
Los Angeles, CA 90095

REPORT DATE:       July 2018

TYPE OF REPORT:    Annual

PREPARED FOR:     U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland  21702-5012

DISTRIBUTION STATEMENT:     Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
In this reporting period, we have performed transcriptomic and cell surface proteomic profiling of a panel of human prostate cancer cell lines and integrated these data sets to nominate high-confidence cell surface antigens associated with neuroendocrine prostate cancer (NEPC) and prostate adenocarcinoma (PrAd). Validation of candidate antigens is ongoing but several have demonstrated prostate cancer subtype-specific protein expression based on immunoblotting, immunohistochemistry, and flow cytometry of prostate cancer cell lines, xenografts, and clinical prostate cancer tissues. For example, we have characterized CEACAM5 (carcinoembryonic antigen 5) as a cell surface marker expressed in 60% of NEPC but not in PrAd. This finding has led to new projects in the laboratory with potential for clinical translation related to therapeutically targeting CEACAM5-positive NEPC with an antibody-drug conjugate or chimeric antigen receptor T cell immunotherapy.
# Table of Contents

1. Introduction  
2. Keywords  
3. Accomplishments  
4. Impact  
5. Changes/Problems  
6. Products  
7. Participants & Other Collaborating Organizations  
8. Special Reporting Requirements  
9. References  
10. Appendix
INTRODUCTION

Background: Neuroendocrine prostate cancer (NEPC) is a common, deadly endpoint for men with late-stage metastatic prostate cancer. Up to 20% of men with lethal metastatic prostate cancer have demonstrated evidence of NEPC [1, 2]. NEPC can be distinguished from conventional prostate cancer or prostate adenocarcinoma (PrAd) by histologic features, neuroendocrine marker expression, loss of either androgen receptor (AR) or downstream AR signaling, Polycomb repressive complex expression, and global methylation patterns [3-5]. NEPC apparently represents a cancer differentiation state distinct from PrAd and we hypothesize that the cell surface phenotype of these prostate cancer subtypes should reflect these differences. Furthermore, these differences in cell surface antigen expression may provide an opportunity for prostate cancer subtype-specific therapeutic targeting. The purpose of the research is to establish new NEPC models, to characterize the differential cell surface antigen profile of NEPC relative to PrAd, and to develop new antibody reagents targeting novel antigens in NEPC. We believe that these studies may facilitate the development of targeted treatments for men with NEPC, for which there are no currently available FDA-approved therapeutics.

KEYWORDS
Neuroendocrine prostate cancer, cell surface antigens, antibody therapy, immunotherapy

ACCOMPLISHMENTS

To summarize the research accomplishments to date, the tasks described in the proposed Statement of Work are itemized here with a brief update for each task.

SA 1: Establish a diverse panel of NEPC cell lines from human prostate epithelial transformation (months 1-12)
Task 1: Use the human prostate organoid transformation assay with the oncogenes MYCN and activated AKT1 to generate new NEPC cell lines (months 1-12) Completed. We have generated five NEPC cell lines using the human prostate transformation assay called LASCPC-01, NA1, NA2, NA3, and NA4. Characterization of these cell lines and xenografts have been performed at the level of morphology, xenograft histology, and transcriptome analysis. LASCPC-01 has been submitted to the ATCC biorepository and is currently available (ATCC CRL-3356) to the research community.
Task 2: Evaluate the effect of p53 loss and Rb loss in combination with the oncogenes MYCN and activated AKT1 in initiation of NEPC (months 1-24) Not yet started. However, colleagues and I have evaluated the combination of c-Myc, activated AKT1, p53 (R175H), and shRb in the human prostate epithelial transformation assay. This combination of oncogenic insults produces a highly penetrant small cell NEPC phenotype, from which three cell lines have been developed and characterized. A manuscript describing these results is being prepared. We anticipate that substitution of c-Myc with N-Myc in this gene combination should also generate a small cell NEPC phenotype.

SA 2: Validate candidate cell surface markers on NEPC using proteomic approaches
Task 1: High-throughput cell surface proteomic analysis of prostate cancer cell lines (months 1-14) Completed. We have evaluated a panel of prostate cancer cell lines by cell
surface biotinylation, streptavidin affinity purification, and liquid chromatography/mass spectrometry to quantitate cell surface protein expression in collaboration with Dr. James Wohlschlegel at UCLA. The results of these experiments have been reported in our publication in *The Proceedings of the National Academy of Sciences* (Appendix 1). We identified 1080 total proteins from these studies, of which 45.6% were annotated by Gene Ontology as “plasma membrane” in localization (Appendix 1, Fig. 3A). We also integrated the cell surface proteomics data with RNA-Seq gene expression data, focusing on genes putatively encoding cell surface proteins (“cell surface genes”), by a technique called rank-rank hypergeometric overlap (RRHO) [6]. We used RRHO to examine the NEPC and PrAd subsets and plot differentially enriched cell surface genes from the transcriptome data vs. differentially enriched cell surface proteins from the proteome data. We focused on genes/proteins enriched in NEPC by both the transcriptomic and proteomic data as being high-confidence cell surface candidates in NEPC (Appendix 1, Fig. 3C).

**Task 2:** Validation of candidate cell surface proteins using low-throughput proteomic techniques *(months 6-18)* In progress. We are currently performing multi-level validation of candidate NEPC cell surface marker expression by immunoblotting, immunohistochemistry, and flow sorting of NEPC cell lines, xenografts, and archived tumors. The rigor employed in validating nominated cell surface antigens is evident in the example of CEACAM5 (Appendix 1, Fig. 4 and Fig. 6), an antigen whose prostate cancer subtype-specific expression in NEPC was uncovered through our analysis. CEACAM5 is expressed at moderate-to-strong levels in approximately 60% of NEPC tumors analyzed.

**Task 3:** Prioritization of candidate NEPC cell surface proteins for therapeutic development *(months 6-18)* In progress. Our approach to the prioritization of candidate antigens involves the scope of systemic expression in normal tissues. We are performing analysis of the NIH GTEx database to evaluate RNA-level expression as well as immunoblot and immunohistochemistry to determine protein-level expression of candidate antigens in normal human tissues. Our initial studies indicate that the candidate prostate cancer antigens identified are not exclusively cancer-specific and are often expressed at varying levels in normal human tissues as well (Appendix 1, Fig. S5 and Fig. S8). We have taken the approach of prioritizing those with the fewest tissues in which expression is seen and with the lowest levels of gene/protein expression. However, prior experience with antibody and antibody-drug conjugate therapies have suggested that the dose-limiting toxicities of these agents do not correlate well with the systemic expression of their targets.

**SA 3:** Develop novel antibody reagents targeting cell surface antigens in NEPC *(months 18-48)*

**Task 1:** Human scFv phage display library screening to identify antibody reagents *(months 18-32)* Not yet started.

**Task 2:** Validation of the specificity and performance of human monoclonal antibodies derived from phage display screening *(months 18-34)* Not yet started.

**Task 3:** Therapeutic evaluation of monoclonal antibodies against candidate cell surface targets *(months 30-40)* Not yet started.

