1. REPORT DATE (DD-MM-YYYY)
 10-18-2017

2. REPORT TYPE
 Poster

3. DATES COVERED (From - To)
 10-22-2017

4. TITLE AND SUBTITLE
 Analysis of current thyroid function testing practices

5a. CONTRACT NUMBER
 5b. GRANT NUMBER
 5c. PROGRAM ELEMENT NUMBER
 5d. PROJECT NUMBER
 5e. TASK NUMBER
 5f. WORK UNIT NUMBER

6. AUTHOR(S)
 Maj Joseph Kluesner

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 59th Clinical Research Division
 1100 Willford Hall Loop, Bldg 4430
 JBSA-Lackland, TX 78236-9908
 210-292-7141

8. PERFORMING ORGANIZATION REPORT NUMBER
 17307

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 59th Clinical Research Division
 1100 Willford Hall Loop, Bldg 4430
 JBSA-Lackland, TX 78236-9908
 210-292-7141

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release. Distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 b. ABSTRACT
 c. THIS PAGE

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON
 Clarice Longoria

19b. TELEPHONE NUMBER (Include area code)
 210-292-7141
Analysis of Current Thyroid Function Test Ordering Practices

Joseph K. Kluesner, MD, Darrick J. Beckman, MD; Joshua M. Tate, MD; Alexis A. Beauvais, MD; Maria I. Kravchenko, MD; Jana L. Wardian, PhD; Sky D. Graybill, MD; Jeffrey A. Colburn, MD; Irene Folaron, MD; Mark W. True, MD

1Endocrinology Fellow
Endocrinology Service
San Antonio Military Medical Center
3551 Roger Brooke Dr.
Joint Base San Antonio - Fort Sam Houston, TX 78234

2Staff Endocrinologist
Endocrinology Service
San Antonio Military Medical Center
3551 Roger Brooke Dr.
Joint Base San Antonio - Fort Sam Houston, TX 78234

3Research Director
Diabetes Center of Excellence
Wilford Hall Ambulatory Surgical Center
1100 Wilford Hall Loop, Bldg 4554
Joint Base San Antonio - Lackland, TX 78236

4Assistant Professor of Medicine
Uniformed Services University
4301 Jones Bridge Rd
Bethesda, MD 20814

5Associate Professor of Medicine
Uniformed Services University
4301 Jones Bridge Rd
Bethesda, MD 20814

6Assistant Professor of Research
Uniformed Services University
4301 Jones Bridge Rd
Bethesda, MD 20814

Suggested Title: Analysis of Current Thyroid Function Test Ordering Practices

Keywords: quality improvement, thyroid function test, resource stewardship, military, laboratory utilization, thyroid

Corresponding author:
Joseph K. Kluesner
Endocrinology Service, San Antonio Military Medical Center
Conflict of interest Statements/Financial Disclosures:
The authors have nothing to disclose. No funding was received for the conduct of this project.

Disclaimer: The views expressed in this article are those of the authors and do not reflect the official policy or position of the US Air Force, Department of Defense, or the U.S. Government.
Rationale: Current guidelines recommend thyroid stimulating hormone (TSH) alone as the best test to detect and monitor thyroid dysfunction, yet free thyroxine (FT4) and free triiodothyronine (FT3) are commonly ordered when not clinically indicated. Excessive testing can lead to added economic burden in an era of rising healthcare costs, while rarely contributing to the evaluation or management of thyroid disease.

Objective: (1) To evaluate our institution's practice in ordering thyroid function tests (TFTs) and (2) to identify strategies to help reduce inappropriate FT4 and FT3 testing.

Methods: A record of all TFTs obtained in the San Antonio Military Health System (SAMHS) during a three month period in 2016 was extracted from the electronic medical record (EMR). TFTs of interest were: TSH, FT4, thyroid panel (TSH + FT4), FT3, total thyroxine (T4), and total triiodothyronine (T3). These were also categorized based on the presence or absence of hypothyroidism.

Results: Between 1 August and 31 October 2016 there were 38,214 individual thyroid labs ordered via 28,597 total lab requests. 11,486 of these requests were in patients with a history of hypothyroidism. The number (percent) of lab requests fell into these patterns: TSH alone 14,919 (52.14%), TSH + FT4 7,641 (26.72%), FT3 alone 3,039 (10.63%), FT4 alone 1,219 (4.26%), TSH + FT4 + FT3 783 (2.74%), and others 996 (3.48%). 35.96% of all thyroid function tests ordered were free thyroid hormones. Projected out to a year, using Department of Defense laboratory costs, $317,429 worth of TFTs would be ordered, with free thyroid hormone testing accounting for $107,720.

Conclusion: Inappropriate ordering of free thyroid hormone tests is common. In an era of rising healthcare costs, inappropriate thyroid function testing is an ideal target for efforts to reduce laboratory overutilization. Further research is needed to determine strategies that can reduce excessive thyroid hormone testing.

Introduction

Rising health care costs in the United States are having significant economic impact. Health care expenditure was $3 trillion in 2014 [17.5% of the gross domestic product (GDP)] and estimated to increase to $4.4 trillion by 2018 (20.3% of the GDP) [1,2]. It has been estimated that wasted health care expenditure accounts for 30% of health care costs in the United States, roughly $750 billion [3]. While laboratory testing is a small percentage (~4.0%) of total health costs, spending on laboratory testing is rising and accounts for over $8 billion dollars in Medicare spending alone [4]. Laboratory tests are an important tool in the health care practitioner's tool box; however overutilization is a concern with estimates of 10-50% of laboratory tests being unnecessarily ordered [5,6]. The Institute of Medicine
estimates that $210 billion of health care spending is spent on unnecessary services [3]. This trend is likely driven by numerous factors including defensive medicine, costing $45.6 billion annually [7]. Redundant laboratory testing alone accounts for $5 billion in waste [8]. Furthermore, downstream effects of unnecessary testing can lead to excessive costs, to include patient distress, referrals, and overtreatment [9-13].

Thyroid function tests (TFTs) are among the most common laboratory tests ordered by providers. In 2008, an estimated 59 million serum thyrotropin (TSH) and 18 million free thyroxine (FT4) measurements were performed in the United States [14]. TSH is the 8th most common laboratory test ordered under Medicare, costing $469 million per year in payments [15]. Despite the large number of thyroid function tests ordered, the prevalence of thyroid dysfunction is only 3.82% with an incidence of 259.12 cases per 100,000 per year [16]. Previous studies suggest that TFTs are commonly ordered for non-specific symptoms, which has negligible value in the diagnostic process, thus contributing to higher costs [17,18]. TSH is a sensitive assay that allows for accurate evaluation of thyroid function, and is often the only test required for screening of thyroid dysfunction and management of hypothyroidism [19-21]. Despite this, studies have shown that ordering of free thyroid hormones is common and inappropriate in these scenarios [22-25]. Reduction of excess TFTs could offer a distinctive opportunity to assist in stemming the tide of rising health care costs.

While there have been numerous efforts to reduce excessive ordering of TFTs over the past three decades, our knowledge of current patterns of thyroid function testing within the United States remains limited [26]. This project evaluated the current ordering practices of TFTs at a regional military health care system to determine if changes are needed to reduce excessive thyroid laboratory testing.

Methods
Primary care and subspecialty services are provided at the San Antonio Military Health System (SAMHS) which operates on a budget of $1.2 billion and has 12,000 staff that serve more than 240,000 Department of Defense (DoD) beneficiaries; including active duty service members, retired military, and dependents [27]. Healthcare is provided in nine outpatient community-based locations, an ambulatory surgical center, as well as a 425-bed inpatient facility, the only Level I trauma center in the DoD.

