Understanding and Controlling Living/Inorganic Interfaces to Enable Reconfigurable Switchable Materials

by Margaret M Hurley, Hong Dong, Justin Jahnke, Deborah Sarkes, Meagan Small, Dimitra Stratis-Cullum, Jessica Terrell, and Nicole Zander

Approved for public release; distribution is unlimited.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Understanding and Controlling Living/Inorganic Interfaces to Enable Reconfigurable Switchable Materials

by Margaret M Hurley, Hong Dong, Justin Jahnke, Deborah Sarkes, Meagan Small, Dimitra Stratis-Cullum, and Jessica Terrell

*Sensors and Electron Devices Directorate, ARL*

Nicole Zander

*Weapons and Materials Research Directorate, ARL*

Approved for public release; distribution is unlimited.
### Title and Subtitle
Understanding and Controlling Living/Inorganic Interfaces to Enable Reconfigurable Switchable Materials

### Authors
Margaret M Hurley, Hong Dong, Justin Jahnke, Deborah Sarkes, Meagan Small, Dimitra Stratis-Cullum, Jessica Terrell, and Nicole Zander

### Abstract
Results are highlighted for a 3-year study to study fundamental interactions between engineered *E. coli* cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity.

### Subject Terms
bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>v</td>
</tr>
<tr>
<td>1. Introduction and Research Objective</td>
<td>1</td>
</tr>
<tr>
<td>2. Research Strategy</td>
<td>1</td>
</tr>
<tr>
<td>3. Research Highlights</td>
<td>1</td>
</tr>
<tr>
<td>4. Applications Underway</td>
<td>2</td>
</tr>
<tr>
<td>5. Army Impact</td>
<td>3</td>
</tr>
<tr>
<td>6. Challenges and Lessons Learned</td>
<td>3</td>
</tr>
<tr>
<td>7. Conclusion and Beyond</td>
<td>4</td>
</tr>
<tr>
<td>Appendix. Publications and Presentations</td>
<td>9</td>
</tr>
<tr>
<td>List of Symbols, Abbreviations, and Acronyms</td>
<td>12</td>
</tr>
<tr>
<td>Distribution List</td>
<td>13</td>
</tr>
</tbody>
</table>
List of Figures

Fig. 1  Demonstration of Au-binding properties by cells expressing mFimH. The above image shows E. coli cells engineered FimH (M6G4 added as a binding sequence) adhering with 10-μm resolution to Au patterned onto silica. ................................................................. 5

Fig. 2  Engineered vFimH exposes a His6 tag at ILE52 in the lectin-domain (Ld) and seen to disrupt mannose binding both experimentally and in molecular dynamics simulation ......................................................... 6

Fig. 3  COMSOL Multiphysics model demonstrating normal and total forces exerted by fluid flow on bacterial cell (modeled as a rigid rod). Image is taken from Jahnke et al. Biointerphases 12, 02C410 (2017). ........... 7

Fig. 4  Example of gold binding spot assay for E. coli cells (uninduced cells in lane 1) induced to express the eCPX peptide display scaffold (peptide-free scaffold in lane 2) with various N-terminal peptides for binding to gold (lanes 3–8: examples of designed peptides and peptides from literature in lanes). ................................................................. 8
Acknowledgments

Leverages: Open Campus Open House Partners Prof Candan Tamerler, University of Kansas; Dr Jeffrey Rice, Auburn University; Prof Arum Han, Texas A&M University; Prof Xuanhong Cheng, Lehigh University.
INTENTIONALLY LEFT BLANK.
1. **Introduction and Research Objective**

The integration, organization, and control of biological components into hybrid materials will allow the development of novel system properties and advanced functionality in plasmonics, optics, catalysis, biosensing, power generation, and energy storage, among a myriad of other applications. Our research moves toward these goals by developing control of bacterial adhesion on inorganic surfaces sufficient to revolutionize hybrid device development with the invention of tailored switchable binding on a target surface (the primary objective of the project). Future work can build upon this to focus on autonomous and directed patterning and reconfigurable binding, self-healing properties, responsive properties and more advanced forms of switching to control mass transfer and electron transfer at the interface.

