Award Number: W81XWH-15-1-0120

TITLE: Identification of androgen receptor-specific enhancer RNAs

PRINCIPAL INVESTIGATOR: Yin-Yuan Mo

CONTRACTING ORGANIZATION:
University of Mississippi Medical Center
Jackson, MS 39216

REPORT DATE: August 2017

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Title: Identification of androgen receptor-specific enhancer RNAs

Authors: Yin-Yuan Mo, Betsy Diamond

Abstract:

The major goal of this application is to determine whether prostate cancer cells express enhancer RNAs in response to androgen treatment such that these enhancer RNAs may serve as novel biomarkers for prostate cancer diagnosis and prognosis. There are two Tasks in this application. First, we will perform global run-on assay and deep sequencing to identify AR-specific enhancer RNAs. Second, we will validate them and then determine their functional significance. The success of this study may lead to novel clinical applications such as identification of biomarkers or therapeutic targets for prostate cancer, especially for castration resistant prostate cancer.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Body</td>
<td>1</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>5</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>5</td>
</tr>
<tr>
<td>Conclusion</td>
<td>5</td>
</tr>
<tr>
<td>References</td>
<td>N/a</td>
</tr>
<tr>
<td>Appendices</td>
<td>N/a</td>
</tr>
</tbody>
</table>
Introduction

The androgen receptor (AR) is a nuclear receptor transcription factor required for normal prostate development and prostate cancer pathogenesis. AR is a very important druggable target. For instance, androgen deprivation therapy (ADT) is a frontline treatment for advanced prostate cancer. However, despite initial response, patients become resistant to ADT due to castration resistance. Extensive studies have suggested that multiple factors contribute to castration resistance. We hypothesize that long non-coding RNAs (lncRNAs) is one of the important factors, especially those AR specific enhancer RNAs (eRNAs), contributing to castration resistance. In this application, we proposed to determine whether we can identify such AR specific eRNAs.

There are two major tasks for this project:

Task 1. Perform global run-on assay and deep sequencing to identify AR-specific enhancer RNAs

Task 2. Validation and functional significance of AR specific eRNAs

Both tasks were finished. Major findings are reported as follows.

Body

Profiling identified several potential eRNAs that are induced by androgen.

As newly discovered molecules, eRNAs are poorly characterized. Little is known whether they are dysregulated in prostate cancer. Thus, our first step was to identify these new molecules by profiling and then characterize them. Results indicate that a number of eRNAs are upregulated in response to androgen treatment. Bioinformatics analysis further narrows down three interesting eRNAs and their sequences are shown below.
Statistical analysis was performed using the Student’s t-test (two groups) or a one-way ANOVA followed by post hoc Tukey test (multiple groups). Differences with P values less than 0.05 are considered significant.

AR-eRNA-#1 (117 bp)

caccattacacaggaactgccccctgcaggaagttctctgcccagggggcagttttgctgagggcaatagg
tgatttctattaatatcaagacacactcctggcccttt

This eRNA is localized to chr14:24408289-24408405. Literature search indicates that it is homologous to AS1eRNA that may enhance another lncRNA called DHR54-AS1

AR-eRNA-#2 (504 bp)

>hg19_dna range=chr18:54746000-54746503
tgggaaaaagacctgcagacggctgccagggccccccggtctgtgtg
tgggccccctgctcttttagcccaaccatcaatggcccagaaac
tgggccccagtcttcacgtgctctcagacgtgctgctgcacgactgtctctccctttcttgctgtctagtttctctttctttttctttttgcttttttctt
regulation in prostate cancer, further implying that Linc-RoR might be also controlled by androgen.

AR-eRNA-#3 (468 bp)

>hg19_dna range=chr19:51354315-51354782
tgcttccaacactgctcagcgccacgtcctcccttgactgtagcgcagaacgtcgcttcgctgtgtcagcgaggtt
driven expression vector, and then introduced into LNCaP cells. As shown in Fig.1A, AR-eRNA#1 promotes DHRS4-AS1 expression. More interestingly, DHRS4-AS1 affected AR splicing which has been implicated in castration resistance. For instance, overexpression of DHRS4-AS1 increases the AR3 level (Fig.1B). It is well known that AR3 is a major AR splice variant that has been shown to be important to castration resistance. Therefore, to better determine the role of AR-eRNA-regulation of DHRS4-AS1 in castration resistance, we knocked out DHRS4-AS1 by CRISPR/Cas9 technology in 22Rv1 cells, a well-known castration resistant cell line. We chose two clones (#16 and #38) for further characterization (Fig. 2A). As expected, DHRS4-AS1 KO suppressed AR3 at mRNA level (Fig. 2B) and protein level (Fig. 2C).

We then determined the effect of DHRS4-AS1 on castration resistance by KO and rescue experiments. Colony formation and MTT assays revealed that the

Fig. 2 Further validation of DHRS4-AS1 as a regulator for AR3 expression. A, Knockout of DHRS4-AS1 by CRISPR/Cas9. B, DHRS4-AS1 knockout suppresses AR3 mRNA level as determined by qRT-PCR. C, DHRS4-AS1 knockout suppresses AR3 protein level, as determined by Western blot. Values in A and B are means ± SE. **, p < 0.01.

Fig. 3 DHRS4-AS1 promotes castration resistance. DHRS4-AS1 KO suppresses cell growth, whereas re-expression of DHRS4-AS1 in the KO cells (KO#38) partially restores the cell number. The cells were grown in absence of androgen. A, Colony formation assay. B, MTT assay. Values in B are means ± SE. **, p < 0.01.
suppression of cell growth in the KO cells was partially rescued by re-expression of DHRS4-AS1 (Fig.3 A&B).

For AR-eRNA-#2, we did initial characterization. We found that it may regulate Linc-RoR expression, but further experiments are still needed to confirm this. Although we planned to characterize AR-eRNA-#3, we were not able to perform experiments due to time constraints.

Key Research Accomplishments

- Profiling identified several AR regulated eRNAs
- AR-eRNA-#1 can regulate DHRS4-AS1 expression
- We generated DHRS4-AS1 KO by CRISPR/Cas9
- DHRS4-AS1 KO and rescue assays suggest that DHRS4-AS1 can promote castration resistance

Reportable Outcomes

A manuscript entitled “AR-eRNA-#1 confers castration resistance by regulation of DHRS4-AS1” is in preparation.

Conclusion

Together, these results suggest that there exist a group of AR-regulated eRNAs which may impact prostate tumorigenesis and castration resistance. Thus, further characterization of these eRNAs will provide a better understanding of AR-mediated gene regulation and castration
resistance, and it will also help design a better strategy for prostate cancer therapy. In addition, these AR eRNAs may serve as biomarkers in prostate cancer.