Providers primarily order laboratory tests, including TFTs, by entering them into the Composite Health Care System (CHCS) via the Armed Forces Health Longitudinal Technology Application (AHLTA), the DoD’s electronic medical record (EMR) system.

The DoD maintains the Comprehensive Ambulatory Provider Encounter Record (CAPER) which logs every outpatient appointment at a given Military Treatment Facility (MTF). The CAPER file has tracked all diagnoses for patients that have had an outpatient encounter at a MTF since 2003. Using the diagnoses stored in the CAPER system, each TFT being ordered in the setting of either a history of hypothyroidism of any type (including subclinical hypothyroidism), or no history of hypothyroidism was classified. De-identified data were provided by the Defense Health Agency (DHA) Health Information Technology division (HIT).

TFTs of interest were: TSH, FT4, thyroid panel (TSH + FT4), free triiodothyronine (FT3), total thyroxine (T4), and total triiodothyronine (T3). In the SAMHS, if a TSH results outside of the laboratory reference range (0.27-5.00 mcIU/mL), a FT4 will be reflexively ordered by the laboratory. When a thyroid panel is ordered, both a TSH and a FT4 are run by the laboratory, regardless of TSH level. Using the de-identified data provided by DHA, totals for all TFTs ordered in the outpatient setting at the SAMHS over 3 months, between 1 August and 31 October 2016, were calculated using an Excel spreadsheet.

Results
Between 1 August and 31 October 2016 there were 38,214 individual thyroid function laboratory tests ordered via 28,597 total laboratory requests for 25,142 patients (providers can order one or more TFTs with each laboratory test request) (Figure 1). In total, 11,486 (40.2%) of all thyroid function laboratory requests were made in patients with a history of hypothyroidism. The age range of the population evaluated was 18-98 and 66.37% of the subjects were female. The number of laboratory requests fell into these patterns: TSH alone 14,919 (52.14%), TSH + FT4 7,641 (26.72%), FT3 alone 3,039 (10.63%), FT4 alone 1,219 (4.26%), TSH + FT4 + FT3 783 (2.74%), and others 996 (3.48%) (Table 2, Figure 2). 35.96% of all TFTs ordered were free thyroid hormones; FT4 and FT3 accounted for 25.4% and 10.6% respectfully. Of all FT4 ordered, 86.8% included a TSH and 34.2% were ordered as part of a thyroid panel (TSH + FT4). FT3 accounted for 10.6% of TFTs ordered; 75.4% of FT3 orders did not include a TSH.

Comparing patients with a history of hypothyroidism versus those without, 61.33% vs. 38.77% of all TFT requests included a laboratory test other than TSH alone. 43.93% vs. 30.11% of all TFTs ordered were free thyroid hormones. Of all FT4 laboratory tests ordered, 26.41% vs. 42.27% were ordered as part of a thyroid panel (TSH + FT4). FT3 alone accounted for 14.3% vs. 8.16% of TFTs ordered (Figure 2).

Projected out to a year, using Department of Defense laboratory costs, $317,429 worth of TFTs would be ordered, with free thyroid hormone testing accounting for $107,720. FT4 spending projects to $65,626 annually; $22,313 of this is estimated to be ordered via a thyroid panel (34%). Overall, 47.83% of all TFT requests included a laboratory test other than TSH alone leading to $196,884.16 in costs. In review of TFT ordering in patients with a history of hypothyroidism, it is estimated that $65,804 worth of TFTs other than TSH are ordered yearly. In those without hypothyroidism, this spending projects to $61,688 annually (Table 1, Table 2).

Discussion
Our analysis demonstrated that free thyroid hormone laboratory tests are ordered excessively and at significant cost in patients with or without a history of hypothyroidism. These results indicate that providers at our institute are often relying on free thyroid hormones as an adjunct to TSH for screening or management of thyroid disorders. These findings are largely consistent with known literature from other countries which show similar rates of free or total thyroid hormone testing [22-25].