**Task 4:** Mouse studies with therapeutic monoclonal antibodies in NEPC *(months 40-48)* Not yet started.
Key Research Accomplishments:

- We have developed multiple human NEPC cell lines based on the transformation of human prostate epithelial cells with N-Myc and activated AKT1.

- We have shown, from gene expression analyses focused on a bioinformatically derived set of genes that are predicted to encode plasma membrane proteins, that NEPC and PrAd samples can be readily discriminated based on cell surface phenotypes.

- Multiple putative NEPC cell surface antigens have been identified through the integration of transcriptome and cell surface proteome data from a panel of human prostate cancer cell lines. A prime example is CEACAM5 which has not previously been described as a significant prostate cancer antigen. These results and the proof-of-concept of targeting CEACAM5 in NEPC with chimeric antigen receptor (CAR) T cell immunotherapy have recently been published.

Opportunities for Training and Professional Development:

During this reporting period, opportunities for training included attendance at the Proteomics Seminar Series at UCLA as well as completion of the UCLA Institute for Quantitative and Computational Biosciences Collaboratory Workshops. These programs provided training in understanding approaches to quantitative proteomic analysis, the analysis of RNA-Seq data from raw reads, and the integration of large datasets. Professional development of leadership has been critical in my role as co-leader of the Prostate Cancer Foundation Young Investigator Tumorigenesis Working Group. In addition, establishing and guiding a new laboratory at the Fred Hutch as a principal investigator has provided and will continue to generate many learning experiences related to leadership. At Fred Hutch, I am actively establishing a junior faculty mentoring committee at Fred Hutch that includes Dr. Pete Nelson who is a pre-eminent figure in the field of prostate cancer. In addition, I have developed mentoring networks through my involvement with the Prostate Cancer Foundation, UCLA SPORE in Prostate Cancer, and the Pacific Northwest Prostate Cancer SPORE.

Dissemination of Results:

Results of these studies have been disseminated to the prostate cancer research community through a poster presentation at the Prostate Cancer Foundation Annual Scientific Meeting from October 5-7, 2017 and by our recent publication in *The Proceedings of the National Academy of Sciences* (Appendix 1).

Plan for the Next Reporting Period:

In the next reporting period, we will initiate human prostate organoid transformation studies evaluating the effect of p53 loss and Rb loss in combination with the oncogenes MYCN and activated AKT1 in initiation of NEPC from Specific Aim 1, Task 2. We will also continue low-throughput proteomic validation studies and prioritization of candidate NEPC cell surface antigens by evaluating the scope and intensity of expression in normal human tissues. Extracellular domains of fully validated antigens will then be submitted for phage display.
antibody screening to identify antibody reagents which will be vetted for their specificity and affinity as outlined in Specific Aim 3, Tasks 1-2.

IMPACT

The specific discovery and validation of CEACAM5 expression in over 60% of NEPC samples has prompted pre-clinical investigation into whether targeting CEACAM5 in NEPC may be a viable treatment strategy. We have provided evidence that CEACAM5 CAR T cell immunotherapy can be engineered and optimized to promote antigen-specific NEPC killing in vitro (Appendix 1, Fig. 7). These preliminary studies have formed the basis for a team science Prostate Cancer Foundation Challenge Award (PI’s: Owen Witte, John Lee, Stephen Forman, Saul Priceman) to investigate the safety and efficacy of CEACAM5 CAR T cell immunotherapy for NEPC in clinically relevant, immune-competent mouse models.

CEACAM5-directed therapies are in active development for colorectal cancer. Specifically, antibody-drug conjugates (ADCs) targeting CEACAM5 have shown efficacy and a manageable toxicity profile in a phase I/II clinical trial of heavily pretreated patients with metastatic colorectal cancer [7]. We are planning to evaluate a CEACAM5 ADC in patient-derived xenograft models of NEPC with the idea that these studies may establish the scientific framework for a potential clinical trial of CEACAM5 ADC therapy in CEACAM5-positive NEPC.

CHANGES/PROBLEMS

The project has been somewhat impacted by my relocation from UCLA to Fred Hutchinson Cancer Research Center because of a temporary loss of productivity related to establishing a new laboratory and resuming research efforts. However, I do not believe that this will hamper our ability to achieve the milestones proposed. The project and its direction are otherwise unchanged.

PRODUCTS

PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

<table>
<thead>
<tr>
<th>Name:</th>
<th>John K. Lee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>PI</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td><a href="https://orcid.org/0000-0002-6570-2180">https://orcid.org/0000-0002-6570-2180</a></td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>3</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>Dr. Lee has performed data analysis and overseen the conduct of the study.</td>
</tr>
<tr>
<td>Funding Support:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Tiffany Pariva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>Research Technician</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td></td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>5</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>Ms. Pariva has performed low-throughput proteomic analyses to validate the expression of candidate prostate cancer subtype-specific antigens in cell lines, xenografts, and archived clinical tissues.</td>
</tr>
<tr>
<td>Funding Support:</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL REPORTING REQUIREMENTS

Nothing to Report.
REFERENCES


APPENDICES

Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer

John K. Lee,b,c, Nathanael J. Bangayan,a Timothy Chai, Bryan A. Smith, Tiffany E. Pariva, Sangwon Yun, Ajay Vashistha, Qingfu Zhang,j Jung Wook Park,e Eva Corey, Jiajui Huang, Thomas G. Graeber,d,l,m James Wohlschlegel,h, and Owen N. Wittec,d,f,n,o

*Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, CA 90095; bInstitute of Urologic Oncology, Department of Urology, University of California, Los Angeles, CA 90095; cJonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095; dDepartment of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095; eStanford University School of Medicine, Palo Alto, CA 94305; fDepartment of Microbiology, Immunology, and Medical Genetics, University of California, Los Angeles, CA 90095; gYale School of Medicine, New Haven, CT 06510; hDepartment of Biological Chemistry, University of California, Los Angeles, CA 90095; iDepartment of Pathology, Duke University School of Medicine, Durham, NC 27708; Department of Pathology, jChina Medical University, 110001 Shenyang, People's Republic of China; kDepartment of Urology, University of Washington School of Medicine, Seattle, WA 98195; lCrump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095; mUCLA Metabolomics Center, University of California, Los Angeles, CA 90095; nParker Institute for Cancer Immunotherapy, University of California, Los Angeles, CA 90095; and oEli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095

Contributed by Owen N. Witte, March 28, 2018 (sent for review February 8, 2018; reviewed by Massimo Loda and Cassian Yee)

Prostate cancer is a heterogeneous disease composed of divergent molecular and histologic subtypes, including prostate adenocarcinoma (PrAd) and neuroendocrine prostate cancer (NEPC). While PrAd is the major histology in prostate cancer, NEPC can evolve from PrAd as a mechanism of treatment resistance that involves a transition from an epithelial to a neurosecretory cancer phenotype. Cell surface markers are often associated with specific cell lineages and differentiation states in normal development and cancer. Here, we show that PrAd and NEPC can be broadly discriminated by cell-surface profiles based on the analysis of prostate cancer gene expression datasets. To overcome a dependence on predictions of human cell-surface genes and an assumed correlation between mRNA levels and protein expression, we integrated transcriptomic and cell-surface proteomic data generated from a panel of prostate cancer cell lines to nominate cell-surface markers associated with these cancer subtypes. FXYD3 and CEACAM5 were validated as cell-surface antigens enriched in PrAd and NEPC, respectively. Given the lack of effective treatments for NEPC, CEACAM5 appeared to be a promising target for cell-based immunotherapy. As a proof of concept, engineered chimeric antigen receptor T cells targeting CEACAM5 induced antigen-specific cytotoxicity in NEPC cell lines. Our findings demonstrate that the surfaceomes of PrAd and NEPC reflect unique cancer differentiation states and broadly represent vulnerabilities amenable to therapeutic targeting.

