AWARD NUMBER: W81XWH-15-1-0456

TITLE: Nerve transfers for improved hand function following cervical spinal cord injury

PRINCIPAL INVESTIGATOR: Wilson Z. Ray

CONTRACTING ORGANIZATION: Washington University School of Medicine
St. Louis, MO 63110

REPORT DATE: September 2017

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; Distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Nerve transfers for improved hand function following cervical spinal cord injury
Spinal cord injury (SCI) is the result of damage to the spinal cord either due to trauma (90% of cases) or disease (e.g., Cancer). This is typically a devastating injury, leaving many patients with permanent disability. Despite advances in acute patient management, patients with SCI are two to five times more likely to die prematurely than those without SCI. More than 50% of the 11,000 to 12,000 new SCIs that occur in the United States each year involve the cervical spine resulting in diminished or complete loss of arm and/or hand function. Cervical SCI patients consistently rank hand function as the most desired function above bowel and bladder function, sexual function, standing, and pain control. The overall goal of the proposed study is to evaluate the efficacy of nerve transfers to treat patients with cervical SCIs. Over the last decade, nerve transfers have been used with increasing frequency to treat peripheral nerve and/or brachial plexus injuries. Nerve transfers involve the transfer of nerve function that is less critical and/or redundant to a more critical area of motor function. Recently, these same principles used to treat peripheral nerve injuries have been applied to patients with SCIs, with promising early results. Using uninjured nerve above the level in the spine where the injury occurred, nerve transfers can provide improved upper extremity and hand function to veterans and patients living with cervical SCIs. Since nerves below the injured segment of spine are still in continuity with the distal muscle targets (i.e., hand), they remain receptive to reinnervation even years after SCI.

Nothing listed

A. REPORT
B. ABSTRACT
C. THIS PAGE

17. LIMITATION OF ABSTRACT
Unclassified

18. NUMBER OF PAGES
11

19a. NAME OF RESPONSIBLE PERSON
USAMRMC

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8-98)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2. Keywords</td>
<td>6</td>
</tr>
<tr>
<td>3. Accomplishments</td>
<td>6-8</td>
</tr>
<tr>
<td>4. Impact</td>
<td>8</td>
</tr>
<tr>
<td>5. Changes/Problems</td>
<td>9</td>
</tr>
<tr>
<td>6. Products</td>
<td>10-11</td>
</tr>
<tr>
<td>7. Participants & Other Collaborating Organizations</td>
<td>11</td>
</tr>
<tr>
<td>8. Special Reporting Requirements</td>
<td>12</td>
</tr>
<tr>
<td>9. Appendices</td>
<td>None</td>
</tr>
</tbody>
</table>
1. INTRODUCTION:

Spinal cord injury (SCI) is a significant public health problem with approximately 12,000 new cases each year. More than 50% of SCIs occur in the cervical spine (i.e., tetraplegia), resulting in some loss of arm and/or hand function. Nerve transfers to treat brachial plexus and peripheral nerve injuries have gained significant momentum over last decade. The central principle of nerve transfers is the conversion of a high level nerve injury, to a low injury, placing regenerating axons in close proximity to the target end-organs. While tendon transfers have an established role in the management of patients with SCI and tetraplegia, only recently have nerve transfers been considered as a potential treatment option in patients with cervical SCIs. Utilizing donor nerves above the SCI, nerve transfers can be done either subacutely into the zone of the injury (upper and lower motor neuron dysfunction) or in a delayed fashion below the zone of injury. Motor neurons in the zone of injury are subject to lower motor degeneration, with a similar degeneration pattern seen in peripheral nerve injuries. Injuries in the zone of injury should be treated aggressively, to prevent progressive motor endplate fibrosis and contractures. Motor neurons below the level of injury are still in continuity with distal motor endplates, these nerves do not undergo typical Wallerian degeneration as observed in the zone with injury. This provides two distinct windows of opportunity for subacute treatment (< 6 months) after injury and chronic treatment (years) after injury. The long-term objective of this proposal is to establish and validate clinical guidelines on the use of nerve transfers to restore distal motor function following a cervical SCI. Central Hypothesis: Peripheral nerve transfers in patients with cervical spinal cord injury will improve distal motor function, functional independence, and patient quality of life. A prospective single institution non-randomized single arm design will be utilized. Twenty consecutive subjects with cervical ASIA A-B (International Standards for Neurological Classification of Spinal Cord Injury) SCI and hand function impairment who fit the International Classification for Surgery of the Hand 0-4 will be identified. Primary Outcome Measures: Upper motor strength. (Manual motor testing & Hand Held Dynamometry) Secondary Outcome Measures: Disabilities of the Arm, Shoulder, and Hand (DASH), Michigan Hand Questionnaire (MHQ), Short Form 36 (SF-36) rates of intraoperative and post-operative complications, and rates of reoperation. (pre-operative, post-operatively - 6, 12, 18, and 24 months). We believe this study will provide substantial benefit to patients enrolled at our institution and expect the results to support a larger multi-institutional phase III clinical trial.

2. KEYWORDS:

Spinal cord injury, nerve transfer, quality of life, upper extremity function, subacute

3. ACCOMPLISHMENTS: The PI is reminded that the recipient organization is required to obtain prior written approval from the awarding agency grants official whenever there are significant changes in the project or its direction.

1. Finalize clinical protocol
2. Develop informed consents
3. Develop case report forms
4. Obtain required licensing agreements for electronic outcome assessments
5. Submit documents to Washington University IRB and obtain approval
6. Submit documents to USAMRMC and HRPO and obtain approval
7. Recruit full time study coordinator
8. Recruit hand therapist
9. Establish mechanism for patient identification and recruitment
What was accomplished under these goals?

Major Task 1: Coordinate patient recruitment
Milestones achieved: We have identified several potential referral sites and have established a strong referral source through our local rehabilitation hospital. Ongoing outreach efforts remain in place to maintain ongoing referrals.

Major Task 2: Coordinate study staff for clinical trial
Milestones achieved: Our dedicated hand therapist Anna VanVoorhis continues to perform all pre- and post-operative hand assessments, she has joined our team on a 20% effort to allow ongoing and reliable therapy to patients as the study transitions to a follow-up component. She continues to provide ongoing hand therapy to all post-operative patients on a regular basis along with objective pre-operative assessments. In addition, she has educated several regional hand therapists in appropriate post-operative therapy to allow patients to get appropriate therapy closer to home. Our research coordinators Aubrey Wright and Linda Koester continue to facilitate pre-operative assessments by the PI and Co-PI. Those patients that have been enrolled continue to receive coordinated care to ensure all scheduled follow-up visits are maintained.

Major Task 3: Participant recruitment, therapy, participant evaluation
1. *Milestones Achieved:* We have enrolled 16 patients since study initiation. Study patient 1 is scheduled for his final 2-year follow-up appointment this month. Patients 2 thru 16, remain active in both hand and physical therapy, study patient 14 thru 16 are scheduled to undergo surgery 9/14, 9/22, and 10/12. Details on each enrolled patient are as follows: The first patient treated was a C6 ASIA A/IC3: that underwent transfer of the supinator to the PIN, Axillary to triceps, and brachialis to AIN. The second patient is a C8/IC4: underwent transfer of the brachialis to AIN and MABC to ulnar sensory. The third patient was a C3 ASIA A/IC0: underwent transfer of the spinal accessory to musculocutaneous nerve and playsmsa motor branch to triceps. The forth patient is a C5 ASIA A/IC2: underwent bilateral supinator to the PIN and brachialis to AIN. The fifth patient was a C4 central cord: underwent right sided transfer of the FDS/FCR to the biceps branch of the MCN. The sixth patient is a C6 ASIA A/IC3: underwent supinator to PIN and brachialis to AIN. The seventh patient was a C4 ASIA A/IC0: underwent spinal accessory to FDS/FCR transfer. The eighth patient was a C6 ASIA A/IC3: underwent brachialis to FDS and supinator to PIN transfer. Patient nine C4 ASIA B/IC3: underwent brachialis to FDS/FCR and supinator to PIN transfer. Patient ten C6 ASIA B/IC4: underwent brachialis to AIN/FDS/FCR transfer and supinator to PIN. Patient eleven was a C4 ASIA A/IC0: underwent spinal accessory to middle trunk/triceps transfer. Patient twelve was a C5 ASIA B/IC3: underwent brachialis to FDS/AIN and supinator to PIN. Patient thirteen is a C5 ASIAA/IC1: underwent brachialis to FDS/AIN and supinator to PIN.

Major Task 4: Data Analysis
Milestone in progress: Nothing to report.

What opportunities for training and professional development has the project provided?

Nothing to report
How were the results disseminated to communities of interest?

I have given six invited national presentations – discussing the ongoing DOD clinical trial and our results up to this point. In December 2015 I was a visiting professor at the University of Texas – Houston. The presentation was given to the Department of Neurosurgery and Neurology. In June 2016, I was an invited speaker at the Neurotrauma conference in Lexington, KY. In August 2016 I was the Keynote speaker at the One Clinic Neurosurgery Course. In October 2016 I was an invited speaker for the Annual Research Conference at the University of Iowa. In February 2017 I was a visiting professor at the University of Utah. In March 2017 I was an invited speaker at the American Association of Orthopedic Surgeons. All of these talks highlighted both my pre-award work as well as my ongoing efforts supported by the DOD. This has provided me the opportunity to disseminate my work among both Neurosurgery and Orthopedic colleagues.

What do you plan to do during the next reporting period to accomplish the goals?

This past 2 years has focused on patient recruitment, we will continue with patient recruitment for the next 3-4 months until we reach our target of 20 patients. We expect continued enrollment as interest and knowledge of the study has increased. In year 3 we expect to gather patient outcome data as many patients will reach their 2-year outcomes.

4. IMPACT:

What was the impact on the development of the principal discipline(s) of the project?

To date there are nothing to report

What was the impact on other disciplines?

Nothing to report

What was the impact on technology transfer?

Nothing to report

What was the impact on society beyond science and technology?

Nothing to report
5. **CHANGES/PROBLEMS:**

Changes in approach and reasons for change

| Nothing to report |

Actual or anticipated problems or delays and actions or plans to resolve them

| We had a 4 – 6 week delay to obtain HRPO approval during year one of the study. This small delay did put our screening and recruitment on hold, but did not significantly impact our enrollment. We expect to reach our target enrollment of 20 patients by November/December 2017. |

| Nothing to report |

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents

Significant changes in use or care of human subjects

| Nothing to report |

Significant changes in use or care of vertebrate animals

| Nothing to report |

Significant changes in use of biohazards and/or select agents

| Nothing to report |
6. **PRODUCTS:** List any products resulting from the project during the reporting period. If there is nothing to report under a particular item, state “Nothing to Report.”

- **Publications, conference papers, and presentations**

 Presentations
 1) University of Texas, Houston – Grand Rounds December 2015, Houston, TX – Paradigm shift, nerve transfers to improve upper extremity function following cervical spinal cord injury
 3) One Clinic Neurosurgery Course – Keynote speaker August 2016, Springfield, MO - Nerve transfers for spinal cord injury
 4) University of Iowa – Annual Research Conference October 2016, Iowa City, IA - Nerve transfers for spinal cord injury
 5) University of Utah – Grand Rounds February 2017, Salt Lake City, UT - Nerve transfers for spinal cord injury
 6) American Association of Orthopedic Surgeons – Annual meeting March 2017, San Diego, CA - Nerve transfers for spinal cord injury

 Journal publications.
 Nothing to report

 Books or other non-periodical, one-time publications.
 Nothing to report

 Other publications, conference papers and presentations.
 Nothing to report

- **Website(s) or other Internet site(s)**
 Nothing to report

- **Technologies or techniques**
 Nothing to report
• **Inventions, patent applications, and/or licenses**

Nothing to report

• **Other Products**

Nothing to report

7. **PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS**

What individuals have worked on the project?

3. Aubrey Wright & Linda Koester Study Coordinators, 100% combined effort – Coordinates pre- and post operative care for all patient. Assists with candidate screening and recruitment. Institutional IRB oversight and compliance.

4. Neringa Juknis – Co-Investigator, 10% effort – Performs independent pre- and post-operative assessments for all outcome measures. Assists with candidate identification and enrollment.

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last reporting period?

Dr. Daniel Osei recently left Washington University for the Hospital for Special Surgery, New York. Dr. Marty Boyer – Professor of Orthopedic Surgery, Division Chief of Hand Surgery has taken over the role of Co-PI for Dr. Osei.

What other organizations were involved as partners?

• **Other.**

Nothing to report
8. SPECIAL REPORTING REQUIREMENTS

 COLLABORATIVE AWARDS: N/A

 QUAD CHARTS: N/A

9. APPENDICES: N/A