There are very few situations in which free thyroid hormone testing yields added diagnostic or management information beyond the assessment of TSH alone. Despite this, 47.83% of all TFT requests included a laboratory test other than TSH alone. TSH is very sensitive to even mild changes in serum FT4 and is known to develop abnormal levels before FT4 abnormalities are detectable [28]. The American Thyroid Association (ATA) has recommended that TSH alone is the optimal test for screening for thyroid dysfunction [29]. The ATA also recommends TSH as the test of choice when monitoring or adjusting therapy of hypothyroidism [20]. Despite guideline recommendations, our project finds that 61.33% of TFT laboratory requests made in patients with a history of hypothyroidism included TFTs other than TSH alone. Remarkably, 21.8% of TFT requests in these patients did not even include a TSH.

There are some conditions in which TSH alone may be inadequate for diagnosis or management of thyroid dysfunction. Hypothalamic or pituitary disease, presence of heterophile antibodies, resistance to thyroid hormone, pregnancy, and TSH secreting adenoma are some examples. Overall, true hypothyroidism in the setting of a normal TSH is rare, with an estimated prevalence of 1 per 1500 patients [19]. Due to low incidence and prevalence of hyperthyroidism in the general population, our project did not separate out these patients for analysis. Many patients with hyperthyroid disorders have received definitive treatment with I-131 ablation or thyroidectomy that most often results in development of hypothyroidism. In patients treated with either I-131 or anti-thyroid drugs, TSH may remain suppressed in the initial post-treatment months. FT4 and total T3 may be used in this setting to monitor for development of hypothyroidism and for initial titration of levothyroxine therapy [21].
Our analysis demonstrated a surprising number of FT3 orders with 75.4% of them ordered with no other TFTs. Because assays for estimating FT3 are less robust than those of FT4, the ATA recommends that total T3 is preferred over FT3 [21]. Current guidelines do not recommend the routine use of either FT3 or total T3 for screening for thyroid dysfunction. In our analysis, 15.9% of TFTs drawn in a patient with a history of hypothyroidism were either FT3 or Total T3. The Endocrine Society and the American Association of Clinical Endocrinologists (AACE) formed a joint task force for submission of five recommendations to the Choosing Wisely campaign; included was the recommendation that neither total or FT3 be used in assessing levothyroxine dosing in hypothyroid patients [30]. In regard to total thyroid hormones, they may have a role to play in investigating the etiology of thyrotoxicosis as the ratio of total T3 to total T4 may differ between thyroiditis and Graves' hyperthyroidism [31].

The DoD has significantly reduced costs of laboratory testing compared to the civilian sector. While each TSH laboratory test costs the DoD $2.02, the Medicare laboratory fee schedule cost is $23.00 and patients not covered by insurance may pay up to $60.00 [32]. Our analysis found that, despite the inherent cost savings in the military health system, a significant dollar amount is spent on TFTs in our system. Much of this cost is spent on unnecessary testing. Despite TSH being the only test needed for monitoring therapy in patients with a history of hypothyroidism, our analysis projected that $65,804 worth of TFTs other than TSH are ordered annually for these patients. In those without hypothyroidism, this spending projected to $61,688 annually. Given that a recent study determined that the diagnostic yield of TSH screening is only 2.1% in the general population, we can posit that the vast majority of these costs are unnecessary [17]. A cost savings program focusing on eliminating all unnecessary FT4, FT3, and total thyroid hormone testing orders could save the SAMHS upwards of $120,000 yearly. Unnecessary laboratory testing also has consequences beyond financial implications via increased laboratory workload, further unnecessary tests, patient distress, and increased referrals to
subspecialists. Furthermore, increasing use of TFTs has been shown to lead to inappropriate or excessive treatment of marginal degrees of hypothyroidism [33].