Significance

Advanced prostate cancer is a deadly disease made up of multiple cancer subtypes that evolve during its natural history. Unfortunately, antibody- and cell-based therapies in development that target single tumor antigens found in conventional prostate cancer do not account for this heterogeneity. Here, we show that two major subtypes of advanced prostate cancer, prostate adenocarcinoma (PrAd) and neuroendocrine prostate cancer (NEPC), exhibit distinct cell-surface expression profiles. Integrated analysis of gene expression and cell-surface protein expression of prostate cancer nominated multiple subtype-specific cell-surface antigens. We specifically characterize FXYD3 and CEACAM5 as targets for immune-based therapies in PrAd and NEPC and provide preliminary evidence of the antigen-specific cytotoxic activity of CEACAM5-directed chimeric antigen receptor T cells in NEPC.


Reviews: M.L., Dana Farber Cancer Institute; and C.Y., MD Anderson Cancer Center. The authors declare no conflict of interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence should be addressed. Email: owenwitte@mednet.ucla.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802354115/-/DCSupplemental.
high sensitivity and specificity in localizing recurrent prostate cancer (11). PSMA-targeted radioligand and chimeric antigen receptor T cell (CAR T) therapies are rapidly advancing to the clinic and represent a new generation of precision medicine for advanced prostate cancer. However, NEPC does not demonstrate uptake of PSMA radiotracers and is not expected to respond to PSMA-targeted therapies due to low-to-absent PSMA expression (12, 13). Similarly, prostate stem-cell antigen (PSCA) is another cell-surface antigen that is the focus of diagnostic and therapeutic development whose expression is heightened in the majority of PrAd, but down-regulated in NEPC (7).

The expression patterns of PSMA and PSCA in PrAd and NEPC represent a microcosm of the transcriptomic and epigenetic differences between these distinct states of prostate cancer differentiation (14). The differentiation-linked expression of cell-surface proteins has been extensively studied in lineage specification of normal tissues and in cancer (15, 16). The foremost example of this is the cluster of differentiation or classification determinant (CD) used to define stem/progenitor cells and the developmental hierarchy in normal hematopoiesis. The lineage-specific immunophenotyping of hematologic malignancies with CD molecules subsequently prompted the development of immune-based, targeted cancer therapies, including anti-CD20 antibodies (17) and recently CD19-directed CAR T (18, 19), which are transforming the treatment of B-cell malignancies. The identification of suitable target antigens in solid tumors has been limited by the lack of bona fide tissue-specific surface antigens and non-uniform antigen expression (20). New strategies to uncover target antigens and the combinatorial targeting of antigens will be needed to overcome the heterogeneity and plasticity inherent to solid tumors. Here, we present a generalizable approach to discover cancer subtype-specific target antigens as vulnerabilities amenable to therapeutic exploitation. Our data demonstrate that divergent cancer differentiation states arising during prostate cancer progression are associated with large changes in the repertoire of expressed cell surface proteins (surfaceome). From these differences, multiple candidate antigens were nominated, and the expression of FXYD3, a FXYD domain-containing ion transport regulator, in PrAd and CEACAM5, a member of the carinoembryonic antigen family, in NEPC were systematically validated. Lastly, we provide preliminary evidence demonstrating the feasibility of targeting CEACAM5 in NEPC with CAR T immunotherapy.

Results
Expression of Genes Encoding Cell-Surface Proteins Distinguishes PrAd and NEPC. As PrAd and NEPC are distinct states of prostate cancer differentiation, we hypothesized that the composition of the cell surfaceome could discriminate these prostate cancer subtypes. To evaluate this possibility, a set of 7,555 putative human cell-surface proteins was bioinformatically derived (Dataset S1) from publicly available databases by using an adaptation of a published cell-surfaceome construction strategy (21). Human cell-surface proteins were predicted based on Gene Ontology (22), the TransMembrane prediction using hidden Markov models (TMHMM) (23), and glycosylphosphatidylinositol (GPI)-anchored protein annotations (Fig. L4). Unsupervised hierarchical clustering of human prostate cancer RNA sequencing (RNA-seq) datasets (7, 14) and a cDNA microarray dataset of patient-derived xenografts (PDXs) (24) based on expression of the cell-surface gene set consistently differentiated PrAd and NEPC samples (Fig. 1B and SI Appendix, Fig. S1 A and B).

![Image of expression patterns of PSMA and PSCA in PrAd and NEPC.](image-url)

**Fig. 1.** Expression of genes encoding human cell-surface proteins distinguishes prostate cancer subtypes. (A) Venn diagram of a putative human cell-surface gene set bioinformatically constructed from the analysis of Gene Ontology, TMHMM, and GPI-anchored protein databases. (B) Heatmap demonstrating unsupervised hierarchical clustering of CRPC samples from the Beltran 2016 RNA-seq dataset based on the expression of cell-surface genes. Color bar represents a log2 scale. NEPC samples are labeled in purple, PrAd samples in blue, and CRPC samples in green. (C) Heatmaps showing rank overlap of differentially expressed cell-surface genes across NEPC and PrAd samples in pairwise comparisons of the Beltran 2016, SU2C/AACR/PCF West Coast Dream Team (WCDT), and Zhang 2015 gene expression datasets. (D and E) Gene enrichment analysis from PANTHER over-representation testing of cell-surface genes differentially expressed more than fourfold in NEPC relative to PrAd (D) and PrAd relative to NEPC (E) in the Beltran 2016 dataset.
To determine whether the cell-surface phenotype was more highly conserved in PrAd or NEPC, we used rank–rank hyper-geometric overlap (RRHO) analysis (25) to compare the ranked differential expression of genes encoding cell-surface proteins (hereafter called “cell-surface genes”) between prostate cancer subtypes in multiple datasets (WCDT from the Stand Up To Cancer/American Association for Cancer Research Prostate Cancer Foundation West Coast Dream Team (26), Beltran 2016 (14), and Zhang 2015 (24)). This rank-based methodology circumvents the complications of normalization for specific sample preparations and analysis platforms, enabling facile comparisons of gene expression across defined classes of prostate cancer in published datasets. Pairwise evaluation of the datasets revealed higher rank correlation of cell-surface genes enriched in NEPC (Fig. 1C), suggesting stronger homogeneity of cell-surface phenotypes in NEPC than in PrAd.

Differential expression analysis of the Beltran 2016 dataset showed that the expression of 330 cell-surface genes was enriched fourfold or more in the PrAd samples, while expression of 438 cell-surface genes was similarly enriched in the NEPC samples. PANTHER (Protein ANnotation Through Evolutionary Relationship) analysis was performed to compare differentially expressed genes to a reference gene list to identify enriched molecular functions and biological processes (27). PANTHER overrepresentation testing of the cell-surface enriched in NEPC in the Beltran 2016 dataset identified gene ontologies related to neuronal functions, including synaptic signaling, nervous system development, and neurotransmitter transport (Fig. 1D). In contrast, analysis of cell-surface genes enriched in PrAd from the same dataset revealed biological processes involving secretion, immune response, and inflammatory response (Fig. 1E). The results highlight substantial differences in cell-surface antigen expression linked to the cancer differentiation states of NEPC and PrAd.

Identification of Candidate Prostate Cancer Cell-Surface Antigens by Transcriptomic Analysis. We next assembled a diverse panel of human prostate cancer cell lines to further characterize cell-surface antigens in the PrAd and NEPC subtypes. The panel included established lines including CWR22Rv1, LNCaP, NE1.3 (28), DU145, NCI-H660, and LASCPC-01 (28), as well as two developed cell lines named NBl120914 and MSKCC EF1. NBl120914 was initiated from an intraoperative biopsy of a metastatic castration-resistant PrAd involving the femur. While the original tumor showed a luminal phenotype with CK8 and AR expression, the resultant PDX tumor and subsequent cell-line xenograft tumors lacked expression of both luminal and neuroendocrine markers, indicative of the development of double-negative (AR- and neuroendocrine-negative) prostate cancer (SI Appendix, Fig. S2 A, B, and D) (2). MSKCC EF1 was adapted from 3D organoid culture (29) to suspension culture and formed xenograft tumors marked by NEPC histology, absence of AR, and expression of the neuroendocrine marker synaptophysin and p63 (SI Appendix, Fig. S2 C and E).

RNA-seq gene-expression analysis revealed significant heterogeneity in expression of androgen-regulated genes, neuroendocrine markers, and epithelial markers in the cell line panel (Fig. 2A), demonstrating a diverse range of molecular phenotypes. Unsupervised hierarchical clustering analysis of the prostate cancer cell lines based on the expression of cell-surface genes yielded clusters of NEPC lines (MSKCC EF1 and NCI-H660), AR-negative PrAd lines (DU145 and LASCPC-01 marked by mixed NEPC and PrAd phenotypes and NBl120914), and AR-positive PrAd lines (CWR22Rv1, LNCaP, and the LNCaP-derivative NE1.3) (Fig. 2B). Differential cell-surface gene expression was evaluated in the PrAd and NEPC cell lines and identified the established PrAd markers PSCA and PSMA (PSMA), as well as the NEPC marker neural cell adhesion molecule 1 (NCAM1) (Fig. 2C).

We then integrated multiple prostate cancer gene expression datasets to identify differentially expressed PrAd- and NEPC-specific cell-surface markers that are conserved in prostate cancer cell lines, PDXs, and patient tumors. For each of the datasets (WCDT, Beltran 2015, Zhang 2015 metastatic CRPC, and prostate cancer cell line panel), we performed rank overlap analysis by ranking the top 500 differentially expressed PrAd or NEPC cell-surface genes from each dataset and evaluating the overlap of these genes across datasets. A total of 21 genes were enriched in PrAd samples in all datasets, including well-established biomarkers and target antigens for prostate cancer therapeutics such as FOLH1 (PSMA), TACSTD2 (Trop2), and STEAP1 (Fig. 2D and Dataset S2). A total of 56 genes were commonly identified in NEPC samples across the datasets (Dataset S2). Notable from this set of genes were RET, DLL3, and SEZ6 that have been identified as disease markers in neuroendocrine cancers, including medullary thyroid cancer, small- and large-cell lung cancer, and malignant pheochromocytoma (30–32).

Validation of FXYD3 as a Tumor Antigen in PrAd. FXYD3 belongs to the FXYD family of regulators of Na+/K+ ATPases that contain a 35-amino acid signature sequence domain beginning with PFXYD (36). FXYD3 has previously been found to be overexpressed in a variety of cancers, including those of the breast, stomach, and pancreas (37–39). FXYD3 was strongly enriched in
the integrated transcriptomic and proteomic analysis in PrAd cell lines, but not as highly ranked by the transcriptome-based rank overlap analysis of the diverse prostate cancer datasets.

To evaluate FXYD3 expression in prostate cancer, we performed FXYD3 IHC on a tissue microarray of benign prostate samples as well as treatment-naive primary Gleason grade 1–5 PrAd and metastatic PrAd. All 14 benign prostate tissues and 34 PrAd samples demonstrated FXYD3 expression (Fig. 5A), with the majority demonstrating moderate to strong staining specific to the normal and cancerous prostate epithelial cells (Fig. 5A and C). FXYD3 IHC was also performed on a series of small cell NEPC tissues archived at the University of California, Los Angeles (UCLA) (SI Appendix, Fig. S4). We found that in several samples with mixed PrAd and small-cell NEPC, FXYD3 appeared to be more highly expressed in the PrAd components of the tumors (Fig. 5B). Quantitation of the FXYD3 IHC scores in all evaluated samples showed that FXYD3 protein expression was reduced on average in small-cell NEPC relative to benign prostate and PrAd (Fig. 5C).

Evaluation of the NIH Genotype-Tissue Expression (GTEx) database showed that FXYD3 gene expression in human males is expressed in a variety of tissues including the skin, esophagus, stomach, small intestine, colon, bladder, and prostate (SI Appendix, Fig. S5A) (40). Congruent with the gene-expression data, IHC of a normal human tissue microarray demonstrated FXYD3 protein expression primarily in these organs (SI Appendix, Fig. S5B). The broad range of normal tissue expression would indicate that FXYD3 may not be suitable as a single target for highly potent cell-based immunotherapy due to the potential for off-target toxicity. However, whether FXYD3 may be amenable to targeting by monoclonal antibodies or antibody drug conjugates (ADCs) is unknown, as dose-limiting off-tumor toxicity has not necessarily correlated with normal tissue expression (41).

Validation of CEACAM5 as a Target Antigen in NEPC. CEACAM5 was identified as a candidate NEPC target antigen by both transcriptomic analysis of diverse prostate cancer datasets (Fig. 2E) and by integrated transcriptomic and proteomic analysis of the prostate cancer cell lines (Fig. 3C). In support of these findings, coexpression analysis of the Beltran 2016 dataset identified that the gene expression of CEACAM5 is highly correlated with the neuroendocrine marker chromogranin A (SI Appendix, Fig. S3B) (14). A similar, strong correlation was also found between CEACAM5 and the proneural pioneer transcription factor and high-grade neuroendocrine carcinoma marker ASCL1 in a metastatic prostate cancer gene-expression dataset (SI Appendix, Fig. S3C) (42, 43). CEACAM5 (CEA or carcinoembryonic antigen) is a glycosphosphatidylinositol-anchored membrane protein and established tumor antigen whose expression has primarily been associated with adenocarcinomas of the colon, rectum, and pancreas. Despite case reports of detectable serum CEA in rare patients with advanced prostate cancer, a systematic study of CEACAM5 IHC in prostate tumors identified no expression in both primary and metastatic samples (44).

