### Title and Subtitle

Comparison of an Endotracheal Cardiac Output Monitor to a Pulmonary Artery Catheter

### Author(s)

Maj Maddry, Joseph

### Performing Organization Name(s) and Address(es)

9th Clinical Research Division
1100 Willford Hall Loop, Bldg 4430
JBSA-Lackland, TX 78236-9908
210-292-7141

### Sponsor/Monitor's Report Number

17510

### Distribution/Availability Statement

Approved for public release. Distribution is unlimited.

### Notes

Science and Technology Leadership Conference, Falls Church, Virginia, December 4, 2017

### Abstract


### Subject Terms


### Security Classification of:

<table>
<thead>
<tr>
<th>Report</th>
<th>Abstract</th>
<th>This Page</th>
</tr>
</thead>
</table>

### Limitation of Abstract

18. Number of Pages

19a. Name of Responsible Person

Clarice Longoria

19b. Telephone Number (Include area code)

210-292-7141
Comparison of an Endotracheal Cardiac Output Monitor to a Pulmonary Artery Catheter

N Garrett1, JK Maddry2, VS Bebarta4, M Reilly5, S Boudreau2, M Castaneda2, K Canellis2, A Arana6
1Geneva Foundation, San Antonio, TX, 2Dept of Emergency Medicine, San Antonio Military Medical Center, San Antonio, TX, 3CREST Program, Wilford Hall Ambulatory Surgical Center, Lackland AFB, TX 4University of Colorado-Denver, 5Audie L. Murphy VA Hospital, 6USAF En route Care Research Center

Background
In combat, initial resuscitation and life saving measures are initiated by securing a patent airway and administering fluid therapy. While methods of fluid resuscitation remain controversial, maintenance of a patent airway and hemodynamic stability as indicated by invasive monitoring can influence the overall outcome of an injured individual. A patent airway may be maintained via an endotracheal tube. The use of invasive monitoring, however, is complicated by several factors including the extent and type of injuries suffered by the patient. It is imperative for those wounded in battle that we explore potential technologies that can aid in the management of effective fluid resuscitation while considering the limitations presented by remote locations and limited resources.

Objective
The purpose of this study was to explore the accuracy and precision of a FDA approved device, the CONMED endotracheal cardiac output monitor (ECOM)™ apparatus, by comparing it to the Edwards Vigilance II monitor (Edwards LifeSciences, Irvine, CA) pulmonary artery catheter (PAC) under hypothermic and hemorrhagic conditions.

Methods
Power analysis (G*Power 3.1) suggested 8 animals would be sufficient for comparisons. After induction of anesthesia, instrumentation, and stabilization in experiment 1 (hemorrhage), animals were exsanguinated to produce Type III hemorrhagic conditions. Cardiac output (CO) values were collected from the PAC and the ECOM over a 3 hour period. In experiment 2 (hypothermia), swine were cooled to a temperature of 33°C using the Stryker Gaymar TP700 cooling device and CO values recorded from both instruments. The protocol was approved by the Wilford Hall Ambulatory Surgical Center’s Institutional Animal Care and Use Committee (FWH 20140100A).

Results
Using GraphPad Prism® to conduct non-linear fit analyses comparing the slopes of the curves for ECOM versus PAC, we found that the curves from the ECOM data were significantly different from the PAC data curves under both conditions, but more pronounced differences were found under hemorrhagic conditions.

Results Continued

Limitations
Animal model
Controlled hemorrhage model

Conclusions
Although the ECOM apparatus simplifies data acquisition while limiting potential complications associated with the PAC, the ECOM does not appear to reliably reproduce CO values acquired from a traditional PAC under hemorrhagic or hypothermic conditions.

Opinions of the authors do not reflect the official policy of the US Government, Department of Defense, or the Department of the Air Force

Corresponding author: joseph.k.maddry.mil@mail.mil