Numerous studies over the past three decades have been performed to evaluate the effectiveness of interventions aimed at reducing orders of unnecessary TFTs. Interventions have included distribution of guidelines and testing protocols, audit and feedback, decision-making tools, changes to funding policy, and educational programs. While several of these interventions are thought to be effective in reducing the volume of unnecessary TFTs, it remains unclear which specific types are superior[26]. At our institute, FT4 is reflexively tested with any ordered TSH that results outside the laboratory reference range. Reflex testing has long been used as a means to optimize the use of laboratory tests; automatic addition of FT4 reflexively for abnormal TSH laboratory results has been shown to be accurate and effective at reducing unnecessary testing [23,34-36]. Interestingly, our review found that there was widespread use of the thyroid panel order (TSH + FT4) which would negate the benefit of reflex testing. Restriction of the availability of the thyroid panel order may offer a new method for reduction of unnecessary testing. Adding educational messages to the EMR which address the availability and benefits of TFT reflex testing may offer an additional means to reduce unnecessary orders.

SAMHS presents a unique location to assess current TFT ordering practices due to the large patient population, diverse collection of primary care and medical subspecialty clinics, and the standard use of the AHLTA EMR system. The retrospective design of this review allowed us to review ordering practices which ultimately serve as a snapshot of real world ordering patterns. The diversity of providers and the large sample size allow for a more robust evaluation of TFT ordering practices that has not previously been done in similar studies.

The unique military nature of our facility does yield some limitations. These results may not be generalizable to a civilian medical system. Military system providers, as well as patients, are largely
unaware of the cost for these tests. In addition, the cost per test within the SAMHS is considerably lower than comparable civilian laboratories. Thus, the cost savings may be substantially more in a civilian medical facility even if the ordering patterns are not comparable. Our analysis is that of ordering practices and does not report on laboratory tests that were actually completed by the patient. As such, this analysis is unable to fully demonstrate the real world economic impact of TFT ordering practices in our facility.

Conclusion

Free thyroid hormone tests are excessively ordered. In an era of rising healthcare costs, inappropriate thyroid function testing is an ideal target for efforts to reduce laboratory overutilization and reduce costs. Further research is needed to determine the optimal strategies that can reduce unnecessary thyroid hormone testing.

Acknowledgements

DHA

Laboratory staff

Dr. Sauerwein
References

Table 1. Projected Annual Cost of Thyroid Laboratory Test Orders

<table>
<thead>
<tr>
<th>Laboratory test</th>
<th>Projected yearly test total(^a)</th>
<th>Local testing cost (($))(^b)</th>
<th>Projected yearly cost (($))</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH</td>
<td>94,028</td>
<td>2.02</td>
<td>189,937</td>
</tr>
<tr>
<td>Free T4</td>
<td>38,832</td>
<td>1.69</td>
<td>65,626</td>
</tr>
<tr>
<td>Free T3</td>
<td>16,128</td>
<td>2.61</td>
<td>42,094</td>
</tr>
<tr>
<td>Total T3</td>
<td>3,280</td>
<td>5.72</td>
<td>18,762</td>
</tr>
<tr>
<td>Total T4</td>
<td>588</td>
<td>1.72</td>
<td>1,011</td>
</tr>
<tr>
<td>Total Tests</td>
<td>152,856</td>
<td></td>
<td>317,430</td>
</tr>
</tbody>
</table>

\(^a\) Based on extrapolation of totals collected over 3 month period of analysis

\(^b\) Pricing per local DoD laboratory. Does not include labor costs.

Figure 1. Thyroid Laboratory Tests Ordered over Three Months

<table>
<thead>
<tr>
<th>Laboratory Orders</th>
<th>Patients without hypothyroidism</th>
<th>Patients with hypothyroidism</th>
<th>Total population</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH</td>
<td>14938</td>
<td>8569</td>
<td>23507</td>
</tr>
<tr>
<td>Free T4</td>
<td>4767</td>
<td>4941</td>
<td>9708</td>
</tr>
<tr>
<td>Free T3</td>
<td>1874</td>
<td>2158</td>
<td>4032</td>
</tr>
</tbody>
</table>
Table 2. Projected Annual Cost by Provider Ordering Pattern

<table>
<thead>
<tr>
<th>Laboratory request</th>
<th>Projected yearly test requests (^a) (n) (%)</th>
<th>Local testing cost (^b) ($)</th>
<th>Projected yearly cost (^c) ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH alone</td>
<td>59,676 (52.17)</td>
<td>2.02</td>
<td>120,546</td>
</tr>
<tr>
<td>TSH + FT4</td>
<td>30,564 (26.72)</td>
<td>3.71</td>
<td>113,392</td>
</tr>
<tr>
<td>FT3 alone</td>
<td>12,156 (10.63)</td>
<td>2.61</td>
<td>31,727</td>
</tr>
<tr>
<td>FT4 alone</td>
<td>4,876 (4.26)</td>
<td>1.69</td>
<td>8,240</td>
</tr>
<tr>
<td>TSH + FT4 + FT3</td>
<td>3,132 (2.74)</td>
<td>6.32</td>
<td>19,794</td>
</tr>
<tr>
<td>Other(^c)</td>
<td>3984 (3.48)</td>
<td>5.96</td>
<td>23,730</td>
</tr>
<tr>
<td>Total Requests</td>
<td>114,388</td>
<td></td>
<td>317,430</td>
</tr>
</tbody>
</table>

\(^a \) Based on extrapolation of totals collected over 3 month period of analysis
\(^b \) Pricing per local DoD laboratory. Does not include labor costs
\(^c \) Includes requests made in pattern not otherwise explicitly listed in table

Figure 2. Thyroid Function Testing Patterns Ordered over Three Months

- Number above bar is % of total requests within each of three populations analyzed (total, without hypothyroidism, and with hypothyroidism)
Analysis of Current Thyroid Function Test Ordering Practices

Joseph K. Kluesner, MD; Darrick J. Beckman, MD; Joshua M. Tate, MD; Alexis A. Beauvais, MD; Maria I. Kravchenko, MD; Jana L. Wardian, PhD; Sky D. Graybill, MD; Jeffrey A. Colburn, MD; Irene Folaron, MD; Mark W. True, MD

1. Department of Medicine, Endocrinology Service, San Antonio Military Medical Center, Joint Base San Antonio - Fort Sam Houston, TX
2. Department of Medicine, Diabetes Center of Excellence, Wilford Hall Ambulatory Surgical Center, Joint Base San Antonio - Lackland AFB, TX

Introduction

- Rising health care costs in the United States are having significant economic impact.
- Wasted health care expenditure accounts for estimated 30% of health care costs in the United States.
- Free triiodothyronine (FT3) and free thyroxine (FT4) are commonly ordered when not clinically indicated.
- TSH is sensitive to mild changes in serum FT4 and is known to develop abnormal levels before FT4 abnormalities are detectable.
- The American Thyroid Association (ATA) recommends TSH alone is the optimal test for monitoring or adjusting hypothyroidism treatment and for screening for thyroid dysfunction.
- Excessive testing can lead to added economic burden in an era of rising healthcare costs, while rarely contributing to the evaluation or management of thyroid disease.

Objective

This project sought to evaluate our institution's providers' practice in ordering thyroid function tests (TFTs) to determine if changes are needed to reduce excessive laboratory testing.

Methods

- SAMHS serves more than 240,000 Department of Defense (DoD) beneficiaries.
- Healthcare is provided at nine outpatient community-based locations, an ambulatory surgical center, as well as a 425-bed inpatient facility.
- Outpatient TFT ordering patterns at the San Antonio Military Health System (SAMHS) during a three month period (Aug-Oct) in 2016 were analyzed.
- Inclusion: Adults ≥18 years old with or without history of hypothyroidism.
- TFTs of interest were: TSH, FT4, thyroid panel (TSH + FT4), FT3, total thyroxine (T4), and total triiodothyronine (T3).
- TFT order totals and testing patterns were calculated and analyzed using an Excel spreadsheet.

Results

- 35.0% of all TFTs ordered were free thyroid hormones
 - FT4 and FT3 accounted for 25.4% and 9.6% respectively
 - 75.4% of FT4 orders did not include a TSH
- Comparing patients with a history of hypothyroidism versus those without:
 - 61.3% vs. 38.8% of all TFT requests included a laboratory test other than TSH alone
 - 43.9% vs. 30.1% of all TFT orders were free thyroid hormones
 - Of all FT4 laboratory tests ordered, 28.4% vs. 42.3% were ordered as part of a thyroid panel (TSH + FT4)
- Annual projections: $317,430 worth of TFTs would be ordered, with free thyroid hormone testing accounting for $107,720.
 - Overall, 47.8% of all TFT requests included a laboratory test other than TSH alone, leading to $198,844 in costs.

Discussion

- Free thyroid hormone tests are ordered excessively at significant cost.
- Providers at our institution are often relying on free thyroid hormones as an adjunct to TSH for screening or management of thyroid disorders.
- Our institute automatically requests a FT4 if TSH is abnormal. Despite this, the thyroid panel (TSH + FT4) is often ordered.
- A cost savings program focusing on eliminating all unnecessary FT4, FT3, and total thyroid hormone testing orders could save the SAMHS upwards of $120,000 yearly.
- In an era of rising healthcare costs, inappropriate thyroid function testing is an ideal target for efforts to reduce laboratory overutilization.

Table 1. Projected Annual Cost of Thyroid Laboratory Test Orders

<table>
<thead>
<tr>
<th>Laboratory test</th>
<th>Projected yearly test demand ($100)</th>
<th>Local testing cost ($)</th>
<th>Projected yearly cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH</td>
<td>94,028</td>
<td>2.02</td>
<td>189,037</td>
</tr>
<tr>
<td>Free T4</td>
<td>30,892</td>
<td>1.69</td>
<td>62,427</td>
</tr>
<tr>
<td>Free T3</td>
<td>36,126</td>
<td>2.63</td>
<td>92,994</td>
</tr>
<tr>
<td>Total T3</td>
<td>91.200</td>
<td>5.72</td>
<td>182,762</td>
</tr>
<tr>
<td>Total T4</td>
<td>588</td>
<td>1.77</td>
<td>1.011</td>
</tr>
<tr>
<td>Total Tests</td>
<td>152,856</td>
<td>1.77</td>
<td>317,430</td>
</tr>
</tbody>
</table>

Table 2. Projected Annual Cost by Provider Ordering Pattern

<table>
<thead>
<tr>
<th>Laboratory ordering pattern</th>
<th>Projected yearly test requests (n)</th>
<th>Local testing cost ($)</th>
<th>Projected yearly cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH alone</td>
<td>59,675 (52.17)</td>
<td>2.22</td>
<td>120,546</td>
</tr>
<tr>
<td>TSH + FT4</td>
<td>30,564 (26.77)</td>
<td>3.71</td>
<td>113,352</td>
</tr>
<tr>
<td>FT3 alone</td>
<td>12,150 (10.63)</td>
<td>2.51</td>
<td>31,727</td>
</tr>
<tr>
<td>FT4 alone</td>
<td>4,876 (4.26)</td>
<td>1.69</td>
<td>8,240</td>
</tr>
<tr>
<td>TSH + FT4 + FT3</td>
<td>3,132 (2.74)</td>
<td>6.32</td>
<td>19,754</td>
</tr>
<tr>
<td>Other</td>
<td>3,894 (3.48)</td>
<td>5.96</td>
<td>23,730</td>
</tr>
<tr>
<td>Total Requests</td>
<td>114,388</td>
<td></td>
<td>317,430</td>
</tr>
</tbody>
</table>