To verify protein expression of CEACAM5 in NEPC, we performed IHC on a prostate cancer tissue microarray of the LuCaP series of PDX models (45). While the 13 androgen-sensitive PrAd PDXs and 9 castration-resistant PrAd PDXs evaluated did not demonstrate CEACAM5 expression, all 4 NEPC PDXs exhibited moderate or strong CEACAM5 staining localized to the plasma membrane (Fig. 6A). We extended the IHC evaluation of CEACAM5 expression to a series of small-cell NEPC tissues archived at UCLA and a tissue microarray of benign prostate samples, as well as treatment-naive primary Gleason grade 1–5 PrAd and metastatic PrAd. Eleven of 18 (61.1%) of the small-cell NEPC tissues stained for CEACAM5 in the plasma membrane (Fig. 6B and C and SI Appendix, Fig. S6). In contrast, all 14 benign prostate tissues and 34 PrAd samples encompassing primary and metastatic
tissues were devoid of CEACAM5 immunoreactivity (SI Appendix, Fig. S7). These IHC validation studies indicate that CEACAM5 expression appears to be prevalent in and specific to the NEPC subtype of prostate cancer.

**Therapeutic Targeting of CEACAMS in NEPC.** CEACAM5 is an antigen that is the active focus of therapeutic development in colorectal cancer with ADCs and CAR T cells (46, 47). Given our findings, we sought to examine the potential for CEACAM5-targeted therapy in NEPC. We first explored safety implications by examining the systemic expression of CEACAM5 in normal human tissues at the mRNA and protein levels. Evaluation of the NIH GTEx database showed that CEACAM5 gene expression in men is limited to the colon, esophagus, and small intestine (SI Appendix, Fig. S8A) (40). A previous study of adoptive cell therapy with T cells engineered to express a high-affinity murine T cell receptor (TCR) targeting CEACAM5 in patients with metastatic colorectal cancer reported tumor regression, but also severe, transient colitis (48). However, data from a phase I trial of CEA-directed CAR T cell immunotherapy in CEA-positive metastatic colorectal cancers have indicated that CEA CAR T cell therapy may be well tolerated without evidence of colitis, even at high doses (47). In concordance with gene-expression data from the GTEx database, immunoblot analysis of a range of human tissue lysates from vital organs revealed absence of CEACAM5 protein expression in the brain, heart, kidney, liver, and lung (Fig. 4A). In addition, IHC of a normal human tissue microarray demonstrated CEACAM5 expression limited to the luminal lining of the colon and rectum in men (SI Appendix, Fig. S8B).

Given the relatively restricted systemic expression of CEACAM5 and the highly aggressive clinical nature of NEPC, we chose to engineer CARs targeting CEACAM5 to leverage both antigen specificity and cytotoxic potency of this technology. We generated two lentiviral CEACAM5 CAR constructs encoding a single chain variable fragment (scFv) derived from labetuzumab (49), hinge/spacer, CD28 transmembrane domain, CD28 costimulatory chain variable fragment (scFv) derived from labetuzumab (49), hinge/spacer, CD28 transmembrane domain, CD28 costimulatory domain, and CD3ζ activation domain (Fig. 7A). The CEACAM5 CARs differed based on the presence of either a short spacer (IgG4 hinge) or long spacer (IgG4 hinge and CH2+CH3 spacer). We transduced T cells expanded from human peripheral blood mononuclear cells (PBMCs) with the CAR constructs and performed coculture assays with the target NEPC cell lines MSKCC EF1-CEACAM5, and NCI-H660 (CEACAM5-negative; Fig. 4A and B), MSKCC EF1-CEACAMS (engineered to express CEACAM5), and NCI-H660 (CEACAM5-positive; Fig. 4A) at a fixed effector-to-target ratio of 1:1. Analysis of the supernatant at 12 and 24 h by IFN-gamma (IFN-γ) ELISA revealed enhanced antigen-specific IFN-γ release associated with
Validation of candidate prostate cancer subtype-specific cell-surface antigens. (A) Immunoblot analysis of select PrAd (LNCaP, CWR22Rv1, and DU145) and NEPC (NCI-H660, MSKCC EF1, and LASCPC-01) cell lines as well as benign human tissues (brain, heart, kidney, liver, and lung) with antibodies against STEAP1, FXYD3, FOLH1, NCAM1, SNAP25, CEACAM5, and GAPDH as a loading control. (B) Human prostate tissue (Hu prostate) or prostate cancer cell line (LNCaP, CWR22Rv1, NCI-H660, MSKCC EF1, and LASCPC-01) xenograft sections after immunohistochemical staining with antibodies for the candidate antigens from A. (Scale bar, 25 μm.) (C) Flow cytometry histogram plots of the PrAd cell line LNCaP and the NEPC cell line NCI-H660 stained with antibodies against STEAP1, FXYD3, NCAM1, and CEACAM5.

Discussion

Therapeutic development for advanced prostate cancer has increased significantly over the last decade. Both antibody- and cell-based immune treatment strategies are now poised to advance to the clinic, as monoclonal antibodies, ADCs, and CAR T cells are under clinical investigation. Most of these prospective therapies are focused on PSMA and PSCA as target antigens in CRPC. However, the heterogeneity of CRPC and the potential for treatment-induced plasticity (6, 52, 53) indicate that agents targeting only PSMA and PSCA are unlikely to eradicate the disease. An additional complication is the paucity of cancerspecific antigens that are not expressed in normal tissues (54). Sequential or combinatorial treatment strategies targeting distinct antigens while optimizing safety at various stages of disease progression will likely be necessary (55). To this end, we have characterized the surfaceome of advanced prostate cancer and generated a collection of putative target antigens using a discovery pipeline based on mRNA and cell-surface protein expression data. These studies are relevant and timely with the intent of expanding the development of targeted biologic therapies for advanced prostate cancer.

We have identified significant biological differences between the PrAd and NEPC subsets based on cell-surface protein profiling. Our data indicate that PrAd and NEPC express distinct cell-surface markers that mirror their respective glandular epithelial and neuroendocrine cancer differentiation states. Global cell-surface gene-expression analysis of these subsets across multiple published prostate cancer datasets clearly indicate that the surface phenotype of NEPC is more conserved than that of PrAd. This finding is consistent with the observed heterogeneity of PrAd that demonstrates a broad spectrum of histologic
features, molecular subtypes, and clinical behaviors. On the other hand, the cell-surface profile of NEPC appears relatively homogeneous, suggesting that transdifferentiation to NEPC may represent a phenotypically constraining evolutionary path.

To nominate specific target antigens in prostate cancer as potential immunotherapeutic targets for further validation, cell-surface gene-expression and proteomics data were integrated from a diverse panel of prostate cancer cell lines. However, a pitfall of this approach is that mRNA abundance does not necessarily correlate with protein abundance (56), likely due to posttranscriptional and post-translational modifications affecting stability. In the future, technological improvements in ultrasensitive quantitative mass spectrometry in proteomics may obviate the need to consider mRNA data and enable global surfaceome analysis for target antigen discovery directly from biopsy specimens. Another limitation in the validation and therapeutic translation of candidate target antigens is the availability of specific immunoaffinity reagents against extracellular protein domains. Large-scale efforts to characterize the expression of all human proteins in both normal and cancerous cells and tissues have been fraught with issues of data reliability due to inconsistent antibody performance (57). However, advances in recombinant antibody production including the use of highly diverse phage display and antibody library technologies should help overcome this bottleneck (58, 59).

We have specifically demonstrated that FXYD3 and CEACAM5 are plasma membrane-bound antigens expressed preferentially in PrAd and NEPC, respectively, based on multilevel validation studies on prostate cancer cell lines and tissues. We evaluated the normal tissue expression of these antigens as an additional filter to determine the potential for off-tumor, on-target toxicities of antibodies or cell-based immunotherapies. Due to the clinical need for novel therapies for aggressive NEPC, combined with our characterization of CEACAM5 expression in NEPC (including small-cell prostate cancer) and normal tissues, we have engineered CEACAM5 CAR constructs and demonstrated their potent antigen-specific NEPC cytotoxicity. CEACAM5 is
CEACAM5 is a prostate cancer cell-surface antigen specific to the NEPC subtype. (A) CEACAM5 IHC of a LuCaP PDX tissue microarray with androgen-sensitive PrAd samples (n = 13), castration-resistant PrAd samples (n = 9), and NEPC samples (n = 4). CEACAM5 immunohistochemical stains of representative androgen-sensitive PrAd (LuCaP 147), castration-resistant PrAd (LuCaP 147CR), and NEPC (LuCaP 49) sections. (Scale bar, 100 μm.) (B) H&E and CEACAM5 immunohistochemical stains of a small cell NEPC sample archived at UCLA demonstrating adjoining regions of small-cell NEPC (left) and PrAd (right). (Scale bar, 100 μm.) (C) Quantitation of CEACAM5 IHC in benign prostate tissues (n = 14), PrAd (n = 34), and small-cell NEPC samples (n = 18) by Quickscore (intensity × percentage of positive cells; maximum score is 300). ****p < 0.0001 (by one-way ANOVA statistical analysis).

**Methods**

Detailed descriptions of cell lines, mouse xenograft studies, prostate cancer tissue microarrays and sections, antibodies, IHC, flow cytometry, and lentiviral vectors are found in SI Appendix, SI Methods. Viable human cells and tissues were provided in a deidentified manner and were therefore exempt from Institutional Review Board approval. All animal studies were performed according to protocols approved by the Animal Research Committee at University of California, Los Angeles.

**Bioinformatic Derivation of Genes Encoding the Cell Surfaceome.** Genes encoding cell-surface proteins were assembled based on Gene Ontology annotations (22) (Membrane, Plasma Membrane, Integral Components of the Membrane, and Integral Components of the Plasma Membrane), putative transmembrane proteins based on analysis of the UniProt proteome of Homo sapiens using TMHMM (Version 2.0) (23), and predictions of GPI-anchored proteins from PredGPI (64).

**RNA-Seq.** RNA was isolated from human prostate cancer cell lines by using an miRNeasy Mini Kit (Qiagen). Libraries for RNA-sequenced were prepared by using a TruSeq RNA Library Prep Kit (Version 2; Illumina). Sequencing was performed on an Illumina HiSeq 3000 with 2 × 150-bp reads. Demultiplexing of reads was performed by using CASAVA software (Version 1.8.2; Illumina). The Toil RNA-Seq Pipeline developed by the Computational Genomics Laboratory at the Genomics Institute of the University of California, Santa Cruz, was run locally to obtain gene- and transcript-level RSEM quantification of expression (65).

**Transcriptome Analysis.** FASTQ files from the Beltran 2016 RNA-Seq dataset were downloaded from dbGaP (study accession no. phs000909.v1.p1) and analyzed with the Toil RNA-Seq Pipeline. The TCGA and NIH GTEX Toil RNA-Seq Recompute datasets were downloaded from the University of California, Santa Cruz, Xena Public Data Hub (65). In each prostate cancer gene expression dataset analyzed, differentially expressed cell-surface genes between NEPC and PrAd samples (false discovery rate (FDR) < 0.05) were ranked based on the magnitude of fold change. RRHO analysis was performed in pairwise comparisons of gene-expression datasets as described (25). For PANTHER analysis, cell-surface genes enriched more than eightfold in either NEPC or PrAd samples in the Beltran 2016 dataset were submitted for overrepresentation testing as described (27). Rank overlap analysis was performed by taking the 500 most differentially enriched cell-surface genes between NEPC and PrAd samples from each dataset (FDR < 0.05) and identifying genes similarly enriched across all datasets.

**Proteomic Analysis.** A total of 4 × 10^5 cells from each cell line were subjected to cell-surface biotinylation and quenching per the Pierce Cell Surface Protein Isolation Kit (Thermo Fisher Scientific). Cells were lysed in urea lysis buffer (8 M urea, 2% SDS, and 100 mM Tris, pH 8) and DNA digested with 250 U of Benzonase endonuclease (Sigma). Biotin-labeled proteins were affinity-purified on streptavidin agarose beads (Thermo Fisher Scientific), sequentially treated with 5 mM Tris(2-carboxyethyl) phosphine and 10 mM iodoacetamide, and digested on-bead with Lys-C and trypsin proteases as described (66). Peptides were fractionated by multidimensional chromatography followed by tandem mass spectrometric analysis on a LTQ-Orbitrap mass spectrometer (Thermo Fisher Scientific). RAWXtract (Version 1.8) was used to extract peak list information from Xcalibur-generated RAW files. Database searching of the MS/MS spectra was performed by using the ProLuCID algorithm (Version 1.0). Other database search parameters included (i) precursor ion mass tolerance of ±20 ppm; (ii) fragment ion mass tolerance of ±400 ppm; (iii) only peptides with fully tryptic ends were considered candidate peptides in the search with no consideration for missed cleavages; and (iv) static modification of +57.02156 on cysteine residues. Peptide identifications were organized and filtered by using the DTASelect algorithm, which uses a linear discriminant analysis to identify peptide-scoring thresholds that yield a peptide-level FDR of <5% as estimated by using a decoy database approach. Proteins were considered present in the analysis if they were identified by two or more peptides using the 5% peptide-level FDR.

an attractive therapeutic target in several solid tumors, but the translation of CEACAM5-targeted therapies is overwhelmingly focused on advanced colorectal cancer. A number of immune-based strategies have shown preclinical efficacy and are under clinical investigation, including antibody–drug conjugates (46, 60), a CEACAM5 and CD5 bispecific antibody (61), adoptive TCR transfer (48), and CAR T immunotherapy (47).

Our preliminary results indicate that CEACAM5-directed CAR T immunotherapy warrants further investigation as a treatment strategy for NEPC. Future studies will need to assess the antitumor efficacy and potential for toxicity in the gastrointestinal tract (48) in relevant, immune-competent model systems. Additionally, strategies to enhance the specificity and alleviate potential off-tumor toxicity of CEACAM5 CARs in NEPC should also be explored. One such approach is to use dual-gate CARs (62), in which two CARs, one targeting CEACAM5 and the other a second tumor antigen with nonoverlapping expression with CEACAM5 in normal tissues, are coexpressed in T cells such that each individual CAR is insufficient to induce a T cell response, but when both CARs are engaged, they synergize to promote T cell activation. Lastly, CARs targeting PSCA or PSMA and CEACAM5 either together or as a single bispecific construct (63) should be evaluated for safety and efficacy as a strategy to address the heterogeneity of advanced CRPC.

**Proteomic Analysis.** A total of 4 × 10^5 cells from each cell line were subjected to cell-surface biotinylation and quenching per the Pierce Cell Surface Protein Isolation Kit (Thermo Fisher Scientific). Cells were lysed in urea lysis buffer (8 M urea, 2% SDS, and 100 mM Tris, pH 8) and DNA digested with 250 U of Benzonase endonuclease (Sigma). Biotin-labeled proteins were affinity-purified on streptavidin agarose beads (Thermo Fisher Scientific), sequentially treated with 5 mM Tris(2-carboxyethyl) phosphine and 10 mM iodoacetamide, and digested on-bead with Lys-C and trypsin proteases as described (66). Peptides were fractionated by multidimensional chromatography followed by tandem mass spectrometric analysis on a LTQ-Orbitrap mass spectrometer (Thermo Fisher Scientific). RAWXtract (Version 1.8) was used to extract peak list information from Xcalibur-generated RAW files. Database searching of the MS/MS spectra was performed by using the ProLuCID algorithm (Version 1.0). Other database search parameters included (i) precursor ion mass tolerance of ±20 ppm; (ii) fragment ion mass tolerance of ±400 ppm; (iii) only peptides with fully tryptic ends were considered candidate peptides in the search with no consideration for missed cleavages; and (iv) static modification of +57.02156 on cysteine residues. Peptide identifications were organized and filtered by using the DTASelect algorithm, which uses a linear discriminant analysis to identify peptide-scoring thresholds that yield a peptide-level FDR of <5% as estimated by using a decoy database approach. Proteins were considered present in the analysis if they were identified by two or more peptides using the 5% peptide-level FDR.
CAR T cell Engineering and Coculture Assays. Deidentified human PBMCs were obtained from the UCLA Virology Core Laboratory and grown in T cell medium (TCM) base medium composed of AIM V medium (Thermo Fisher Scientific), 5% heat-inactivated human AB serum, 2 mM glutamine, and 55 μM 2-mercaptoethanol (Sigma). For coculture experiments involving IFN-γ release assays measured by ELISA, human PBMCs were activated in a 24-well plate coated with 1 μg/mL anti-CD3 (eBioscience OX-3), 1 μg/mL anti-CD28 (eBioscience CD28.2), and 300 U/mL IL-2 in TCM base medium. After 48 h, cells were spin-infected daily for 2 d with CAR lentivirus at a multiplicity of infection (MOI) of ~6-11 in TCM base medium, 300 U/mL IL-2, and 8 μg/mL polybrene. After each infection, the cells were washed and grown in TCM base medium with 300 U/mL IL-2. Ninety-six hours after final spin infection, T cell transduction efficiency was measured by flow cytometry, and T cells were cocultured with target cells at a target:effector ratio of 1:1. Supernatant was harvested at 12 and 24 h after coculture. IFN-γ was quantitated with the BD OptEIA Human IFN-γ ELISA Set (BD Biosciences) according to the manufacturer’s protocol. For coculture experiments with direct visualization of cytotoxicity by live cell imaging, human PBMCs were activated with Gibco Dynabeads Human T-Activator CD3/CD28 (Thermo Fisher Scientific) in TCM base medium with 50 U/mL IL-2 at a cell:bead ratio of 1. After 96 h, T cells were infected with CAR lentivirus by spin infection in TCM base medium with 50 U/mL IL-2 and an MOI of 3. Cells were washed 24 h after infection and cultured in TCM base medium with 50 U/mL IL-2. Dynabeads were removed 48 h after infection. Ninety-six hours after spin infection, T cell transduction efficiency was measured by flow cytometry, and T cells were cocultured with target cells at a range of target:effector ratios. Cytotoxicity was measured by Incucyte ZOOM through quantification of GFP-positive target cell counts.

ACKNOWLEDGMENTS. We thank the Technology Center for Genomics and Bioinformatics at UCLA for RNA-seq services, the UCLA Proteome Research Center for mass spectrometry services, and the Translational Pathology Core Laboratory at UCLA for histology services. This work was supported by the Prostate Cancer Biorepository Network supported by the Department of Defense Prostate Cancer Research Program Grants W81XWH-14-2-0182, W81XWH-14-2-0183, W81XWH-14-2-0185, W81XWH-14-2-0186, and W81XWH-15-2-0062. J.K.L. is supported by the Parker Institute for Cancer Immunotherapy Grant PICI 20163828.

Supplementary Information for

Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer

John K. Lee, Nathanael J. Bangayan, Timothy Chai, Bryan A. Smith, Tiffany E. Pariva, Sangwon Yun, Ajay Vashisht, Qingfu Zhang, Jung Wook Park, Eva Corey, Jiaoti Huang, Thomas G. Graeber, James Wohlschlegel, Owen N. Witte

Owen N. Witte
Email: owenwitte@mednet.ucla.edu

This PDF file includes:

- SI Methods
- Figs. S1 to S9
- References for SI reference citations

Other supplementary materials for this manuscript include the following:

- Datasets S1 to S2
SI Methods

Cell Lines. LNCaP, CWR22Rv1, and DU145 (ATCC) were grown in RPMI with 10% FBS. NCI-H660 (ATCC) and LASCPC-01 (1) were grown in HITES media containing RPMI, 5% FBS, 10 nM hydrocortisone, 10 nM beta-estradiol (Sigma), insulin-transferrin-selenium, and Glutamax (Life Technologies). NE1.3 (gift from J. Huang) was grown in RPMI with 10% charcoal-stripped serum. NB120814 was established from an intraoperative biopsy of metastatic prostate cancer at UCLA and grown in RPMI with 10% FBS. MSKCC EF1 was derived from the organoid line MSKCC-CaP4 (2) (gift from Y. Chen) and was grown in RPMI with 10% FBS.

Mouse Xenograft Studies. NSG (NOD-SCID-IL2Rγ-null) mice were obtained from the Jackson laboratory and housed at UCLA animal facilities in accordance with the regulations of the Division of Laboratory Animal Medicine. 10⁶ cells from each prostate cancer cell line or 1 mm³ minced prostate tumor chunks were suspended in 75 µl of cold Matrigel (BD Biosciences) and implanted subcutaneously into NSG mice. Xenograft tumors were harvested and fixed in 10% buffered formalin for 16 h.