2. **Research Strategy**

We leverage existing US Army Research Laboratory (ARL) strengths (e.g., molecular biology/synthetic biology, biomolecular recognition, materials characterization and polymer science, computational biology) and facilities (DOD Supercomputing Resource Center, ARL Specialty Electronics Materials and Sensors Cleanroom, biomaterial and polymer material characterization capabilities, and biotechnology laboratories). The pathway followed was the integrated development of switchable, controllable bacterial adhesion by investigation of 2 families of switches (chemical/environmental and DNA programmed) acting on 2 modes of binding in *E. coli* (fimbrial protein [FimH] and coat protein [eCPX]) on 2 target surfaces (gold [Au] and functionalized silicon [Si]).

3. **Research Highlights**

The research focus through the 3-year course of this work has covered multiple binding modes, multiple surfaces, and a variety of factors related to putative binding switches, as outlined in the research strategy. Highlights include:

1) First-ever demonstration of selective cell autotemplating, demonstrating directed assembly through functional and selective activity of 3 phage-derived Au-binding sequences in the *E. coli* bacterial cell surface display scaffold (eCPX). Preferential binding of engineered *E. coli* to Au over Si by up to 4 orders of magnitude was obtained. Further, functional activity post assembly was preserved, a key criterion for future living composite materials and systems.
2) Development of a 30+ chemical on-switch for *E. coli* adhesion to Au through arabinose-induced expression of bacterial eCPX.

3) Successful demonstration of engineered fimbrial (FimH) adhesion of *E. coli* to Au surfaces. Successful iteration between experiment and theory leads to improved location of insertion site for Au-binding sequence in FimH protein, demonstrating almost complete coverage of the target surface and up to 10-μm resolution of surface patterning. This is achieved solely through bacterial capture, and does not require any growth or amplification processes.

4) Successful demonstration of *E. coli* adhesion to functionalized (mannosylated) Si and tested under a variety of flow (shear) conditions to test for the putative “catch bond”.

5) First known study to address environmental conditions and surface treatment on binding affinity, carried out by X-ray photoelectron spectroscopy (XPS) and spot assay.

6) Successful theoretical analysis of energetics of binding and validation of classical methods.

7) Successful elucidation of contributions of eCPX components (N terminus/binding sequence/C terminus) to binding affinity.

8) Successful comparison of whole cell-binding mode (FimH vs. eCPX) by spot assay and atomic force microscopy (AFM).

9) Successful study of “living” dynamics of binding of filamentous bacteria under shear and development of COMSOL model.

10) Successful integration of both engineered scaffold systems for Au into microbial fuel systems showing enhanced output.

11) Successful development of chemical off-switch—chemically induced unbinding in peptide-mediated (eCPX) bound *E. coli* on Au surface. Proof of concept achieved.

### 4. Applications Underway

We have studied the behavior of filamentous *E. coli* on surfaces under shear and demonstrated controlled growth of filamenting cells to form a living bridge between Au domains on patterned glass. Bacterial systems developed under this program have been used to develop successful microbial fuel cells (MFCs), and have further
delineated differences between binding modes and furthered the understanding of overall cell performance that is correlated to scaffold engineering. Additional work has been performed studying the interactions between these bacterial systems and gold nanoparticles (AuNPs). While the metal coverage of the bacterial cells achieved stopped short of levels needed for production of programmed, autonomous circuit assembly and living, rehealing wires/components, there are nonetheless implications for directed drug delivery and catalysis, and more generally for dynamic responsive material coatings and composites.

5. Army Impact

The ability to create artificial biological systems and controllably interface these materials with nonliving inorganics is expected to broadly impact products in diverse areas such as bioenergy, biosensors, bioadhesives, vaccines, programmable devices, reconfigurable and self-healing materials, transient electronics, living-anti-corrosion paints, high-strength materials inspired by nature, robust human–machine interfaces, smart skins, ubiquitous sensing, and Soldier augmentation.

6. Challenges and Lessons Learned

Not surprisingly, most challenges are created by the inherent complexity/fragility/evolutionary capacity of the biological system, and the widely variable properties of the target surface due to morphological intricacies that influence underlying quantum effects. Subtle changes in the surface properties can have large repercussions with interactions both on- (eCPX or Fimh) and off-scaffold. This is simultaneously both a challenge (to minimize interference or loss of function) and a potential tool to employ as we move from static to more dynamic living material systems. To this end, it is clear that a hybrid biological and materials science approach is needed with a systems-level view of the material composite.