Prostate Cancer Tissue Microarrays and Sections. Tissue microarrays used were human prostate disease spectrum arrays (US Biomax PR8011b), multi-normal human tissues arrays (US Biomax MNO1021), and LuCaP PDX models arrays (Prostate Cancer Biorepository Network). UCLA IRB approval (17-000148) was obtained to requisition cases of small cell NEPC archived by the Department of Pathology and Laboratory Medicine at UCLA. Blocks were sectioned by the Translational Pathology Core Laboratory at UCLA and all tissue slides made available to the investigators were devoid of patient identifiers.

Antibodies. Antibodies used were: anti-CK8 (Covance MMS-162P), anti-SYP (Novocastra NCL-SYNAP-299), anti-p63 (Santa Cruz 4A4), anti-AR (Santa Cruz N-20), anti-CHGA (Dako M0869), anti-STEAP (Santa Cruz B-4), anti-FXYD3 (LifeSpan Biosciences 2F7), anti-PSM (Santa Cruz F-2), anti-NCAM (Cell Signaling 3576), anti-SNAP25 (BioLegend SMI 81), anti-CEA (Dako II-7; Cell Signaling 2383), and anti-GAPDH (GeneTex GT239).

Immunohistochemistry. Formalin-fixed and paraffin-embedded tissue sections were deparaffinized in xylene and rehydrated in 100%, 95%, and 75% ethanol then PBS. Antigen retrieval was performed in 40 mM citrate buffer (pH 6) using a pressure cooker heated to 95 ºC for 30 min. Tissue sections were blocked in 2.5% normal horse serum blocking solution (Vector Labs) and incubated overnight in primary antibody in a humidified chamber. Slides were washed with PBS and 0.1% Tween-20 (PBS-T), blocked with 3% hydrogen peroxide for 10 min, and washed again with PBS-T. Slides were incubated with anti-mouse HRP or anti-rabbit HRP antibodies (Vector Labs) for 1 h and stains visualized using DAB peroxidase substrate (Dako). Sections were counterstained with hematoxylin.

Flow Cytometry. LNCaP was non-enzymatically dissociated with Versene EDTA solution (Thermo Fisher Scientific). NCI-H660 was collected from suspension culture and dissociated mechanically by pipetting. Cell lines were washed with PBS and incubated in flow cytometry staining buffer (PBS with 2% FBS and 0.09% sodium azide) with primary antibody or isotype control antibodies for 1 h. Cells were washed with PBS and incubated with mouse or rabbit IgG (H+L) fluorescein-conjugated secondary antibody (R&D Systems) for 1 h. Cells were washed with PBS, resuspended in flow cytometry staining buffer, and analyzed on a BD FACSCanto (BD Biosciences).
Lentiviral Vectors. The third-generation lentiviral vector FU-CGW, derived from FUGW, was used to label target cell lines with GFP for co-culture experiments. Human CEACAM5 cDNA was cloned into FU-CGW by NEBuilder HiFi DNA Assembly (New England Biolabs) to generate the lentiviral vector FU-CEACAM5-CGW to express CEACAM5 in select target cell lines. The short spacer and longer spacer CEACAM5 CAR constructs were generated by NEBuilder HiFi DNA Assembly of custom gBlocks gene fragments (Integrated DNA Technologies) and cloned into FU-W. Lentiviruses were produced and titered as previously described (3).
Fig. S1. Cell surface gene expression differentiates NEPC from PrAd. (A-B) Heatmaps demonstrating unsupervised hierarchical clustering of prostate cancer samples from the (A) Beltran 2011 RNA-seq dataset and (B) Zhang 2015 gene expression microarray dataset based on the expression of cell surface genes. Color bar represents a log₂ scale. NEPC samples are labelled in orange and PrAd samples in green.
Fig. S2. Characterization of newly developed and adapted human prostate cancer cell lines. (A-C) H&E and K8, SYP, p63, AR, and CHGA immunohistochemical stains of the (A) NB120914 patient tumor, (B) NB120914 patient-derived xenograft tumor, and (C) MSKCC EF1 xenograft tumor. Scale bar represents 100 µm. (D-E) Photomicrographs of the (D) NB120914 and (E) MSKCC EF1 cell lines in suspension culture growing in cell clusters.
Fig. S3. Expression of candidate PrAd and NEPC cell surface antigens in prostate cancer and benign prostate gene expression datasets. (A) Vertical scatter plots of STEAP1, FXYD3, FOLH1, NCAM1, SNAP25, and CEACAM5 gene expression in NEPC and CRPC-Ad samples from Beltran 2016, primary prostate cancers from TCGA PrAd, and benign prostate tissues from the NIH GTEx dataset. Mean and standard deviation bars are also shown. (B-C) mRNA co-expression analysis from cBioPortal for Cancer Genomics showing correlation between (B) CEACAM5 and CHGA expression in the Trento/Cornell/Broad 2016 NEPC dataset and (C) CEACAM5 and ASCL1 in the Fred Hutchinson CRC, Nat. Med. 2016, dataset. Pearson and Spearman correlation coefficients are shown.
Fig. S4. Evaluation of FXYD3 expression in a series of small cell NEPC cases. H&E and FXYD3 immunohistochemical stains of 18 independent small cell NEPC samples archived at UCLA. Scale bar represents 200 µm.
Fig. S5. Survey of the systemic expression of FXYD3 in normal human tissues. (A) Plot of FXYD3 gene expression across a variety of normal human tissues (in TPM or transcripts per million) from the NIH GTEx database via GTEx Portal. (B) FXYD3 immunohistochemical stains of a tissue microarray with 35 normal human tissues represented.
Fig. S6. Evaluation of CEACAM5 expression in a series of small cell NEPC cases. H&E and CEACAM5 immunohistochemical stains of 18 independent small cell NEPC samples archived at UCLA. Scale bar represents 200 µm.
**Fig. S7.** Evaluation of CEACAM5 expression in a prostate cancer progression tissue microarray. CEACAM5 immunohistochemical stains of benign prostate tissues (n=14), primary Gleason grade 1-5 PrAd tissues (n=32), and metastatic PrAd samples (n=2).
Fig. S8. Survey of the systemic expression of CEACAM5 in normal human tissues. (A) Plot of CEACAM5 gene expression across a variety of normal human tissues (in TPM or transcripts per million) from the NIH GTEx database via GTEx Portal. (B) CEACAM5 immunohistochemical stains of a tissue microarray with 35 normal human tissues represented.
Fig. S9. Specificity of the cytotoxic activity of CEACAM5 CAR T cells in an engineered CEACAM5-positive prostate cancer cell line. (A) Interferon-γ (IFN-γ) quantitation in the media at 24 and 48 hours after co-culture of long spacer CEACAM5 CAR-transduced or untransduced T cells with CEACAM5-negative DU145 target cells or CEACAM5-positive DU145-CEACAM5 target cell lines at a 1:1 effector-to-target ratio. Standard error measurements for 3 replicate wells are displayed. ns represents non-significance and **** represents p<0.0001 by two-way ANOVA statistical analysis. (B) Relative viability over time of CEACAM5-negative DU145 target cells and engineered CEACAM5-positive DU145-CEACAM5 target cells co-cultured with long spacer CEACAM5 CAR-transduced T cells at a 1:1 effector-to-target ratio. Standard error measurements for 3 replicate wells at each timepoint are displayed.
References