It is difficult to adapt existing characterization tools to dynamic, complex, and living material systems, which require a full complement of methods bridging scales both experimentally and by simulation. Pushing the limits on the fundamental characterization methods as well as simulation algorithms requires extremely large data sets as well as a plethora of controls. To mitigate this risk, we take a holistic systems approach and work fundamentally across scales, and in a manner to bridge these scales working iteratively between components and the complex materials in a systematic way.

Approved for public release; distribution is unlimited.
It is difficult to perform in situ chemical synthesis without adversely affecting viability and function of the bacteria. In particular metal salts are a challenge and it may require using biomineralizing bacteria up front for tailored applications.

Biological systems, especially bacteria, evolve over time through random genetic mutations, which alter fundamental behavior. This can have positive (additive effects) or deleterious consequences on the material/system performance. It is clear that this is a largely unexplored area, especially toward military applications/environments.

7. Conclusion and Beyond

This work represents significant progress toward the goal of tailored switchable binding of bacterial (E. coli) cells to an inorganic surface. Multiple chemical on-switches have been demonstrated for both fimbrial (FimH) (see Figs. 1 and 2) and membrane surface protein (eCPX) (see Fig. 4) adhesion. A multiphysics COMSOL model was developed in the course of studying the living dynamics of filamentous bacteria under shear (see Fig. 3). Chemically induced unbinding of an engineered E. coli cell bound to an Au surface was achieved as a successful proof of concept. As a demonstration of applicability, the resulting engineered bacterial scaffolds have been integrated into microbial fuel systems and show enhanced output. As part of the Director’s Strategic Initiative, this work is highly relevant to ongoing studies within the Biotechnology Branch. In FY18 this program has transitioned to an existing 6.1 funding line for Engineered Biology. In FY19 and beyond, this work will transition into the new Living Materials program to enable reconfigurable, dynamic living materials.
Fig. 1 Demonstration of Au-binding properties by cells expressing mFimH. The above image shows *E. coli* cells engineered FimH (M6G4 added as a binding sequence) adhering with 10-μm resolution to Au patterned onto silica.
Fig. 2  Engineered vFimH exposes a His6 tag at ILE52 in the lectin-domain (Ld) and seen to disrupt mannose binding both experimentally and in molecular dynamics simulation.
Fig. 3  COMSOL Multiphysics model demonstrating normal and total forces exerted by fluid flow on bacterial cell (modeled as a rigid rod). Image is taken from Jahnke et al. Biointerphases 12, 02C410 (2017).
Fig. 4  Example of gold binding spot assay for *E. coli* cells (uninduced cells in lane 1) induced to express the eCPX peptide display scaffold (peptide-free scaffold in lane 2) with various N-terminal peptides for binding to gold (lanes 3–8: examples of designed peptides and peptides from literature in lanes).
Appendix. Publications and Presentations
Publications and Presentations


Adams BL, Hurley MM, Sarkes DA, Stratis-Cullum D. Bacterial surface display for discovery and study of material specific peptides. Proteins and Cells at Interfaces, 2015 Annual Society for Biomaterials Meeting; 2015 Apr 15–18; Charlotte, NC.


Small MC, Stratis-Cullum DN, Adams BL, Jahnke JP, Sarkes DA, Dong H, Terrell JL, Hurley MM. Understanding the effect of amino acid conformation on binding affinity to Au(111) using quantum mechanical calculations. Poster presentation at the American Chemical Society 254th National Meeting; 2017 Aug; Washington, DC.


Stratis-Cullum DN, Adams BL. Discovery of peptides developed using bacterial surface display. MS&T; 2014 Oct; Pittsburgh, PA. Invited.

Technical Assessment Board (TAB) poster presentations FY15.

Technical Assessment Board (TAB) oral presentation FY15.


# List of Symbols, Abbreviations, and Acronyms

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM</td>
<td>atomic force microscopy</td>
</tr>
<tr>
<td>AMC</td>
<td>US Army Materiel Command</td>
</tr>
<tr>
<td>ARL</td>
<td>US Army Research Laboratory</td>
</tr>
<tr>
<td>Au</td>
<td>gold</td>
</tr>
<tr>
<td>AuNP</td>
<td>gold nanoparticles</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>eCPX</td>
<td>coat protein</td>
</tr>
<tr>
<td>FimH</td>
<td>fimbrial protein</td>
</tr>
<tr>
<td>MFC</td>
<td>microbial fuel cell</td>
</tr>
<tr>
<td>RDECOM</td>
<td>US Army Research, Development and Engineering Command</td>
</tr>
<tr>
<td>Si</td>
<td>silicon</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK.